Properties

Label 169.10.a.f.1.18
Level $169$
Weight $10$
Character 169.1
Self dual yes
Analytic conductor $87.041$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,10,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(87.0410563117\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 7679 x^{18} + 24599364 x^{16} - 42662336000 x^{14} + 43527566862400 x^{12} + \cdots + 25\!\cdots\!36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{10}\cdot 13^{12} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Root \(36.6943\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+36.6943 q^{2} -130.026 q^{3} +834.471 q^{4} -1417.57 q^{5} -4771.23 q^{6} +7507.92 q^{7} +11832.9 q^{8} -2776.14 q^{9} -52016.6 q^{10} +42852.6 q^{11} -108503. q^{12} +275498. q^{14} +184321. q^{15} +6948.87 q^{16} -535226. q^{17} -101868. q^{18} +418977. q^{19} -1.18292e6 q^{20} -976228. q^{21} +1.57245e6 q^{22} +294693. q^{23} -1.53858e6 q^{24} +56368.4 q^{25} +2.92028e6 q^{27} +6.26514e6 q^{28} +1.62070e6 q^{29} +6.76353e6 q^{30} -3.25108e6 q^{31} -5.80344e6 q^{32} -5.57197e6 q^{33} -1.96397e7 q^{34} -1.06430e7 q^{35} -2.31661e6 q^{36} +2.00820e7 q^{37} +1.53741e7 q^{38} -1.67738e7 q^{40} +3.44352e7 q^{41} -3.58220e7 q^{42} +3.13771e6 q^{43} +3.57593e7 q^{44} +3.93536e6 q^{45} +1.08136e7 q^{46} +5.82844e7 q^{47} -903537. q^{48} +1.60153e7 q^{49} +2.06840e6 q^{50} +6.95935e7 q^{51} -2.43962e7 q^{53} +1.07158e8 q^{54} -6.07464e7 q^{55} +8.88401e7 q^{56} -5.44780e7 q^{57} +5.94706e7 q^{58} +1.61913e8 q^{59} +1.53811e8 q^{60} +8.43506e7 q^{61} -1.19296e8 q^{62} -2.08430e7 q^{63} -2.16511e8 q^{64} -2.04459e8 q^{66} -4.89466e7 q^{67} -4.46631e8 q^{68} -3.83179e7 q^{69} -3.90536e8 q^{70} +3.31943e7 q^{71} -3.28496e7 q^{72} +2.22708e8 q^{73} +7.36896e8 q^{74} -7.32937e6 q^{75} +3.49624e8 q^{76} +3.21734e8 q^{77} +1.28556e7 q^{79} -9.85048e6 q^{80} -3.25071e8 q^{81} +1.26358e9 q^{82} +1.32887e8 q^{83} -8.14634e8 q^{84} +7.58718e8 q^{85} +1.15136e8 q^{86} -2.10734e8 q^{87} +5.07069e8 q^{88} -5.85065e8 q^{89} +1.44405e8 q^{90} +2.45913e8 q^{92} +4.22726e8 q^{93} +2.13870e9 q^{94} -5.93927e8 q^{95} +7.54600e8 q^{96} +1.03264e9 q^{97} +5.87670e8 q^{98} -1.18965e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 326 q^{3} + 5118 q^{4} + 129526 q^{9} + 88390 q^{10} + 427652 q^{12} + 473556 q^{14} + 1189618 q^{16} - 99312 q^{17} - 5073532 q^{22} + 6252378 q^{23} + 1529274 q^{25} + 18052718 q^{27} + 5424828 q^{29}+ \cdots + 9251202540 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 36.6943 1.62167 0.810837 0.585272i \(-0.199012\pi\)
0.810837 + 0.585272i \(0.199012\pi\)
\(3\) −130.026 −0.926800 −0.463400 0.886149i \(-0.653371\pi\)
−0.463400 + 0.886149i \(0.653371\pi\)
\(4\) 834.471 1.62983
\(5\) −1417.57 −1.01433 −0.507164 0.861850i \(-0.669306\pi\)
−0.507164 + 0.861850i \(0.669306\pi\)
\(6\) −4771.23 −1.50297
\(7\) 7507.92 1.18189 0.590947 0.806710i \(-0.298754\pi\)
0.590947 + 0.806710i \(0.298754\pi\)
\(8\) 11832.9 1.02137
\(9\) −2776.14 −0.141042
\(10\) −52016.6 −1.64491
\(11\) 42852.6 0.882491 0.441245 0.897386i \(-0.354537\pi\)
0.441245 + 0.897386i \(0.354537\pi\)
\(12\) −108503. −1.51052
\(13\) 0 0
\(14\) 275498. 1.91665
\(15\) 184321. 0.940078
\(16\) 6948.87 0.0265078
\(17\) −535226. −1.55424 −0.777118 0.629354i \(-0.783319\pi\)
−0.777118 + 0.629354i \(0.783319\pi\)
\(18\) −101868. −0.228725
\(19\) 418977. 0.737563 0.368781 0.929516i \(-0.379775\pi\)
0.368781 + 0.929516i \(0.379775\pi\)
\(20\) −1.18292e6 −1.65318
\(21\) −976228. −1.09538
\(22\) 1.57245e6 1.43111
\(23\) 294693. 0.219581 0.109791 0.993955i \(-0.464982\pi\)
0.109791 + 0.993955i \(0.464982\pi\)
\(24\) −1.53858e6 −0.946608
\(25\) 56368.4 0.0288606
\(26\) 0 0
\(27\) 2.92028e6 1.05752
\(28\) 6.26514e6 1.92628
\(29\) 1.62070e6 0.425513 0.212756 0.977105i \(-0.431756\pi\)
0.212756 + 0.977105i \(0.431756\pi\)
\(30\) 6.76353e6 1.52450
\(31\) −3.25108e6 −0.632265 −0.316133 0.948715i \(-0.602384\pi\)
−0.316133 + 0.948715i \(0.602384\pi\)
\(32\) −5.80344e6 −0.978386
\(33\) −5.57197e6 −0.817892
\(34\) −1.96397e7 −2.52047
\(35\) −1.06430e7 −1.19883
\(36\) −2.31661e6 −0.229875
\(37\) 2.00820e7 1.76157 0.880785 0.473516i \(-0.157015\pi\)
0.880785 + 0.473516i \(0.157015\pi\)
\(38\) 1.53741e7 1.19609
\(39\) 0 0
\(40\) −1.67738e7 −1.03601
\(41\) 3.44352e7 1.90316 0.951580 0.307401i \(-0.0994593\pi\)
0.951580 + 0.307401i \(0.0994593\pi\)
\(42\) −3.58220e7 −1.77635
\(43\) 3.13771e6 0.139960 0.0699801 0.997548i \(-0.477706\pi\)
0.0699801 + 0.997548i \(0.477706\pi\)
\(44\) 3.57593e7 1.43831
\(45\) 3.93536e6 0.143063
\(46\) 1.08136e7 0.356089
\(47\) 5.82844e7 1.74226 0.871128 0.491056i \(-0.163389\pi\)
0.871128 + 0.491056i \(0.163389\pi\)
\(48\) −903537. −0.0245675
\(49\) 1.60153e7 0.396874
\(50\) 2.06840e6 0.0468025
\(51\) 6.95935e7 1.44047
\(52\) 0 0
\(53\) −2.43962e7 −0.424699 −0.212349 0.977194i \(-0.568111\pi\)
−0.212349 + 0.977194i \(0.568111\pi\)
\(54\) 1.07158e8 1.71495
\(55\) −6.07464e7 −0.895135
\(56\) 8.88401e7 1.20716
\(57\) −5.44780e7 −0.683573
\(58\) 5.94706e7 0.690043
\(59\) 1.61913e8 1.73959 0.869795 0.493412i \(-0.164251\pi\)
0.869795 + 0.493412i \(0.164251\pi\)
\(60\) 1.53811e8 1.53216
\(61\) 8.43506e7 0.780017 0.390008 0.920811i \(-0.372472\pi\)
0.390008 + 0.920811i \(0.372472\pi\)
\(62\) −1.19296e8 −1.02533
\(63\) −2.08430e7 −0.166697
\(64\) −2.16511e8 −1.61313
\(65\) 0 0
\(66\) −2.04459e8 −1.32635
\(67\) −4.89466e7 −0.296746 −0.148373 0.988931i \(-0.547404\pi\)
−0.148373 + 0.988931i \(0.547404\pi\)
\(68\) −4.46631e8 −2.53314
\(69\) −3.83179e7 −0.203508
\(70\) −3.90536e8 −1.94411
\(71\) 3.31943e7 0.155025 0.0775125 0.996991i \(-0.475302\pi\)
0.0775125 + 0.996991i \(0.475302\pi\)
\(72\) −3.28496e7 −0.144057
\(73\) 2.22708e8 0.917875 0.458938 0.888468i \(-0.348230\pi\)
0.458938 + 0.888468i \(0.348230\pi\)
\(74\) 7.36896e8 2.85669
\(75\) −7.32937e6 −0.0267480
\(76\) 3.49624e8 1.20210
\(77\) 3.21734e8 1.04301
\(78\) 0 0
\(79\) 1.28556e7 0.0371338 0.0185669 0.999828i \(-0.494090\pi\)
0.0185669 + 0.999828i \(0.494090\pi\)
\(80\) −9.85048e6 −0.0268876
\(81\) −3.25071e8 −0.839065
\(82\) 1.26358e9 3.08631
\(83\) 1.32887e8 0.307348 0.153674 0.988122i \(-0.450889\pi\)
0.153674 + 0.988122i \(0.450889\pi\)
\(84\) −8.14634e8 −1.78528
\(85\) 7.58718e8 1.57651
\(86\) 1.15136e8 0.226970
\(87\) −2.10734e8 −0.394365
\(88\) 5.07069e8 0.901352
\(89\) −5.85065e8 −0.988437 −0.494218 0.869338i \(-0.664546\pi\)
−0.494218 + 0.869338i \(0.664546\pi\)
\(90\) 1.44405e8 0.232002
\(91\) 0 0
\(92\) 2.45913e8 0.357879
\(93\) 4.22726e8 0.585983
\(94\) 2.13870e9 2.82537
\(95\) −5.93927e8 −0.748130
\(96\) 7.54600e8 0.906768
\(97\) 1.03264e9 1.18434 0.592170 0.805813i \(-0.298271\pi\)
0.592170 + 0.805813i \(0.298271\pi\)
\(98\) 5.87670e8 0.643600
\(99\) −1.18965e8 −0.124469
\(100\) 4.70378e7 0.0470378
\(101\) 7.35672e8 0.703458 0.351729 0.936102i \(-0.385594\pi\)
0.351729 + 0.936102i \(0.385594\pi\)
\(102\) 2.55369e9 2.33597
\(103\) 1.16039e8 0.101587 0.0507934 0.998709i \(-0.483825\pi\)
0.0507934 + 0.998709i \(0.483825\pi\)
\(104\) 0 0
\(105\) 1.38387e9 1.11107
\(106\) −8.95201e8 −0.688723
\(107\) −4.21394e8 −0.310786 −0.155393 0.987853i \(-0.549664\pi\)
−0.155393 + 0.987853i \(0.549664\pi\)
\(108\) 2.43689e9 1.72357
\(109\) 1.30101e9 0.882796 0.441398 0.897311i \(-0.354483\pi\)
0.441398 + 0.897311i \(0.354483\pi\)
\(110\) −2.22905e9 −1.45162
\(111\) −2.61119e9 −1.63262
\(112\) 5.21716e7 0.0313295
\(113\) −1.02461e9 −0.591160 −0.295580 0.955318i \(-0.595513\pi\)
−0.295580 + 0.955318i \(0.595513\pi\)
\(114\) −1.99903e9 −1.10853
\(115\) −4.17747e8 −0.222727
\(116\) 1.35243e9 0.693512
\(117\) 0 0
\(118\) 5.94128e9 2.82105
\(119\) −4.01844e9 −1.83694
\(120\) 2.18104e9 0.960171
\(121\) −5.21602e8 −0.221210
\(122\) 3.09519e9 1.26493
\(123\) −4.47749e9 −1.76385
\(124\) −2.71293e9 −1.03048
\(125\) 2.68878e9 0.985054
\(126\) −7.64821e8 −0.270329
\(127\) −4.76239e9 −1.62446 −0.812228 0.583339i \(-0.801746\pi\)
−0.812228 + 0.583339i \(0.801746\pi\)
\(128\) −4.97335e9 −1.63759
\(129\) −4.07985e8 −0.129715
\(130\) 0 0
\(131\) −3.55676e9 −1.05520 −0.527599 0.849494i \(-0.676908\pi\)
−0.527599 + 0.849494i \(0.676908\pi\)
\(132\) −4.64965e9 −1.33302
\(133\) 3.14565e9 0.871721
\(134\) −1.79606e9 −0.481226
\(135\) −4.13969e9 −1.07267
\(136\) −6.33325e9 −1.58746
\(137\) 5.28532e9 1.28183 0.640913 0.767614i \(-0.278556\pi\)
0.640913 + 0.767614i \(0.278556\pi\)
\(138\) −1.40605e9 −0.330023
\(139\) 9.34790e8 0.212397 0.106198 0.994345i \(-0.466132\pi\)
0.106198 + 0.994345i \(0.466132\pi\)
\(140\) −8.88126e9 −1.95388
\(141\) −7.57851e9 −1.61472
\(142\) 1.21804e9 0.251400
\(143\) 0 0
\(144\) −1.92910e7 −0.00373873
\(145\) −2.29745e9 −0.431609
\(146\) 8.17213e9 1.48849
\(147\) −2.08241e9 −0.367823
\(148\) 1.67579e10 2.87105
\(149\) −6.55190e9 −1.08900 −0.544502 0.838760i \(-0.683281\pi\)
−0.544502 + 0.838760i \(0.683281\pi\)
\(150\) −2.68946e8 −0.0433765
\(151\) −1.99924e8 −0.0312946 −0.0156473 0.999878i \(-0.504981\pi\)
−0.0156473 + 0.999878i \(0.504981\pi\)
\(152\) 4.95769e9 0.753327
\(153\) 1.48586e9 0.219213
\(154\) 1.18058e10 1.69142
\(155\) 4.60861e9 0.641324
\(156\) 0 0
\(157\) −6.66154e9 −0.875036 −0.437518 0.899210i \(-0.644142\pi\)
−0.437518 + 0.899210i \(0.644142\pi\)
\(158\) 4.71725e8 0.0602188
\(159\) 3.17215e9 0.393610
\(160\) 8.22675e9 0.992404
\(161\) 2.21253e9 0.259522
\(162\) −1.19282e10 −1.36069
\(163\) −5.88103e9 −0.652543 −0.326271 0.945276i \(-0.605792\pi\)
−0.326271 + 0.945276i \(0.605792\pi\)
\(164\) 2.87352e10 3.10182
\(165\) 7.89863e9 0.829611
\(166\) 4.87618e9 0.498418
\(167\) 5.12094e9 0.509478 0.254739 0.967010i \(-0.418010\pi\)
0.254739 + 0.967010i \(0.418010\pi\)
\(168\) −1.15516e10 −1.11879
\(169\) 0 0
\(170\) 2.78406e10 2.55658
\(171\) −1.16314e9 −0.104028
\(172\) 2.61833e9 0.228111
\(173\) 1.31542e10 1.11650 0.558249 0.829674i \(-0.311474\pi\)
0.558249 + 0.829674i \(0.311474\pi\)
\(174\) −7.73274e9 −0.639532
\(175\) 4.23209e8 0.0341102
\(176\) 2.97777e8 0.0233929
\(177\) −2.10529e10 −1.61225
\(178\) −2.14685e10 −1.60292
\(179\) 1.03360e10 0.752513 0.376256 0.926516i \(-0.377211\pi\)
0.376256 + 0.926516i \(0.377211\pi\)
\(180\) 3.28394e9 0.233168
\(181\) 2.73183e9 0.189191 0.0945956 0.995516i \(-0.469844\pi\)
0.0945956 + 0.995516i \(0.469844\pi\)
\(182\) 0 0
\(183\) −1.09678e10 −0.722919
\(184\) 3.48706e9 0.224274
\(185\) −2.84676e10 −1.78681
\(186\) 1.55116e10 0.950274
\(187\) −2.29358e10 −1.37160
\(188\) 4.86366e10 2.83957
\(189\) 2.19252e10 1.24987
\(190\) −2.17937e10 −1.21322
\(191\) 1.01627e10 0.552536 0.276268 0.961081i \(-0.410902\pi\)
0.276268 + 0.961081i \(0.410902\pi\)
\(192\) 2.81521e10 1.49505
\(193\) 1.45341e10 0.754015 0.377007 0.926210i \(-0.376953\pi\)
0.377007 + 0.926210i \(0.376953\pi\)
\(194\) 3.78920e10 1.92061
\(195\) 0 0
\(196\) 1.33643e10 0.646836
\(197\) 2.45916e9 0.116329 0.0581645 0.998307i \(-0.481475\pi\)
0.0581645 + 0.998307i \(0.481475\pi\)
\(198\) −4.36533e9 −0.201848
\(199\) 2.50102e10 1.13052 0.565259 0.824913i \(-0.308776\pi\)
0.565259 + 0.824913i \(0.308776\pi\)
\(200\) 6.66998e8 0.0294774
\(201\) 6.36434e9 0.275024
\(202\) 2.69950e10 1.14078
\(203\) 1.21681e10 0.502911
\(204\) 5.80738e10 2.34771
\(205\) −4.88142e10 −1.93043
\(206\) 4.25798e9 0.164741
\(207\) −8.18109e8 −0.0309703
\(208\) 0 0
\(209\) 1.79543e10 0.650892
\(210\) 5.07800e10 1.80180
\(211\) −2.95626e10 −1.02677 −0.513383 0.858160i \(-0.671608\pi\)
−0.513383 + 0.858160i \(0.671608\pi\)
\(212\) −2.03579e10 −0.692185
\(213\) −4.31614e9 −0.143677
\(214\) −1.54628e10 −0.503994
\(215\) −4.44791e9 −0.141965
\(216\) 3.45552e10 1.08012
\(217\) −2.44088e10 −0.747271
\(218\) 4.77395e10 1.43161
\(219\) −2.89580e10 −0.850687
\(220\) −5.06911e10 −1.45891
\(221\) 0 0
\(222\) −9.58159e10 −2.64758
\(223\) −4.59229e10 −1.24353 −0.621767 0.783203i \(-0.713585\pi\)
−0.621767 + 0.783203i \(0.713585\pi\)
\(224\) −4.35717e10 −1.15635
\(225\) −1.56486e8 −0.00407057
\(226\) −3.75973e10 −0.958669
\(227\) 6.10441e9 0.152590 0.0762952 0.997085i \(-0.475691\pi\)
0.0762952 + 0.997085i \(0.475691\pi\)
\(228\) −4.54604e10 −1.11410
\(229\) 2.74503e10 0.659610 0.329805 0.944049i \(-0.393017\pi\)
0.329805 + 0.944049i \(0.393017\pi\)
\(230\) −1.53289e10 −0.361191
\(231\) −4.18339e10 −0.966662
\(232\) 1.91775e10 0.434607
\(233\) 2.55024e10 0.566864 0.283432 0.958992i \(-0.408527\pi\)
0.283432 + 0.958992i \(0.408527\pi\)
\(234\) 0 0
\(235\) −8.26220e10 −1.76722
\(236\) 1.35112e11 2.83523
\(237\) −1.67156e9 −0.0344155
\(238\) −1.47454e11 −2.97892
\(239\) 2.55166e10 0.505863 0.252931 0.967484i \(-0.418605\pi\)
0.252931 + 0.967484i \(0.418605\pi\)
\(240\) 1.28082e9 0.0249195
\(241\) 7.55461e10 1.44256 0.721282 0.692641i \(-0.243553\pi\)
0.721282 + 0.692641i \(0.243553\pi\)
\(242\) −1.91398e10 −0.358731
\(243\) −1.52121e10 −0.279873
\(244\) 7.03881e10 1.27129
\(245\) −2.27027e10 −0.402560
\(246\) −1.64298e11 −2.86039
\(247\) 0 0
\(248\) −3.84695e10 −0.645779
\(249\) −1.72788e10 −0.284850
\(250\) 9.86628e10 1.59744
\(251\) 3.66333e10 0.582565 0.291283 0.956637i \(-0.405918\pi\)
0.291283 + 0.956637i \(0.405918\pi\)
\(252\) −1.73929e10 −0.271688
\(253\) 1.26284e10 0.193778
\(254\) −1.74753e11 −2.63434
\(255\) −9.86534e10 −1.46110
\(256\) −7.16401e10 −1.04250
\(257\) −2.81000e10 −0.401797 −0.200899 0.979612i \(-0.564386\pi\)
−0.200899 + 0.979612i \(0.564386\pi\)
\(258\) −1.49707e10 −0.210355
\(259\) 1.50774e11 2.08199
\(260\) 0 0
\(261\) −4.49930e9 −0.0600154
\(262\) −1.30513e11 −1.71119
\(263\) −4.07904e10 −0.525723 −0.262861 0.964834i \(-0.584666\pi\)
−0.262861 + 0.964834i \(0.584666\pi\)
\(264\) −6.59323e10 −0.835373
\(265\) 3.45832e10 0.430784
\(266\) 1.15427e11 1.41365
\(267\) 7.60739e10 0.916083
\(268\) −4.08445e10 −0.483645
\(269\) 8.05413e10 0.937849 0.468925 0.883238i \(-0.344642\pi\)
0.468925 + 0.883238i \(0.344642\pi\)
\(270\) −1.51903e11 −1.73952
\(271\) −1.65101e11 −1.85947 −0.929733 0.368235i \(-0.879962\pi\)
−0.929733 + 0.368235i \(0.879962\pi\)
\(272\) −3.71922e9 −0.0411995
\(273\) 0 0
\(274\) 1.93941e11 2.07870
\(275\) 2.41553e9 0.0254692
\(276\) −3.19752e10 −0.331682
\(277\) −9.50226e10 −0.969768 −0.484884 0.874578i \(-0.661138\pi\)
−0.484884 + 0.874578i \(0.661138\pi\)
\(278\) 3.43015e10 0.344438
\(279\) 9.02544e9 0.0891763
\(280\) −1.25937e11 −1.22445
\(281\) −1.86053e11 −1.78016 −0.890078 0.455809i \(-0.849350\pi\)
−0.890078 + 0.455809i \(0.849350\pi\)
\(282\) −2.78088e11 −2.61855
\(283\) 1.03792e11 0.961885 0.480942 0.876752i \(-0.340295\pi\)
0.480942 + 0.876752i \(0.340295\pi\)
\(284\) 2.76997e10 0.252664
\(285\) 7.72262e10 0.693367
\(286\) 0 0
\(287\) 2.58537e11 2.24933
\(288\) 1.61111e10 0.137994
\(289\) 1.67879e11 1.41565
\(290\) −8.43035e10 −0.699930
\(291\) −1.34271e11 −1.09765
\(292\) 1.85844e11 1.49598
\(293\) −1.07967e11 −0.855825 −0.427913 0.903820i \(-0.640751\pi\)
−0.427913 + 0.903820i \(0.640751\pi\)
\(294\) −7.64126e10 −0.596488
\(295\) −2.29522e11 −1.76452
\(296\) 2.37628e11 1.79922
\(297\) 1.25142e11 0.933250
\(298\) −2.40417e11 −1.76601
\(299\) 0 0
\(300\) −6.11615e9 −0.0435946
\(301\) 2.35577e10 0.165418
\(302\) −7.33607e9 −0.0507496
\(303\) −9.56568e10 −0.651965
\(304\) 2.91142e9 0.0195512
\(305\) −1.19573e11 −0.791193
\(306\) 5.45227e10 0.355493
\(307\) −1.18337e11 −0.760326 −0.380163 0.924920i \(-0.624132\pi\)
−0.380163 + 0.924920i \(0.624132\pi\)
\(308\) 2.68478e11 1.69993
\(309\) −1.50882e10 −0.0941506
\(310\) 1.69110e11 1.04002
\(311\) 1.19220e11 0.722647 0.361323 0.932441i \(-0.382325\pi\)
0.361323 + 0.932441i \(0.382325\pi\)
\(312\) 0 0
\(313\) −3.12948e11 −1.84299 −0.921495 0.388389i \(-0.873032\pi\)
−0.921495 + 0.388389i \(0.873032\pi\)
\(314\) −2.44440e11 −1.41902
\(315\) 2.95464e10 0.169086
\(316\) 1.07276e10 0.0605216
\(317\) 2.96387e10 0.164851 0.0824257 0.996597i \(-0.473733\pi\)
0.0824257 + 0.996597i \(0.473733\pi\)
\(318\) 1.16400e11 0.638308
\(319\) 6.94514e10 0.375511
\(320\) 3.06918e11 1.63624
\(321\) 5.47923e10 0.288036
\(322\) 8.11874e10 0.420859
\(323\) −2.24247e11 −1.14635
\(324\) −2.71262e11 −1.36753
\(325\) 0 0
\(326\) −2.15800e11 −1.05821
\(327\) −1.69165e11 −0.818175
\(328\) 4.07467e11 1.94384
\(329\) 4.37595e11 2.05916
\(330\) 2.89835e11 1.34536
\(331\) −3.51155e11 −1.60795 −0.803976 0.594662i \(-0.797286\pi\)
−0.803976 + 0.594662i \(0.797286\pi\)
\(332\) 1.10890e11 0.500923
\(333\) −5.57505e10 −0.248456
\(334\) 1.87909e11 0.826207
\(335\) 6.93850e10 0.300998
\(336\) −6.78368e9 −0.0290361
\(337\) 5.10205e10 0.215481 0.107741 0.994179i \(-0.465638\pi\)
0.107741 + 0.994179i \(0.465638\pi\)
\(338\) 0 0
\(339\) 1.33226e11 0.547887
\(340\) 6.33129e11 2.56943
\(341\) −1.39317e11 −0.557968
\(342\) −4.26805e10 −0.168699
\(343\) −1.82730e11 −0.712831
\(344\) 3.71280e10 0.142952
\(345\) 5.43181e10 0.206423
\(346\) 4.82685e11 1.81059
\(347\) 4.01637e11 1.48714 0.743569 0.668659i \(-0.233131\pi\)
0.743569 + 0.668659i \(0.233131\pi\)
\(348\) −1.75852e11 −0.642747
\(349\) 1.22048e10 0.0440368 0.0220184 0.999758i \(-0.492991\pi\)
0.0220184 + 0.999758i \(0.492991\pi\)
\(350\) 1.55294e10 0.0553156
\(351\) 0 0
\(352\) −2.48692e11 −0.863417
\(353\) 1.09056e11 0.373822 0.186911 0.982377i \(-0.440152\pi\)
0.186911 + 0.982377i \(0.440152\pi\)
\(354\) −7.72523e11 −2.61455
\(355\) −4.70552e10 −0.157246
\(356\) −4.88220e11 −1.61098
\(357\) 5.22503e11 1.70248
\(358\) 3.79272e11 1.22033
\(359\) 1.39991e11 0.444812 0.222406 0.974954i \(-0.428609\pi\)
0.222406 + 0.974954i \(0.428609\pi\)
\(360\) 4.65665e10 0.146121
\(361\) −1.47146e11 −0.456001
\(362\) 1.00243e11 0.306806
\(363\) 6.78220e10 0.205017
\(364\) 0 0
\(365\) −3.15704e11 −0.931026
\(366\) −4.02456e11 −1.17234
\(367\) −5.14356e11 −1.48002 −0.740008 0.672599i \(-0.765178\pi\)
−0.740008 + 0.672599i \(0.765178\pi\)
\(368\) 2.04779e9 0.00582062
\(369\) −9.55969e10 −0.268426
\(370\) −1.04460e12 −2.89762
\(371\) −1.83165e11 −0.501949
\(372\) 3.52752e11 0.955051
\(373\) −2.90587e11 −0.777297 −0.388649 0.921386i \(-0.627058\pi\)
−0.388649 + 0.921386i \(0.627058\pi\)
\(374\) −8.41614e11 −2.22429
\(375\) −3.49612e11 −0.912947
\(376\) 6.89671e11 1.77949
\(377\) 0 0
\(378\) 8.04531e11 2.02689
\(379\) 4.46749e10 0.111221 0.0556106 0.998453i \(-0.482289\pi\)
0.0556106 + 0.998453i \(0.482289\pi\)
\(380\) −4.95615e11 −1.21932
\(381\) 6.19236e11 1.50555
\(382\) 3.72914e11 0.896033
\(383\) 9.54757e10 0.226725 0.113362 0.993554i \(-0.463838\pi\)
0.113362 + 0.993554i \(0.463838\pi\)
\(384\) 6.46667e11 1.51771
\(385\) −4.56079e11 −1.05795
\(386\) 5.33318e11 1.22277
\(387\) −8.71071e9 −0.0197403
\(388\) 8.61709e11 1.93027
\(389\) 2.40025e11 0.531476 0.265738 0.964045i \(-0.414384\pi\)
0.265738 + 0.964045i \(0.414384\pi\)
\(390\) 0 0
\(391\) −1.57728e11 −0.341281
\(392\) 1.89507e11 0.405356
\(393\) 4.62473e11 0.977957
\(394\) 9.02370e10 0.188648
\(395\) −1.82236e10 −0.0376658
\(396\) −9.92727e10 −0.202862
\(397\) 3.20260e11 0.647061 0.323531 0.946218i \(-0.395130\pi\)
0.323531 + 0.946218i \(0.395130\pi\)
\(398\) 9.17730e11 1.83333
\(399\) −4.09017e11 −0.807911
\(400\) 3.91697e8 0.000765032 0
\(401\) 1.37703e10 0.0265946 0.0132973 0.999912i \(-0.495767\pi\)
0.0132973 + 0.999912i \(0.495767\pi\)
\(402\) 2.33535e11 0.446000
\(403\) 0 0
\(404\) 6.13897e11 1.14651
\(405\) 4.60809e11 0.851086
\(406\) 4.46500e11 0.815558
\(407\) 8.60568e11 1.55457
\(408\) 8.23490e11 1.47125
\(409\) 4.52919e11 0.800323 0.400161 0.916445i \(-0.368954\pi\)
0.400161 + 0.916445i \(0.368954\pi\)
\(410\) −1.79120e12 −3.13052
\(411\) −6.87231e11 −1.18800
\(412\) 9.68314e10 0.165569
\(413\) 1.21563e12 2.05601
\(414\) −3.00199e10 −0.0502237
\(415\) −1.88376e11 −0.311751
\(416\) 0 0
\(417\) −1.21547e11 −0.196849
\(418\) 6.58819e11 1.05553
\(419\) 8.66707e11 1.37375 0.686877 0.726774i \(-0.258981\pi\)
0.686877 + 0.726774i \(0.258981\pi\)
\(420\) 1.15480e12 1.81086
\(421\) 9.07071e11 1.40725 0.703626 0.710570i \(-0.251563\pi\)
0.703626 + 0.710570i \(0.251563\pi\)
\(422\) −1.08478e12 −1.66508
\(423\) −1.61806e11 −0.245732
\(424\) −2.88677e11 −0.433776
\(425\) −3.01698e10 −0.0448562
\(426\) −1.58378e11 −0.232997
\(427\) 6.33298e11 0.921897
\(428\) −3.51641e11 −0.506527
\(429\) 0 0
\(430\) −1.63213e11 −0.230222
\(431\) 1.18566e11 0.165506 0.0827528 0.996570i \(-0.473629\pi\)
0.0827528 + 0.996570i \(0.473629\pi\)
\(432\) 2.02927e10 0.0280325
\(433\) −2.65940e11 −0.363570 −0.181785 0.983338i \(-0.558187\pi\)
−0.181785 + 0.983338i \(0.558187\pi\)
\(434\) −8.95664e11 −1.21183
\(435\) 2.98730e11 0.400015
\(436\) 1.08565e12 1.43880
\(437\) 1.23470e11 0.161955
\(438\) −1.06259e12 −1.37954
\(439\) −7.76288e10 −0.0997545 −0.0498772 0.998755i \(-0.515883\pi\)
−0.0498772 + 0.998755i \(0.515883\pi\)
\(440\) −7.18803e11 −0.914267
\(441\) −4.44607e10 −0.0559761
\(442\) 0 0
\(443\) 1.22924e12 1.51642 0.758212 0.652008i \(-0.226073\pi\)
0.758212 + 0.652008i \(0.226073\pi\)
\(444\) −2.17897e12 −2.66089
\(445\) 8.29368e11 1.00260
\(446\) −1.68511e12 −2.01661
\(447\) 8.51920e11 1.00929
\(448\) −1.62555e12 −1.90655
\(449\) 7.73914e11 0.898637 0.449319 0.893372i \(-0.351667\pi\)
0.449319 + 0.893372i \(0.351667\pi\)
\(450\) −5.74216e9 −0.00660114
\(451\) 1.47564e12 1.67952
\(452\) −8.55006e11 −0.963488
\(453\) 2.59954e10 0.0290038
\(454\) 2.23997e11 0.247452
\(455\) 0 0
\(456\) −6.44631e11 −0.698183
\(457\) −3.75223e11 −0.402407 −0.201204 0.979549i \(-0.564485\pi\)
−0.201204 + 0.979549i \(0.564485\pi\)
\(458\) 1.00727e12 1.06967
\(459\) −1.56301e12 −1.64363
\(460\) −3.48598e11 −0.363007
\(461\) −9.94424e11 −1.02546 −0.512728 0.858551i \(-0.671365\pi\)
−0.512728 + 0.858551i \(0.671365\pi\)
\(462\) −1.53507e12 −1.56761
\(463\) 1.76404e12 1.78400 0.891999 0.452038i \(-0.149303\pi\)
0.891999 + 0.452038i \(0.149303\pi\)
\(464\) 1.12621e10 0.0112794
\(465\) −5.99241e11 −0.594379
\(466\) 9.35792e11 0.919269
\(467\) 7.36402e10 0.0716455 0.0358227 0.999358i \(-0.488595\pi\)
0.0358227 + 0.999358i \(0.488595\pi\)
\(468\) 0 0
\(469\) −3.67487e11 −0.350723
\(470\) −3.03176e12 −2.86585
\(471\) 8.66176e11 0.810983
\(472\) 1.91589e12 1.77677
\(473\) 1.34459e11 0.123514
\(474\) −6.13368e10 −0.0558108
\(475\) 2.36170e10 0.0212865
\(476\) −3.35327e12 −2.99390
\(477\) 6.77273e10 0.0599005
\(478\) 9.36315e11 0.820345
\(479\) −1.72474e12 −1.49697 −0.748485 0.663151i \(-0.769219\pi\)
−0.748485 + 0.663151i \(0.769219\pi\)
\(480\) −1.06969e12 −0.919760
\(481\) 0 0
\(482\) 2.77211e12 2.33937
\(483\) −2.87688e11 −0.240524
\(484\) −4.35262e11 −0.360534
\(485\) −1.46384e12 −1.20131
\(486\) −5.58197e11 −0.453863
\(487\) 1.91462e12 1.54242 0.771210 0.636580i \(-0.219652\pi\)
0.771210 + 0.636580i \(0.219652\pi\)
\(488\) 9.98108e11 0.796688
\(489\) 7.64688e11 0.604776
\(490\) −8.33061e11 −0.652821
\(491\) −1.79635e12 −1.39484 −0.697418 0.716664i \(-0.745668\pi\)
−0.697418 + 0.716664i \(0.745668\pi\)
\(492\) −3.73633e12 −2.87477
\(493\) −8.67443e11 −0.661348
\(494\) 0 0
\(495\) 1.68640e11 0.126252
\(496\) −2.25913e10 −0.0167600
\(497\) 2.49221e11 0.183223
\(498\) −6.34032e11 −0.461933
\(499\) −1.29654e12 −0.936122 −0.468061 0.883696i \(-0.655047\pi\)
−0.468061 + 0.883696i \(0.655047\pi\)
\(500\) 2.24371e12 1.60547
\(501\) −6.65857e11 −0.472184
\(502\) 1.34423e12 0.944731
\(503\) 1.08278e12 0.754193 0.377097 0.926174i \(-0.376922\pi\)
0.377097 + 0.926174i \(0.376922\pi\)
\(504\) −2.46633e11 −0.170260
\(505\) −1.04286e12 −0.713537
\(506\) 4.63389e11 0.314245
\(507\) 0 0
\(508\) −3.97408e12 −2.64758
\(509\) 1.45339e12 0.959734 0.479867 0.877341i \(-0.340685\pi\)
0.479867 + 0.877341i \(0.340685\pi\)
\(510\) −3.62002e12 −2.36944
\(511\) 1.67208e12 1.08483
\(512\) −8.24265e10 −0.0530093
\(513\) 1.22353e12 0.779985
\(514\) −1.03111e12 −0.651584
\(515\) −1.64493e11 −0.103042
\(516\) −3.40452e11 −0.211413
\(517\) 2.49764e12 1.53752
\(518\) 5.53256e12 3.37631
\(519\) −1.71040e12 −1.03477
\(520\) 0 0
\(521\) −9.18754e11 −0.546298 −0.273149 0.961972i \(-0.588065\pi\)
−0.273149 + 0.961972i \(0.588065\pi\)
\(522\) −1.65099e11 −0.0973254
\(523\) 2.89678e12 1.69300 0.846501 0.532386i \(-0.178705\pi\)
0.846501 + 0.532386i \(0.178705\pi\)
\(524\) −2.96802e12 −1.71979
\(525\) −5.50284e10 −0.0316133
\(526\) −1.49677e12 −0.852551
\(527\) 1.74006e12 0.982690
\(528\) −3.87189e10 −0.0216806
\(529\) −1.71431e12 −0.951784
\(530\) 1.26901e12 0.698590
\(531\) −4.49492e11 −0.245356
\(532\) 2.62495e12 1.42075
\(533\) 0 0
\(534\) 2.79148e12 1.48559
\(535\) 5.97354e11 0.315239
\(536\) −5.79177e11 −0.303089
\(537\) −1.34395e12 −0.697428
\(538\) 2.95540e12 1.52089
\(539\) 6.86297e11 0.350238
\(540\) −3.45445e12 −1.74827
\(541\) 6.88869e11 0.345739 0.172870 0.984945i \(-0.444696\pi\)
0.172870 + 0.984945i \(0.444696\pi\)
\(542\) −6.05827e12 −3.01545
\(543\) −3.55211e11 −0.175342
\(544\) 3.10615e12 1.52064
\(545\) −1.84426e12 −0.895445
\(546\) 0 0
\(547\) −3.12007e12 −1.49012 −0.745061 0.666996i \(-0.767580\pi\)
−0.745061 + 0.666996i \(0.767580\pi\)
\(548\) 4.41045e12 2.08915
\(549\) −2.34169e11 −0.110015
\(550\) 8.86362e10 0.0413028
\(551\) 6.79037e11 0.313842
\(552\) −4.53410e11 −0.207857
\(553\) 9.65185e10 0.0438882
\(554\) −3.48679e12 −1.57265
\(555\) 3.70154e12 1.65601
\(556\) 7.80055e11 0.346169
\(557\) −2.65417e12 −1.16837 −0.584185 0.811621i \(-0.698586\pi\)
−0.584185 + 0.811621i \(0.698586\pi\)
\(558\) 3.31182e11 0.144615
\(559\) 0 0
\(560\) −7.39567e10 −0.0317783
\(561\) 2.98226e12 1.27120
\(562\) −6.82708e12 −2.88683
\(563\) 1.37050e12 0.574900 0.287450 0.957796i \(-0.407193\pi\)
0.287450 + 0.957796i \(0.407193\pi\)
\(564\) −6.32405e12 −2.63172
\(565\) 1.45245e12 0.599630
\(566\) 3.80856e12 1.55986
\(567\) −2.44061e12 −0.991686
\(568\) 3.92784e11 0.158338
\(569\) 2.71253e12 1.08485 0.542425 0.840104i \(-0.317506\pi\)
0.542425 + 0.840104i \(0.317506\pi\)
\(570\) 2.83376e12 1.12441
\(571\) 3.89232e12 1.53231 0.766153 0.642658i \(-0.222168\pi\)
0.766153 + 0.642658i \(0.222168\pi\)
\(572\) 0 0
\(573\) −1.32142e12 −0.512090
\(574\) 9.48683e12 3.64769
\(575\) 1.66114e10 0.00633724
\(576\) 6.01064e11 0.227520
\(577\) 4.61600e12 1.73370 0.866851 0.498567i \(-0.166140\pi\)
0.866851 + 0.498567i \(0.166140\pi\)
\(578\) 6.16021e12 2.29573
\(579\) −1.88982e12 −0.698821
\(580\) −1.91716e12 −0.703448
\(581\) 9.97703e11 0.363252
\(582\) −4.92697e12 −1.78003
\(583\) −1.04544e12 −0.374793
\(584\) 2.63528e12 0.937493
\(585\) 0 0
\(586\) −3.96176e12 −1.38787
\(587\) −1.49574e12 −0.519979 −0.259990 0.965611i \(-0.583719\pi\)
−0.259990 + 0.965611i \(0.583719\pi\)
\(588\) −1.73771e12 −0.599487
\(589\) −1.36213e12 −0.466335
\(590\) −8.42215e12 −2.86147
\(591\) −3.19755e11 −0.107814
\(592\) 1.39547e11 0.0466954
\(593\) 2.12351e12 0.705192 0.352596 0.935776i \(-0.385299\pi\)
0.352596 + 0.935776i \(0.385299\pi\)
\(594\) 4.59198e12 1.51343
\(595\) 5.69640e12 1.86326
\(596\) −5.46738e12 −1.77489
\(597\) −3.25198e12 −1.04776
\(598\) 0 0
\(599\) 1.24442e12 0.394954 0.197477 0.980308i \(-0.436725\pi\)
0.197477 + 0.980308i \(0.436725\pi\)
\(600\) −8.67274e10 −0.0273197
\(601\) 7.25714e11 0.226898 0.113449 0.993544i \(-0.463810\pi\)
0.113449 + 0.993544i \(0.463810\pi\)
\(602\) 8.64432e11 0.268254
\(603\) 1.35882e11 0.0418539
\(604\) −1.66831e11 −0.0510047
\(605\) 7.39405e11 0.224379
\(606\) −3.51006e12 −1.05727
\(607\) −3.16893e12 −0.947467 −0.473734 0.880668i \(-0.657094\pi\)
−0.473734 + 0.880668i \(0.657094\pi\)
\(608\) −2.43151e12 −0.721621
\(609\) −1.58218e12 −0.466098
\(610\) −4.38763e12 −1.28306
\(611\) 0 0
\(612\) 1.23991e12 0.357280
\(613\) 8.87008e11 0.253720 0.126860 0.991921i \(-0.459510\pi\)
0.126860 + 0.991921i \(0.459510\pi\)
\(614\) −4.34231e12 −1.23300
\(615\) 6.34713e12 1.78912
\(616\) 3.80703e12 1.06530
\(617\) 1.91841e12 0.532914 0.266457 0.963847i \(-0.414147\pi\)
0.266457 + 0.963847i \(0.414147\pi\)
\(618\) −5.53650e11 −0.152682
\(619\) 3.56519e12 0.976057 0.488028 0.872828i \(-0.337716\pi\)
0.488028 + 0.872828i \(0.337716\pi\)
\(620\) 3.84576e12 1.04525
\(621\) 8.60587e11 0.232211
\(622\) 4.37468e12 1.17190
\(623\) −4.39262e12 −1.16823
\(624\) 0 0
\(625\) −3.92161e12 −1.02803
\(626\) −1.14834e13 −2.98873
\(627\) −2.33453e12 −0.603247
\(628\) −5.55886e12 −1.42616
\(629\) −1.07484e13 −2.73790
\(630\) 1.08418e12 0.274202
\(631\) 1.21408e12 0.304870 0.152435 0.988314i \(-0.451289\pi\)
0.152435 + 0.988314i \(0.451289\pi\)
\(632\) 1.52118e11 0.0379274
\(633\) 3.84392e12 0.951607
\(634\) 1.08757e12 0.267335
\(635\) 6.75100e12 1.64773
\(636\) 2.64707e12 0.641517
\(637\) 0 0
\(638\) 2.54847e12 0.608957
\(639\) −9.21521e10 −0.0218651
\(640\) 7.05005e12 1.66105
\(641\) −2.78119e12 −0.650684 −0.325342 0.945596i \(-0.605479\pi\)
−0.325342 + 0.945596i \(0.605479\pi\)
\(642\) 2.01057e12 0.467101
\(643\) −5.06784e12 −1.16916 −0.584580 0.811336i \(-0.698741\pi\)
−0.584580 + 0.811336i \(0.698741\pi\)
\(644\) 1.84630e12 0.422975
\(645\) 5.78345e11 0.131574
\(646\) −8.22860e12 −1.85900
\(647\) −6.59226e12 −1.47899 −0.739494 0.673163i \(-0.764935\pi\)
−0.739494 + 0.673163i \(0.764935\pi\)
\(648\) −3.84651e12 −0.856998
\(649\) 6.93839e12 1.53517
\(650\) 0 0
\(651\) 3.17379e12 0.692570
\(652\) −4.90755e12 −1.06353
\(653\) −8.90755e11 −0.191712 −0.0958560 0.995395i \(-0.530559\pi\)
−0.0958560 + 0.995395i \(0.530559\pi\)
\(654\) −6.20740e12 −1.32681
\(655\) 5.04195e12 1.07032
\(656\) 2.39286e11 0.0504487
\(657\) −6.18270e11 −0.129459
\(658\) 1.60572e13 3.33929
\(659\) −1.31355e12 −0.271308 −0.135654 0.990756i \(-0.543314\pi\)
−0.135654 + 0.990756i \(0.543314\pi\)
\(660\) 6.59118e12 1.35212
\(661\) −4.44228e12 −0.905106 −0.452553 0.891737i \(-0.649487\pi\)
−0.452553 + 0.891737i \(0.649487\pi\)
\(662\) −1.28854e13 −2.60757
\(663\) 0 0
\(664\) 1.57243e12 0.313917
\(665\) −4.45916e12 −0.884211
\(666\) −2.04573e12 −0.402915
\(667\) 4.77610e11 0.0934345
\(668\) 4.27328e12 0.830361
\(669\) 5.97119e12 1.15251
\(670\) 2.54603e12 0.488121
\(671\) 3.61464e12 0.688358
\(672\) 5.66548e12 1.07170
\(673\) 5.51945e12 1.03712 0.518559 0.855042i \(-0.326469\pi\)
0.518559 + 0.855042i \(0.326469\pi\)
\(674\) 1.87216e12 0.349441
\(675\) 1.64611e11 0.0305206
\(676\) 0 0
\(677\) −5.16749e12 −0.945432 −0.472716 0.881215i \(-0.656726\pi\)
−0.472716 + 0.881215i \(0.656726\pi\)
\(678\) 4.88864e12 0.888494
\(679\) 7.75299e12 1.39977
\(680\) 8.97780e12 1.61020
\(681\) −7.93734e11 −0.141421
\(682\) −5.11214e12 −0.904843
\(683\) 2.52311e12 0.443652 0.221826 0.975086i \(-0.428798\pi\)
0.221826 + 0.975086i \(0.428798\pi\)
\(684\) −9.70605e11 −0.169547
\(685\) −7.49229e12 −1.30019
\(686\) −6.70515e12 −1.15598
\(687\) −3.56926e12 −0.611326
\(688\) 2.18035e10 0.00371004
\(689\) 0 0
\(690\) 1.99317e12 0.334751
\(691\) −1.13796e12 −0.189878 −0.0949392 0.995483i \(-0.530266\pi\)
−0.0949392 + 0.995483i \(0.530266\pi\)
\(692\) 1.09768e13 1.81970
\(693\) −8.93179e11 −0.147109
\(694\) 1.47378e13 2.41165
\(695\) −1.32513e12 −0.215440
\(696\) −2.49359e12 −0.402794
\(697\) −1.84306e13 −2.95796
\(698\) 4.47846e11 0.0714134
\(699\) −3.31598e12 −0.525370
\(700\) 3.53156e11 0.0555937
\(701\) 1.08353e13 1.69476 0.847382 0.530984i \(-0.178178\pi\)
0.847382 + 0.530984i \(0.178178\pi\)
\(702\) 0 0
\(703\) 8.41391e12 1.29927
\(704\) −9.27805e12 −1.42357
\(705\) 1.07430e13 1.63786
\(706\) 4.00175e12 0.606218
\(707\) 5.52337e12 0.831413
\(708\) −1.75681e13 −2.62769
\(709\) −3.85848e12 −0.573466 −0.286733 0.958011i \(-0.592569\pi\)
−0.286733 + 0.958011i \(0.592569\pi\)
\(710\) −1.72666e12 −0.255002
\(711\) −3.56888e10 −0.00523744
\(712\) −6.92299e12 −1.00956
\(713\) −9.58070e11 −0.138833
\(714\) 1.91729e13 2.76087
\(715\) 0 0
\(716\) 8.62509e12 1.22646
\(717\) −3.31784e12 −0.468834
\(718\) 5.13688e12 0.721339
\(719\) 3.09231e12 0.431522 0.215761 0.976446i \(-0.430777\pi\)
0.215761 + 0.976446i \(0.430777\pi\)
\(720\) 2.73463e10 0.00379230
\(721\) 8.71214e11 0.120065
\(722\) −5.39942e12 −0.739486
\(723\) −9.82298e12 −1.33697
\(724\) 2.27964e12 0.308349
\(725\) 9.13564e10 0.0122806
\(726\) 2.48868e12 0.332471
\(727\) 5.87291e11 0.0779737 0.0389869 0.999240i \(-0.487587\pi\)
0.0389869 + 0.999240i \(0.487587\pi\)
\(728\) 0 0
\(729\) 8.37634e12 1.09845
\(730\) −1.15845e13 −1.50982
\(731\) −1.67938e12 −0.217531
\(732\) −9.15232e12 −1.17823
\(733\) −2.05752e12 −0.263255 −0.131627 0.991299i \(-0.542020\pi\)
−0.131627 + 0.991299i \(0.542020\pi\)
\(734\) −1.88739e13 −2.40010
\(735\) 2.95195e12 0.373093
\(736\) −1.71023e12 −0.214835
\(737\) −2.09749e12 −0.261876
\(738\) −3.50786e12 −0.435300
\(739\) 3.58288e11 0.0441909 0.0220954 0.999756i \(-0.492966\pi\)
0.0220954 + 0.999756i \(0.492966\pi\)
\(740\) −2.37554e13 −2.91219
\(741\) 0 0
\(742\) −6.72110e12 −0.813997
\(743\) 8.58825e12 1.03384 0.516922 0.856033i \(-0.327078\pi\)
0.516922 + 0.856033i \(0.327078\pi\)
\(744\) 5.00205e12 0.598508
\(745\) 9.28776e12 1.10461
\(746\) −1.06629e13 −1.26052
\(747\) −3.68912e11 −0.0433491
\(748\) −1.91393e13 −2.23547
\(749\) −3.16379e12 −0.367316
\(750\) −1.28288e13 −1.48050
\(751\) −2.96471e12 −0.340097 −0.170049 0.985436i \(-0.554392\pi\)
−0.170049 + 0.985436i \(0.554392\pi\)
\(752\) 4.05011e11 0.0461834
\(753\) −4.76330e12 −0.539921
\(754\) 0 0
\(755\) 2.83406e11 0.0317429
\(756\) 1.82960e13 2.03708
\(757\) −1.18699e13 −1.31376 −0.656881 0.753994i \(-0.728125\pi\)
−0.656881 + 0.753994i \(0.728125\pi\)
\(758\) 1.63931e12 0.180364
\(759\) −1.64202e12 −0.179594
\(760\) −7.02785e12 −0.764120
\(761\) −5.09033e12 −0.550193 −0.275097 0.961417i \(-0.588710\pi\)
−0.275097 + 0.961417i \(0.588710\pi\)
\(762\) 2.27224e13 2.44150
\(763\) 9.76786e12 1.04337
\(764\) 8.48051e12 0.900537
\(765\) −2.10631e12 −0.222354
\(766\) 3.50341e12 0.367673
\(767\) 0 0
\(768\) 9.31510e12 0.966189
\(769\) 4.36770e12 0.450385 0.225192 0.974314i \(-0.427699\pi\)
0.225192 + 0.974314i \(0.427699\pi\)
\(770\) −1.67355e13 −1.71566
\(771\) 3.65374e12 0.372385
\(772\) 1.21283e13 1.22891
\(773\) 1.44562e13 1.45629 0.728144 0.685424i \(-0.240383\pi\)
0.728144 + 0.685424i \(0.240383\pi\)
\(774\) −3.19634e11 −0.0320124
\(775\) −1.83258e11 −0.0182476
\(776\) 1.22191e13 1.20965
\(777\) −1.96046e13 −1.92959
\(778\) 8.80756e12 0.861881
\(779\) 1.44276e13 1.40370
\(780\) 0 0
\(781\) 1.42246e12 0.136808
\(782\) −5.78770e12 −0.553446
\(783\) 4.73291e12 0.449987
\(784\) 1.11288e11 0.0105203
\(785\) 9.44317e12 0.887574
\(786\) 1.69701e13 1.58593
\(787\) 1.48558e13 1.38042 0.690209 0.723610i \(-0.257518\pi\)
0.690209 + 0.723610i \(0.257518\pi\)
\(788\) 2.05210e12 0.189596
\(789\) 5.30383e12 0.487240
\(790\) −6.68702e11 −0.0610816
\(791\) −7.69268e12 −0.698688
\(792\) −1.40769e12 −0.127129
\(793\) 0 0
\(794\) 1.17517e13 1.04932
\(795\) −4.49673e12 −0.399250
\(796\) 2.08703e13 1.84255
\(797\) 3.06631e11 0.0269187 0.0134594 0.999909i \(-0.495716\pi\)
0.0134594 + 0.999909i \(0.495716\pi\)
\(798\) −1.50086e13 −1.31017
\(799\) −3.11953e13 −2.70788
\(800\) −3.27130e11 −0.0282368
\(801\) 1.62422e12 0.139412
\(802\) 5.05291e11 0.0431278
\(803\) 9.54364e12 0.810017
\(804\) 5.31086e12 0.448242
\(805\) −3.13641e12 −0.263240
\(806\) 0 0
\(807\) −1.04725e13 −0.869199
\(808\) 8.70510e12 0.718493
\(809\) −9.13599e12 −0.749872 −0.374936 0.927051i \(-0.622335\pi\)
−0.374936 + 0.927051i \(0.622335\pi\)
\(810\) 1.69091e13 1.38018
\(811\) 1.24574e13 1.01119 0.505594 0.862771i \(-0.331273\pi\)
0.505594 + 0.862771i \(0.331273\pi\)
\(812\) 1.01539e13 0.819658
\(813\) 2.14675e13 1.72335
\(814\) 3.15779e13 2.52100
\(815\) 8.33674e12 0.661892
\(816\) 4.83596e11 0.0381836
\(817\) 1.31463e12 0.103229
\(818\) 1.66195e13 1.29786
\(819\) 0 0
\(820\) −4.07340e13 −3.14626
\(821\) −1.41959e12 −0.109048 −0.0545241 0.998512i \(-0.517364\pi\)
−0.0545241 + 0.998512i \(0.517364\pi\)
\(822\) −2.52175e13 −1.92654
\(823\) −6.90254e12 −0.524457 −0.262228 0.965006i \(-0.584457\pi\)
−0.262228 + 0.965006i \(0.584457\pi\)
\(824\) 1.37308e12 0.103758
\(825\) −3.14083e11 −0.0236049
\(826\) 4.46066e13 3.33418
\(827\) 3.79690e12 0.282263 0.141132 0.989991i \(-0.454926\pi\)
0.141132 + 0.989991i \(0.454926\pi\)
\(828\) −6.82689e11 −0.0504761
\(829\) −8.19356e12 −0.602528 −0.301264 0.953541i \(-0.597409\pi\)
−0.301264 + 0.953541i \(0.597409\pi\)
\(830\) −6.91231e12 −0.505559
\(831\) 1.23554e13 0.898781
\(832\) 0 0
\(833\) −8.57180e12 −0.616836
\(834\) −4.46009e12 −0.319225
\(835\) −7.25927e12 −0.516778
\(836\) 1.49823e13 1.06084
\(837\) −9.49405e12 −0.668632
\(838\) 3.18032e13 2.22778
\(839\) 8.11293e11 0.0565261 0.0282630 0.999601i \(-0.491002\pi\)
0.0282630 + 0.999601i \(0.491002\pi\)
\(840\) 1.63751e13 1.13482
\(841\) −1.18805e13 −0.818939
\(842\) 3.32843e13 2.28211
\(843\) 2.41918e13 1.64985
\(844\) −2.46691e13 −1.67345
\(845\) 0 0
\(846\) −5.93734e12 −0.398497
\(847\) −3.91615e12 −0.261447
\(848\) −1.69526e11 −0.0112578
\(849\) −1.34956e13 −0.891474
\(850\) −1.10706e12 −0.0727422
\(851\) 5.91804e12 0.386807
\(852\) −3.60169e12 −0.234169
\(853\) −1.79193e13 −1.15891 −0.579455 0.815004i \(-0.696734\pi\)
−0.579455 + 0.815004i \(0.696734\pi\)
\(854\) 2.32384e13 1.49502
\(855\) 1.64883e12 0.105518
\(856\) −4.98629e12 −0.317428
\(857\) −1.89206e13 −1.19818 −0.599090 0.800681i \(-0.704471\pi\)
−0.599090 + 0.800681i \(0.704471\pi\)
\(858\) 0 0
\(859\) −2.52359e13 −1.58143 −0.790716 0.612184i \(-0.790291\pi\)
−0.790716 + 0.612184i \(0.790291\pi\)
\(860\) −3.71165e12 −0.231379
\(861\) −3.36166e13 −2.08468
\(862\) 4.35070e12 0.268396
\(863\) −2.98253e13 −1.83036 −0.915179 0.403048i \(-0.867951\pi\)
−0.915179 + 0.403048i \(0.867951\pi\)
\(864\) −1.69477e13 −1.03466
\(865\) −1.86470e13 −1.13249
\(866\) −9.75848e12 −0.589592
\(867\) −2.18287e13 −1.31203
\(868\) −2.03685e13 −1.21792
\(869\) 5.50894e11 0.0327702
\(870\) 1.09617e13 0.648695
\(871\) 0 0
\(872\) 1.53946e13 0.901665
\(873\) −2.86676e12 −0.167042
\(874\) 4.53063e12 0.262638
\(875\) 2.01871e13 1.16423
\(876\) −2.41646e13 −1.38647
\(877\) −5.87014e12 −0.335081 −0.167541 0.985865i \(-0.553583\pi\)
−0.167541 + 0.985865i \(0.553583\pi\)
\(878\) −2.84853e12 −0.161769
\(879\) 1.40385e13 0.793179
\(880\) −4.22119e11 −0.0237281
\(881\) 2.07929e13 1.16285 0.581426 0.813599i \(-0.302495\pi\)
0.581426 + 0.813599i \(0.302495\pi\)
\(882\) −1.63145e12 −0.0907750
\(883\) 2.40223e13 1.32981 0.664907 0.746926i \(-0.268471\pi\)
0.664907 + 0.746926i \(0.268471\pi\)
\(884\) 0 0
\(885\) 2.98439e13 1.63535
\(886\) 4.51062e13 2.45914
\(887\) −2.33740e12 −0.126788 −0.0633938 0.997989i \(-0.520192\pi\)
−0.0633938 + 0.997989i \(0.520192\pi\)
\(888\) −3.08979e13 −1.66752
\(889\) −3.57557e13 −1.91994
\(890\) 3.04331e13 1.62589
\(891\) −1.39301e13 −0.740467
\(892\) −3.83213e13 −2.02674
\(893\) 2.44198e13 1.28502
\(894\) 3.12606e13 1.63674
\(895\) −1.46520e13 −0.763294
\(896\) −3.73395e13 −1.93545
\(897\) 0 0
\(898\) 2.83982e13 1.45730
\(899\) −5.26903e12 −0.269037
\(900\) −1.30583e11 −0.00663432
\(901\) 1.30575e13 0.660082
\(902\) 5.41475e13 2.72364
\(903\) −3.06312e12 −0.153309
\(904\) −1.21240e13 −0.603795
\(905\) −3.87256e12 −0.191902
\(906\) 9.53883e11 0.0470347
\(907\) −1.84460e13 −0.905041 −0.452520 0.891754i \(-0.649475\pi\)
−0.452520 + 0.891754i \(0.649475\pi\)
\(908\) 5.09395e12 0.248696
\(909\) −2.04233e12 −0.0992175
\(910\) 0 0
\(911\) 1.63941e13 0.788595 0.394298 0.918983i \(-0.370988\pi\)
0.394298 + 0.918983i \(0.370988\pi\)
\(912\) −3.78561e11 −0.0181200
\(913\) 5.69454e12 0.271231
\(914\) −1.37685e13 −0.652574
\(915\) 1.55476e13 0.733277
\(916\) 2.29065e13 1.07505
\(917\) −2.67039e13 −1.24713
\(918\) −5.73536e13 −2.66544
\(919\) −1.11733e13 −0.516729 −0.258365 0.966047i \(-0.583184\pi\)
−0.258365 + 0.966047i \(0.583184\pi\)
\(920\) −4.94314e12 −0.227488
\(921\) 1.53870e13 0.704670
\(922\) −3.64897e13 −1.66296
\(923\) 0 0
\(924\) −3.49092e13 −1.57549
\(925\) 1.13199e12 0.0508400
\(926\) 6.47302e13 2.89306
\(927\) −3.22141e11 −0.0143281
\(928\) −9.40565e12 −0.416316
\(929\) 2.32482e12 0.102404 0.0512022 0.998688i \(-0.483695\pi\)
0.0512022 + 0.998688i \(0.483695\pi\)
\(930\) −2.19887e13 −0.963889
\(931\) 6.71004e12 0.292719
\(932\) 2.12810e13 0.923890
\(933\) −1.55017e13 −0.669749
\(934\) 2.70217e12 0.116186
\(935\) 3.25131e13 1.39125
\(936\) 0 0
\(937\) −3.73094e12 −0.158121 −0.0790606 0.996870i \(-0.525192\pi\)
−0.0790606 + 0.996870i \(0.525192\pi\)
\(938\) −1.34847e13 −0.568758
\(939\) 4.06915e13 1.70808
\(940\) −6.89457e13 −2.88026
\(941\) 1.79721e12 0.0747213 0.0373607 0.999302i \(-0.488105\pi\)
0.0373607 + 0.999302i \(0.488105\pi\)
\(942\) 3.17837e13 1.31515
\(943\) 1.01478e13 0.417898
\(944\) 1.12511e12 0.0461128
\(945\) −3.10805e13 −1.26778
\(946\) 4.93388e12 0.200299
\(947\) −3.01107e13 −1.21660 −0.608298 0.793709i \(-0.708147\pi\)
−0.608298 + 0.793709i \(0.708147\pi\)
\(948\) −1.39487e12 −0.0560914
\(949\) 0 0
\(950\) 8.66611e11 0.0345198
\(951\) −3.85381e12 −0.152784
\(952\) −4.75496e13 −1.87620
\(953\) −2.29753e13 −0.902286 −0.451143 0.892452i \(-0.648983\pi\)
−0.451143 + 0.892452i \(0.648983\pi\)
\(954\) 2.48520e12 0.0971392
\(955\) −1.44063e13 −0.560452
\(956\) 2.12929e13 0.824469
\(957\) −9.03051e12 −0.348024
\(958\) −6.32880e13 −2.42760
\(959\) 3.96818e13 1.51498
\(960\) −3.99075e13 −1.51647
\(961\) −1.58701e13 −0.600240
\(962\) 0 0
\(963\) 1.16985e12 0.0438340
\(964\) 6.30410e13 2.35113
\(965\) −2.06030e13 −0.764818
\(966\) −1.05565e13 −0.390052
\(967\) −9.41605e11 −0.0346298 −0.0173149 0.999850i \(-0.505512\pi\)
−0.0173149 + 0.999850i \(0.505512\pi\)
\(968\) −6.17204e12 −0.225938
\(969\) 2.91581e13 1.06243
\(970\) −5.37145e13 −1.94813
\(971\) −1.86297e13 −0.672542 −0.336271 0.941765i \(-0.609166\pi\)
−0.336271 + 0.941765i \(0.609166\pi\)
\(972\) −1.26941e13 −0.456145
\(973\) 7.01833e12 0.251030
\(974\) 7.02557e13 2.50130
\(975\) 0 0
\(976\) 5.86141e11 0.0206766
\(977\) −1.37438e13 −0.482592 −0.241296 0.970452i \(-0.577573\pi\)
−0.241296 + 0.970452i \(0.577573\pi\)
\(978\) 2.80597e13 0.980750
\(979\) −2.50716e13 −0.872286
\(980\) −1.89448e13 −0.656103
\(981\) −3.61178e12 −0.124512
\(982\) −6.59156e13 −2.26197
\(983\) 2.97895e13 1.01759 0.508794 0.860888i \(-0.330091\pi\)
0.508794 + 0.860888i \(0.330091\pi\)
\(984\) −5.29814e13 −1.80155
\(985\) −3.48602e12 −0.117996
\(986\) −3.18302e13 −1.07249
\(987\) −5.68989e13 −1.90843
\(988\) 0 0
\(989\) 9.24661e11 0.0307326
\(990\) 6.18814e12 0.204740
\(991\) −2.95962e13 −0.974774 −0.487387 0.873186i \(-0.662050\pi\)
−0.487387 + 0.873186i \(0.662050\pi\)
\(992\) 1.88674e13 0.618600
\(993\) 4.56594e13 1.49025
\(994\) 9.14497e12 0.297128
\(995\) −3.54536e13 −1.14672
\(996\) −1.44186e13 −0.464256
\(997\) 1.29524e13 0.415167 0.207584 0.978217i \(-0.433440\pi\)
0.207584 + 0.978217i \(0.433440\pi\)
\(998\) −4.75755e13 −1.51809
\(999\) 5.86452e13 1.86289
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.f.1.18 20
13.2 odd 12 13.10.e.a.4.9 20
13.7 odd 12 13.10.e.a.10.9 yes 20
13.12 even 2 inner 169.10.a.f.1.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.e.a.4.9 20 13.2 odd 12
13.10.e.a.10.9 yes 20 13.7 odd 12
169.10.a.f.1.3 20 13.12 even 2 inner
169.10.a.f.1.18 20 1.1 even 1 trivial