Properties

Label 1682.2.b.j.1681.10
Level $1682$
Weight $2$
Character 1682.1681
Analytic conductor $13.431$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1682,2,Mod(1681,1682)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1682.1681"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,12,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{28})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1681.10
Root \(0.781831 - 0.623490i\) of defining polynomial
Character \(\chi\) \(=\) 1682.1681
Dual form 1682.2.b.j.1681.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.44504i q^{3} -1.00000 q^{4} +1.38619 q^{5} +1.44504 q^{6} -1.98639 q^{7} -1.00000i q^{8} +0.911854 q^{9} +1.38619i q^{10} +3.45467i q^{11} +1.44504i q^{12} -6.11352 q^{13} -1.98639i q^{14} -2.00311i q^{15} +1.00000 q^{16} -4.25956i q^{17} +0.911854i q^{18} -2.16857i q^{19} -1.38619 q^{20} +2.87041i q^{21} -3.45467 q^{22} -0.571217 q^{23} -1.44504 q^{24} -3.07847 q^{25} -6.11352i q^{26} -5.65279i q^{27} +1.98639 q^{28} +2.00311 q^{30} -6.03525i q^{31} +1.00000i q^{32} +4.99214 q^{33} +4.25956 q^{34} -2.75352 q^{35} -0.911854 q^{36} -2.71423i q^{37} +2.16857 q^{38} +8.83429i q^{39} -1.38619i q^{40} +9.14522i q^{41} -2.87041 q^{42} -11.0585i q^{43} -3.45467i q^{44} +1.26401 q^{45} -0.571217i q^{46} +4.98582i q^{47} -1.44504i q^{48} -3.05426 q^{49} -3.07847i q^{50} -6.15524 q^{51} +6.11352 q^{52} -10.4268 q^{53} +5.65279 q^{54} +4.78884i q^{55} +1.98639i q^{56} -3.13368 q^{57} +9.01438 q^{59} +2.00311i q^{60} -9.59621i q^{61} +6.03525 q^{62} -1.81130 q^{63} -1.00000 q^{64} -8.47452 q^{65} +4.99214i q^{66} -12.5522 q^{67} +4.25956i q^{68} +0.825432i q^{69} -2.75352i q^{70} -4.27886 q^{71} -0.911854i q^{72} +6.98180i q^{73} +2.71423 q^{74} +4.44852i q^{75} +2.16857i q^{76} -6.86232i q^{77} -8.83429 q^{78} -11.6286i q^{79} +1.38619 q^{80} -5.43296 q^{81} -9.14522 q^{82} -10.8350 q^{83} -2.87041i q^{84} -5.90457i q^{85} +11.0585 q^{86} +3.45467 q^{88} +2.85162i q^{89} +1.26401i q^{90} +12.1438 q^{91} +0.571217 q^{92} -8.72118 q^{93} -4.98582 q^{94} -3.00606i q^{95} +1.44504 q^{96} -2.42504i q^{97} -3.05426i q^{98} +3.15015i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} + 12 q^{5} + 16 q^{6} + 4 q^{7} - 4 q^{9} + 16 q^{13} + 12 q^{16} - 12 q^{20} + 4 q^{22} + 12 q^{23} - 16 q^{24} + 8 q^{25} - 4 q^{28} + 16 q^{30} - 24 q^{33} + 24 q^{34} + 32 q^{35} + 4 q^{36}+ \cdots + 16 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1682\mathbb{Z}\right)^\times\).

\(n\) \(843\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) − 1.44504i − 0.834295i −0.908839 0.417148i \(-0.863030\pi\)
0.908839 0.417148i \(-0.136970\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.38619 0.619924 0.309962 0.950749i \(-0.399684\pi\)
0.309962 + 0.950749i \(0.399684\pi\)
\(6\) 1.44504 0.589936
\(7\) −1.98639 −0.750784 −0.375392 0.926866i \(-0.622492\pi\)
−0.375392 + 0.926866i \(0.622492\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0.911854 0.303951
\(10\) 1.38619i 0.438353i
\(11\) 3.45467i 1.04162i 0.853672 + 0.520811i \(0.174370\pi\)
−0.853672 + 0.520811i \(0.825630\pi\)
\(12\) 1.44504i 0.417148i
\(13\) −6.11352 −1.69559 −0.847793 0.530328i \(-0.822069\pi\)
−0.847793 + 0.530328i \(0.822069\pi\)
\(14\) − 1.98639i − 0.530885i
\(15\) − 2.00311i − 0.517200i
\(16\) 1.00000 0.250000
\(17\) − 4.25956i − 1.03309i −0.856259 0.516547i \(-0.827217\pi\)
0.856259 0.516547i \(-0.172783\pi\)
\(18\) 0.911854i 0.214926i
\(19\) − 2.16857i − 0.497504i −0.968567 0.248752i \(-0.919980\pi\)
0.968567 0.248752i \(-0.0800205\pi\)
\(20\) −1.38619 −0.309962
\(21\) 2.87041i 0.626376i
\(22\) −3.45467 −0.736538
\(23\) −0.571217 −0.119107 −0.0595535 0.998225i \(-0.518968\pi\)
−0.0595535 + 0.998225i \(0.518968\pi\)
\(24\) −1.44504 −0.294968
\(25\) −3.07847 −0.615694
\(26\) − 6.11352i − 1.19896i
\(27\) − 5.65279i − 1.08788i
\(28\) 1.98639 0.375392
\(29\) 0 0
\(30\) 2.00311 0.365716
\(31\) − 6.03525i − 1.08396i −0.840391 0.541981i \(-0.817674\pi\)
0.840391 0.541981i \(-0.182326\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 4.99214 0.869020
\(34\) 4.25956 0.730508
\(35\) −2.75352 −0.465429
\(36\) −0.911854 −0.151976
\(37\) − 2.71423i − 0.446216i −0.974794 0.223108i \(-0.928380\pi\)
0.974794 0.223108i \(-0.0716203\pi\)
\(38\) 2.16857 0.351789
\(39\) 8.83429i 1.41462i
\(40\) − 1.38619i − 0.219176i
\(41\) 9.14522i 1.42824i 0.700021 + 0.714122i \(0.253174\pi\)
−0.700021 + 0.714122i \(0.746826\pi\)
\(42\) −2.87041 −0.442915
\(43\) − 11.0585i − 1.68641i −0.537590 0.843206i \(-0.680665\pi\)
0.537590 0.843206i \(-0.319335\pi\)
\(44\) − 3.45467i − 0.520811i
\(45\) 1.26401 0.188427
\(46\) − 0.571217i − 0.0842213i
\(47\) 4.98582i 0.727256i 0.931544 + 0.363628i \(0.118462\pi\)
−0.931544 + 0.363628i \(0.881538\pi\)
\(48\) − 1.44504i − 0.208574i
\(49\) −3.05426 −0.436323
\(50\) − 3.07847i − 0.435361i
\(51\) −6.15524 −0.861906
\(52\) 6.11352 0.847793
\(53\) −10.4268 −1.43223 −0.716113 0.697984i \(-0.754081\pi\)
−0.716113 + 0.697984i \(0.754081\pi\)
\(54\) 5.65279 0.769248
\(55\) 4.78884i 0.645727i
\(56\) 1.98639i 0.265442i
\(57\) −3.13368 −0.415066
\(58\) 0 0
\(59\) 9.01438 1.17357 0.586786 0.809742i \(-0.300393\pi\)
0.586786 + 0.809742i \(0.300393\pi\)
\(60\) 2.00311i 0.258600i
\(61\) − 9.59621i − 1.22867i −0.789046 0.614335i \(-0.789424\pi\)
0.789046 0.614335i \(-0.210576\pi\)
\(62\) 6.03525 0.766477
\(63\) −1.81130 −0.228202
\(64\) −1.00000 −0.125000
\(65\) −8.47452 −1.05113
\(66\) 4.99214i 0.614490i
\(67\) −12.5522 −1.53349 −0.766747 0.641950i \(-0.778126\pi\)
−0.766747 + 0.641950i \(0.778126\pi\)
\(68\) 4.25956i 0.516547i
\(69\) 0.825432i 0.0993703i
\(70\) − 2.75352i − 0.329108i
\(71\) −4.27886 −0.507808 −0.253904 0.967229i \(-0.581715\pi\)
−0.253904 + 0.967229i \(0.581715\pi\)
\(72\) − 0.911854i − 0.107463i
\(73\) 6.98180i 0.817158i 0.912723 + 0.408579i \(0.133976\pi\)
−0.912723 + 0.408579i \(0.866024\pi\)
\(74\) 2.71423 0.315523
\(75\) 4.44852i 0.513671i
\(76\) 2.16857i 0.248752i
\(77\) − 6.86232i − 0.782034i
\(78\) −8.83429 −1.00029
\(79\) − 11.6286i − 1.30832i −0.756354 0.654162i \(-0.773021\pi\)
0.756354 0.654162i \(-0.226979\pi\)
\(80\) 1.38619 0.154981
\(81\) −5.43296 −0.603662
\(82\) −9.14522 −1.00992
\(83\) −10.8350 −1.18930 −0.594650 0.803985i \(-0.702709\pi\)
−0.594650 + 0.803985i \(0.702709\pi\)
\(84\) − 2.87041i − 0.313188i
\(85\) − 5.90457i − 0.640440i
\(86\) 11.0585 1.19247
\(87\) 0 0
\(88\) 3.45467 0.368269
\(89\) 2.85162i 0.302271i 0.988513 + 0.151136i \(0.0482930\pi\)
−0.988513 + 0.151136i \(0.951707\pi\)
\(90\) 1.26401i 0.133238i
\(91\) 12.1438 1.27302
\(92\) 0.571217 0.0595535
\(93\) −8.72118 −0.904344
\(94\) −4.98582 −0.514248
\(95\) − 3.00606i − 0.308415i
\(96\) 1.44504 0.147484
\(97\) − 2.42504i − 0.246226i −0.992393 0.123113i \(-0.960712\pi\)
0.992393 0.123113i \(-0.0392877\pi\)
\(98\) − 3.05426i − 0.308527i
\(99\) 3.15015i 0.316602i
\(100\) 3.07847 0.307847
\(101\) 7.23806i 0.720214i 0.932911 + 0.360107i \(0.117260\pi\)
−0.932911 + 0.360107i \(0.882740\pi\)
\(102\) − 6.15524i − 0.609460i
\(103\) −7.94165 −0.782514 −0.391257 0.920281i \(-0.627960\pi\)
−0.391257 + 0.920281i \(0.627960\pi\)
\(104\) 6.11352i 0.599480i
\(105\) 3.97895i 0.388306i
\(106\) − 10.4268i − 1.01274i
\(107\) 13.1191 1.26827 0.634135 0.773222i \(-0.281356\pi\)
0.634135 + 0.773222i \(0.281356\pi\)
\(108\) 5.65279i 0.543940i
\(109\) −5.23723 −0.501636 −0.250818 0.968034i \(-0.580700\pi\)
−0.250818 + 0.968034i \(0.580700\pi\)
\(110\) −4.78884 −0.456598
\(111\) −3.92217 −0.372276
\(112\) −1.98639 −0.187696
\(113\) − 0.138924i − 0.0130689i −0.999979 0.00653443i \(-0.997920\pi\)
0.999979 0.00653443i \(-0.00207999\pi\)
\(114\) − 3.13368i − 0.293496i
\(115\) −0.791817 −0.0738373
\(116\) 0 0
\(117\) −5.57464 −0.515375
\(118\) 9.01438i 0.829841i
\(119\) 8.46114i 0.775631i
\(120\) −2.00311 −0.182858
\(121\) −0.934743 −0.0849767
\(122\) 9.59621 0.868800
\(123\) 13.2152 1.19158
\(124\) 6.03525i 0.541981i
\(125\) −11.1983 −1.00161
\(126\) − 1.81130i − 0.161363i
\(127\) − 6.49143i − 0.576021i −0.957627 0.288011i \(-0.907006\pi\)
0.957627 0.288011i \(-0.0929939\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −15.9801 −1.40697
\(130\) − 8.47452i − 0.743264i
\(131\) − 2.25044i − 0.196622i −0.995156 0.0983111i \(-0.968656\pi\)
0.995156 0.0983111i \(-0.0313440\pi\)
\(132\) −4.99214 −0.434510
\(133\) 4.30762i 0.373518i
\(134\) − 12.5522i − 1.08434i
\(135\) − 7.83586i − 0.674404i
\(136\) −4.25956 −0.365254
\(137\) − 7.56230i − 0.646091i −0.946383 0.323045i \(-0.895293\pi\)
0.946383 0.323045i \(-0.104707\pi\)
\(138\) −0.825432 −0.0702654
\(139\) 6.23282 0.528661 0.264331 0.964432i \(-0.414849\pi\)
0.264331 + 0.964432i \(0.414849\pi\)
\(140\) 2.75352 0.232715
\(141\) 7.20471 0.606746
\(142\) − 4.27886i − 0.359074i
\(143\) − 21.1202i − 1.76616i
\(144\) 0.911854 0.0759878
\(145\) 0 0
\(146\) −6.98180 −0.577818
\(147\) 4.41353i 0.364022i
\(148\) 2.71423i 0.223108i
\(149\) 0.725140 0.0594058 0.0297029 0.999559i \(-0.490544\pi\)
0.0297029 + 0.999559i \(0.490544\pi\)
\(150\) −4.44852 −0.363220
\(151\) −9.36422 −0.762049 −0.381025 0.924565i \(-0.624429\pi\)
−0.381025 + 0.924565i \(0.624429\pi\)
\(152\) −2.16857 −0.175894
\(153\) − 3.88410i − 0.314011i
\(154\) 6.86232 0.552981
\(155\) − 8.36601i − 0.671974i
\(156\) − 8.83429i − 0.707309i
\(157\) 11.8225i 0.943535i 0.881723 + 0.471767i \(0.156384\pi\)
−0.881723 + 0.471767i \(0.843616\pi\)
\(158\) 11.6286 0.925125
\(159\) 15.0671i 1.19490i
\(160\) 1.38619i 0.109588i
\(161\) 1.13466 0.0894236
\(162\) − 5.43296i − 0.426854i
\(163\) − 13.5610i − 1.06218i −0.847315 0.531091i \(-0.821782\pi\)
0.847315 0.531091i \(-0.178218\pi\)
\(164\) − 9.14522i − 0.714122i
\(165\) 6.92007 0.538727
\(166\) − 10.8350i − 0.840962i
\(167\) 4.64283 0.359273 0.179637 0.983733i \(-0.442508\pi\)
0.179637 + 0.983733i \(0.442508\pi\)
\(168\) 2.87041 0.221457
\(169\) 24.3751 1.87501
\(170\) 5.90457 0.452860
\(171\) − 1.97742i − 0.151217i
\(172\) 11.0585i 0.843206i
\(173\) 9.49522 0.721908 0.360954 0.932584i \(-0.382451\pi\)
0.360954 + 0.932584i \(0.382451\pi\)
\(174\) 0 0
\(175\) 6.11504 0.462253
\(176\) 3.45467i 0.260406i
\(177\) − 13.0262i − 0.979106i
\(178\) −2.85162 −0.213738
\(179\) 7.53207 0.562974 0.281487 0.959565i \(-0.409172\pi\)
0.281487 + 0.959565i \(0.409172\pi\)
\(180\) −1.26401 −0.0942134
\(181\) −18.4798 −1.37359 −0.686796 0.726850i \(-0.740984\pi\)
−0.686796 + 0.726850i \(0.740984\pi\)
\(182\) 12.1438i 0.900160i
\(183\) −13.8669 −1.02507
\(184\) 0.571217i 0.0421107i
\(185\) − 3.76244i − 0.276620i
\(186\) − 8.72118i − 0.639468i
\(187\) 14.7154 1.07609
\(188\) − 4.98582i − 0.363628i
\(189\) 11.2286i 0.816764i
\(190\) 3.00606 0.218082
\(191\) − 11.8574i − 0.857973i −0.903311 0.428986i \(-0.858871\pi\)
0.903311 0.428986i \(-0.141129\pi\)
\(192\) 1.44504i 0.104287i
\(193\) 16.9564i 1.22055i 0.792189 + 0.610276i \(0.208941\pi\)
−0.792189 + 0.610276i \(0.791059\pi\)
\(194\) 2.42504 0.174108
\(195\) 12.2460i 0.876957i
\(196\) 3.05426 0.218161
\(197\) 1.43781 0.102439 0.0512197 0.998687i \(-0.483689\pi\)
0.0512197 + 0.998687i \(0.483689\pi\)
\(198\) −3.15015 −0.223872
\(199\) 4.53854 0.321729 0.160864 0.986977i \(-0.448572\pi\)
0.160864 + 0.986977i \(0.448572\pi\)
\(200\) 3.07847i 0.217681i
\(201\) 18.1384i 1.27939i
\(202\) −7.23806 −0.509268
\(203\) 0 0
\(204\) 6.15524 0.430953
\(205\) 12.6770i 0.885403i
\(206\) − 7.94165i − 0.553321i
\(207\) −0.520866 −0.0362027
\(208\) −6.11352 −0.423896
\(209\) 7.49170 0.518211
\(210\) −3.97895 −0.274574
\(211\) − 10.4852i − 0.721831i −0.932598 0.360916i \(-0.882464\pi\)
0.932598 0.360916i \(-0.117536\pi\)
\(212\) 10.4268 0.716113
\(213\) 6.18314i 0.423662i
\(214\) 13.1191i 0.896803i
\(215\) − 15.3293i − 1.04545i
\(216\) −5.65279 −0.384624
\(217\) 11.9883i 0.813822i
\(218\) − 5.23723i − 0.354710i
\(219\) 10.0890 0.681751
\(220\) − 4.78884i − 0.322863i
\(221\) 26.0409i 1.75170i
\(222\) − 3.92217i − 0.263239i
\(223\) −21.7825 −1.45867 −0.729333 0.684159i \(-0.760169\pi\)
−0.729333 + 0.684159i \(0.760169\pi\)
\(224\) − 1.98639i − 0.132721i
\(225\) −2.80711 −0.187141
\(226\) 0.138924 0.00924109
\(227\) 19.1320 1.26983 0.634916 0.772581i \(-0.281035\pi\)
0.634916 + 0.772581i \(0.281035\pi\)
\(228\) 3.13368 0.207533
\(229\) 25.5961i 1.69144i 0.533631 + 0.845718i \(0.320827\pi\)
−0.533631 + 0.845718i \(0.679173\pi\)
\(230\) − 0.791817i − 0.0522108i
\(231\) −9.91633 −0.652447
\(232\) 0 0
\(233\) −27.0319 −1.77092 −0.885461 0.464714i \(-0.846157\pi\)
−0.885461 + 0.464714i \(0.846157\pi\)
\(234\) − 5.57464i − 0.364425i
\(235\) 6.91130i 0.450844i
\(236\) −9.01438 −0.586786
\(237\) −16.8039 −1.09153
\(238\) −8.46114 −0.548454
\(239\) 26.0650 1.68600 0.843002 0.537910i \(-0.180786\pi\)
0.843002 + 0.537910i \(0.180786\pi\)
\(240\) − 2.00311i − 0.129300i
\(241\) 18.9186 1.21866 0.609328 0.792918i \(-0.291439\pi\)
0.609328 + 0.792918i \(0.291439\pi\)
\(242\) − 0.934743i − 0.0600876i
\(243\) − 9.10752i − 0.584248i
\(244\) 9.59621i 0.614335i
\(245\) −4.23379 −0.270487
\(246\) 13.2152i 0.842572i
\(247\) 13.2576i 0.843561i
\(248\) −6.03525 −0.383238
\(249\) 15.6571i 0.992227i
\(250\) − 11.1983i − 0.708244i
\(251\) 23.2682i 1.46868i 0.678783 + 0.734339i \(0.262508\pi\)
−0.678783 + 0.734339i \(0.737492\pi\)
\(252\) 1.81130 0.114101
\(253\) − 1.97337i − 0.124064i
\(254\) 6.49143 0.407309
\(255\) −8.53235 −0.534316
\(256\) 1.00000 0.0625000
\(257\) −11.4731 −0.715669 −0.357835 0.933785i \(-0.616485\pi\)
−0.357835 + 0.933785i \(0.616485\pi\)
\(258\) − 15.9801i − 0.994875i
\(259\) 5.39151i 0.335012i
\(260\) 8.47452 0.525567
\(261\) 0 0
\(262\) 2.25044 0.139033
\(263\) − 21.6210i − 1.33321i −0.745412 0.666605i \(-0.767747\pi\)
0.745412 0.666605i \(-0.232253\pi\)
\(264\) − 4.99214i − 0.307245i
\(265\) −14.4535 −0.887872
\(266\) −4.30762 −0.264117
\(267\) 4.12071 0.252184
\(268\) 12.5522 0.766747
\(269\) − 4.55084i − 0.277469i −0.990330 0.138735i \(-0.955696\pi\)
0.990330 0.138735i \(-0.0443035\pi\)
\(270\) 7.83586 0.476875
\(271\) − 8.03071i − 0.487831i −0.969797 0.243915i \(-0.921568\pi\)
0.969797 0.243915i \(-0.0784319\pi\)
\(272\) − 4.25956i − 0.258274i
\(273\) − 17.5483i − 1.06207i
\(274\) 7.56230 0.456855
\(275\) − 10.6351i − 0.641320i
\(276\) − 0.825432i − 0.0496852i
\(277\) 28.4727 1.71076 0.855380 0.518001i \(-0.173323\pi\)
0.855380 + 0.518001i \(0.173323\pi\)
\(278\) 6.23282i 0.373820i
\(279\) − 5.50326i − 0.329472i
\(280\) 2.75352i 0.164554i
\(281\) 19.9725 1.19146 0.595729 0.803185i \(-0.296863\pi\)
0.595729 + 0.803185i \(0.296863\pi\)
\(282\) 7.20471i 0.429034i
\(283\) −4.28248 −0.254567 −0.127284 0.991866i \(-0.540626\pi\)
−0.127284 + 0.991866i \(0.540626\pi\)
\(284\) 4.27886 0.253904
\(285\) −4.34388 −0.257309
\(286\) 21.1202 1.24886
\(287\) − 18.1660i − 1.07230i
\(288\) 0.911854i 0.0537315i
\(289\) −1.14384 −0.0672846
\(290\) 0 0
\(291\) −3.50429 −0.205425
\(292\) − 6.98180i − 0.408579i
\(293\) 3.04294i 0.177771i 0.996042 + 0.0888853i \(0.0283305\pi\)
−0.996042 + 0.0888853i \(0.971670\pi\)
\(294\) −4.41353 −0.257403
\(295\) 12.4957 0.727526
\(296\) −2.71423 −0.157761
\(297\) 19.5285 1.13316
\(298\) 0.725140i 0.0420062i
\(299\) 3.49215 0.201956
\(300\) − 4.44852i − 0.256835i
\(301\) 21.9666i 1.26613i
\(302\) − 9.36422i − 0.538850i
\(303\) 10.4593 0.600871
\(304\) − 2.16857i − 0.124376i
\(305\) − 13.3022i − 0.761682i
\(306\) 3.88410 0.222039
\(307\) − 23.6143i − 1.34774i −0.738850 0.673870i \(-0.764631\pi\)
0.738850 0.673870i \(-0.235369\pi\)
\(308\) 6.86232i 0.391017i
\(309\) 11.4760i 0.652848i
\(310\) 8.36601 0.475158
\(311\) 13.8346i 0.784490i 0.919861 + 0.392245i \(0.128301\pi\)
−0.919861 + 0.392245i \(0.871699\pi\)
\(312\) 8.83429 0.500143
\(313\) −8.59812 −0.485994 −0.242997 0.970027i \(-0.578131\pi\)
−0.242997 + 0.970027i \(0.578131\pi\)
\(314\) −11.8225 −0.667180
\(315\) −2.51081 −0.141468
\(316\) 11.6286i 0.654162i
\(317\) 12.6827i 0.712333i 0.934423 + 0.356166i \(0.115916\pi\)
−0.934423 + 0.356166i \(0.884084\pi\)
\(318\) −15.0671 −0.844922
\(319\) 0 0
\(320\) −1.38619 −0.0774905
\(321\) − 18.9576i − 1.05811i
\(322\) 1.13466i 0.0632320i
\(323\) −9.23715 −0.513969
\(324\) 5.43296 0.301831
\(325\) 18.8203 1.04396
\(326\) 13.5610 0.751075
\(327\) 7.56802i 0.418512i
\(328\) 9.14522 0.504960
\(329\) − 9.90377i − 0.546012i
\(330\) 6.92007i 0.380937i
\(331\) − 5.21791i − 0.286802i −0.989665 0.143401i \(-0.954196\pi\)
0.989665 0.143401i \(-0.0458039\pi\)
\(332\) 10.8350 0.594650
\(333\) − 2.47498i − 0.135628i
\(334\) 4.64283i 0.254045i
\(335\) −17.3998 −0.950650
\(336\) 2.87041i 0.156594i
\(337\) − 3.68768i − 0.200881i −0.994943 0.100440i \(-0.967975\pi\)
0.994943 0.100440i \(-0.0320252\pi\)
\(338\) 24.3751i 1.32583i
\(339\) −0.200751 −0.0109033
\(340\) 5.90457i 0.320220i
\(341\) 20.8498 1.12908
\(342\) 1.97742 0.106927
\(343\) 19.9717 1.07837
\(344\) −11.0585 −0.596237
\(345\) 1.14421i 0.0616021i
\(346\) 9.49522i 0.510466i
\(347\) 3.61233 0.193920 0.0969599 0.995288i \(-0.469088\pi\)
0.0969599 + 0.995288i \(0.469088\pi\)
\(348\) 0 0
\(349\) 14.2824 0.764521 0.382260 0.924055i \(-0.375146\pi\)
0.382260 + 0.924055i \(0.375146\pi\)
\(350\) 6.11504i 0.326862i
\(351\) 34.5585i 1.84459i
\(352\) −3.45467 −0.184135
\(353\) −1.22175 −0.0650271 −0.0325136 0.999471i \(-0.510351\pi\)
−0.0325136 + 0.999471i \(0.510351\pi\)
\(354\) 13.0262 0.692333
\(355\) −5.93133 −0.314802
\(356\) − 2.85162i − 0.151136i
\(357\) 12.2267 0.647106
\(358\) 7.53207i 0.398083i
\(359\) 31.1679i 1.64498i 0.568779 + 0.822490i \(0.307416\pi\)
−0.568779 + 0.822490i \(0.692584\pi\)
\(360\) − 1.26401i − 0.0666189i
\(361\) 14.2973 0.752489
\(362\) − 18.4798i − 0.971277i
\(363\) 1.35074i 0.0708956i
\(364\) −12.1438 −0.636509
\(365\) 9.67812i 0.506576i
\(366\) − 13.8669i − 0.724836i
\(367\) 4.83098i 0.252175i 0.992019 + 0.126088i \(0.0402420\pi\)
−0.992019 + 0.126088i \(0.959758\pi\)
\(368\) −0.571217 −0.0297767
\(369\) 8.33911i 0.434117i
\(370\) 3.76244 0.195600
\(371\) 20.7116 1.07529
\(372\) 8.72118 0.452172
\(373\) −0.936592 −0.0484949 −0.0242474 0.999706i \(-0.507719\pi\)
−0.0242474 + 0.999706i \(0.507719\pi\)
\(374\) 14.7154i 0.760914i
\(375\) 16.1820i 0.835637i
\(376\) 4.98582 0.257124
\(377\) 0 0
\(378\) −11.2286 −0.577539
\(379\) − 1.44585i − 0.0742685i −0.999310 0.0371343i \(-0.988177\pi\)
0.999310 0.0371343i \(-0.0118229\pi\)
\(380\) 3.00606i 0.154208i
\(381\) −9.38039 −0.480572
\(382\) 11.8574 0.606678
\(383\) −7.89594 −0.403464 −0.201732 0.979441i \(-0.564657\pi\)
−0.201732 + 0.979441i \(0.564657\pi\)
\(384\) −1.44504 −0.0737420
\(385\) − 9.51249i − 0.484802i
\(386\) −16.9564 −0.863061
\(387\) − 10.0838i − 0.512587i
\(388\) 2.42504i 0.123113i
\(389\) − 8.04652i − 0.407975i −0.978974 0.203987i \(-0.934610\pi\)
0.978974 0.203987i \(-0.0653901\pi\)
\(390\) −12.2460 −0.620102
\(391\) 2.43313i 0.123049i
\(392\) 3.05426i 0.154263i
\(393\) −3.25198 −0.164041
\(394\) 1.43781i 0.0724356i
\(395\) − 16.1195i − 0.811062i
\(396\) − 3.15015i − 0.158301i
\(397\) −2.56721 −0.128844 −0.0644222 0.997923i \(-0.520520\pi\)
−0.0644222 + 0.997923i \(0.520520\pi\)
\(398\) 4.53854i 0.227497i
\(399\) 6.22470 0.311625
\(400\) −3.07847 −0.153923
\(401\) −7.62689 −0.380869 −0.190434 0.981700i \(-0.560990\pi\)
−0.190434 + 0.981700i \(0.560990\pi\)
\(402\) −18.1384 −0.904663
\(403\) 36.8966i 1.83795i
\(404\) − 7.23806i − 0.360107i
\(405\) −7.53113 −0.374225
\(406\) 0 0
\(407\) 9.37676 0.464789
\(408\) 6.15524i 0.304730i
\(409\) − 2.17471i − 0.107533i −0.998554 0.0537664i \(-0.982877\pi\)
0.998554 0.0537664i \(-0.0171226\pi\)
\(410\) −12.6770 −0.626074
\(411\) −10.9278 −0.539031
\(412\) 7.94165 0.391257
\(413\) −17.9061 −0.881100
\(414\) − 0.520866i − 0.0255992i
\(415\) −15.0194 −0.737276
\(416\) − 6.11352i − 0.299740i
\(417\) − 9.00669i − 0.441059i
\(418\) 7.49170i 0.366431i
\(419\) 11.0437 0.539521 0.269761 0.962927i \(-0.413055\pi\)
0.269761 + 0.962927i \(0.413055\pi\)
\(420\) − 3.97895i − 0.194153i
\(421\) 3.65914i 0.178336i 0.996017 + 0.0891679i \(0.0284208\pi\)
−0.996017 + 0.0891679i \(0.971579\pi\)
\(422\) 10.4852 0.510412
\(423\) 4.54634i 0.221050i
\(424\) 10.4268i 0.506369i
\(425\) 13.1129i 0.636070i
\(426\) −6.18314 −0.299574
\(427\) 19.0618i 0.922466i
\(428\) −13.1191 −0.634135
\(429\) −30.5196 −1.47350
\(430\) 15.3293 0.739243
\(431\) 6.36313 0.306501 0.153251 0.988187i \(-0.451026\pi\)
0.153251 + 0.988187i \(0.451026\pi\)
\(432\) − 5.65279i − 0.271970i
\(433\) 21.8657i 1.05080i 0.850856 + 0.525399i \(0.176084\pi\)
−0.850856 + 0.525399i \(0.823916\pi\)
\(434\) −11.9883 −0.575459
\(435\) 0 0
\(436\) 5.23723 0.250818
\(437\) 1.23872i 0.0592562i
\(438\) 10.0890i 0.482071i
\(439\) −20.6588 −0.985993 −0.492996 0.870031i \(-0.664098\pi\)
−0.492996 + 0.870031i \(0.664098\pi\)
\(440\) 4.78884 0.228299
\(441\) −2.78504 −0.132621
\(442\) −26.0409 −1.23864
\(443\) 2.56232i 0.121740i 0.998146 + 0.0608698i \(0.0193874\pi\)
−0.998146 + 0.0608698i \(0.980613\pi\)
\(444\) 3.92217 0.186138
\(445\) 3.95290i 0.187385i
\(446\) − 21.7825i − 1.03143i
\(447\) − 1.04786i − 0.0495619i
\(448\) 1.98639 0.0938480
\(449\) 40.7652i 1.92383i 0.273351 + 0.961914i \(0.411868\pi\)
−0.273351 + 0.961914i \(0.588132\pi\)
\(450\) − 2.80711i − 0.132329i
\(451\) −31.5937 −1.48769
\(452\) 0.138924i 0.00653443i
\(453\) 13.5317i 0.635774i
\(454\) 19.1320i 0.897907i
\(455\) 16.8337 0.789175
\(456\) 3.13368i 0.146748i
\(457\) 25.2066 1.17911 0.589557 0.807727i \(-0.299302\pi\)
0.589557 + 0.807727i \(0.299302\pi\)
\(458\) −25.5961 −1.19603
\(459\) −24.0784 −1.12388
\(460\) 0.791817 0.0369186
\(461\) − 41.0649i − 1.91258i −0.292418 0.956290i \(-0.594460\pi\)
0.292418 0.956290i \(-0.405540\pi\)
\(462\) − 9.91633i − 0.461350i
\(463\) −33.1170 −1.53908 −0.769539 0.638600i \(-0.779514\pi\)
−0.769539 + 0.638600i \(0.779514\pi\)
\(464\) 0 0
\(465\) −12.0892 −0.560625
\(466\) − 27.0319i − 1.25223i
\(467\) 15.1228i 0.699800i 0.936787 + 0.349900i \(0.113784\pi\)
−0.936787 + 0.349900i \(0.886216\pi\)
\(468\) 5.57464 0.257688
\(469\) 24.9335 1.15132
\(470\) −6.91130 −0.318795
\(471\) 17.0839 0.787186
\(472\) − 9.01438i − 0.414921i
\(473\) 38.2036 1.75660
\(474\) − 16.8039i − 0.771828i
\(475\) 6.67588i 0.306310i
\(476\) − 8.46114i − 0.387816i
\(477\) −9.50769 −0.435327
\(478\) 26.0650i 1.19218i
\(479\) − 24.5410i − 1.12131i −0.828050 0.560654i \(-0.810550\pi\)
0.828050 0.560654i \(-0.189450\pi\)
\(480\) 2.00311 0.0914289
\(481\) 16.5935i 0.756598i
\(482\) 18.9186i 0.861720i
\(483\) − 1.63963i − 0.0746057i
\(484\) 0.934743 0.0424883
\(485\) − 3.36158i − 0.152641i
\(486\) 9.10752 0.413126
\(487\) 28.4159 1.28765 0.643823 0.765174i \(-0.277347\pi\)
0.643823 + 0.765174i \(0.277347\pi\)
\(488\) −9.59621 −0.434400
\(489\) −19.5962 −0.886173
\(490\) − 4.23379i − 0.191263i
\(491\) − 22.4508i − 1.01319i −0.862184 0.506596i \(-0.830904\pi\)
0.862184 0.506596i \(-0.169096\pi\)
\(492\) −13.2152 −0.595789
\(493\) 0 0
\(494\) −13.2576 −0.596488
\(495\) 4.36672i 0.196270i
\(496\) − 6.03525i − 0.270991i
\(497\) 8.49948 0.381254
\(498\) −15.6571 −0.701610
\(499\) 19.6240 0.878490 0.439245 0.898367i \(-0.355246\pi\)
0.439245 + 0.898367i \(0.355246\pi\)
\(500\) 11.1983 0.500804
\(501\) − 6.70909i − 0.299740i
\(502\) −23.2682 −1.03851
\(503\) 6.46066i 0.288067i 0.989573 + 0.144033i \(0.0460072\pi\)
−0.989573 + 0.144033i \(0.953993\pi\)
\(504\) 1.81130i 0.0806816i
\(505\) 10.0334i 0.446478i
\(506\) 1.97337 0.0877268
\(507\) − 35.2231i − 1.56431i
\(508\) 6.49143i 0.288011i
\(509\) −32.4400 −1.43788 −0.718938 0.695074i \(-0.755372\pi\)
−0.718938 + 0.695074i \(0.755372\pi\)
\(510\) − 8.53235i − 0.377819i
\(511\) − 13.8686i − 0.613509i
\(512\) 1.00000i 0.0441942i
\(513\) −12.2585 −0.541225
\(514\) − 11.4731i − 0.506055i
\(515\) −11.0087 −0.485099
\(516\) 15.9801 0.703483
\(517\) −17.2243 −0.757526
\(518\) −5.39151 −0.236889
\(519\) − 13.7210i − 0.602285i
\(520\) 8.47452i 0.371632i
\(521\) −22.9436 −1.00518 −0.502588 0.864526i \(-0.667619\pi\)
−0.502588 + 0.864526i \(0.667619\pi\)
\(522\) 0 0
\(523\) −36.0578 −1.57670 −0.788349 0.615228i \(-0.789064\pi\)
−0.788349 + 0.615228i \(0.789064\pi\)
\(524\) 2.25044i 0.0983111i
\(525\) − 8.83648i − 0.385656i
\(526\) 21.6210 0.942721
\(527\) −25.7075 −1.11984
\(528\) 4.99214 0.217255
\(529\) −22.6737 −0.985814
\(530\) − 14.4535i − 0.627820i
\(531\) 8.21980 0.356709
\(532\) − 4.30762i − 0.186759i
\(533\) − 55.9095i − 2.42171i
\(534\) 4.12071i 0.178321i
\(535\) 18.1856 0.786232
\(536\) 12.5522i 0.542172i
\(537\) − 10.8842i − 0.469686i
\(538\) 4.55084 0.196201
\(539\) − 10.5515i − 0.454484i
\(540\) 7.83586i 0.337202i
\(541\) − 13.2755i − 0.570759i −0.958415 0.285379i \(-0.907880\pi\)
0.958415 0.285379i \(-0.0921196\pi\)
\(542\) 8.03071 0.344948
\(543\) 26.7041i 1.14598i
\(544\) 4.25956 0.182627
\(545\) −7.25981 −0.310976
\(546\) 17.5483 0.751000
\(547\) 26.2472 1.12225 0.561125 0.827731i \(-0.310369\pi\)
0.561125 + 0.827731i \(0.310369\pi\)
\(548\) 7.56230i 0.323045i
\(549\) − 8.75035i − 0.373456i
\(550\) 10.6351 0.453482
\(551\) 0 0
\(552\) 0.825432 0.0351327
\(553\) 23.0990i 0.982270i
\(554\) 28.4727i 1.20969i
\(555\) −5.43689 −0.230783
\(556\) −6.23282 −0.264331
\(557\) −6.98126 −0.295805 −0.147903 0.989002i \(-0.547252\pi\)
−0.147903 + 0.989002i \(0.547252\pi\)
\(558\) 5.50326 0.232972
\(559\) 67.6066i 2.85946i
\(560\) −2.75352 −0.116357
\(561\) − 21.2643i − 0.897780i
\(562\) 19.9725i 0.842488i
\(563\) 23.7025i 0.998942i 0.866331 + 0.499471i \(0.166472\pi\)
−0.866331 + 0.499471i \(0.833528\pi\)
\(564\) −7.20471 −0.303373
\(565\) − 0.192575i − 0.00810171i
\(566\) − 4.28248i − 0.180006i
\(567\) 10.7920 0.453220
\(568\) 4.27886i 0.179537i
\(569\) − 4.44182i − 0.186211i −0.995656 0.0931054i \(-0.970321\pi\)
0.995656 0.0931054i \(-0.0296794\pi\)
\(570\) − 4.34388i − 0.181945i
\(571\) −23.8305 −0.997275 −0.498637 0.866811i \(-0.666166\pi\)
−0.498637 + 0.866811i \(0.666166\pi\)
\(572\) 21.1202i 0.883080i
\(573\) −17.1345 −0.715803
\(574\) 18.1660 0.758233
\(575\) 1.75847 0.0733334
\(576\) −0.911854 −0.0379939
\(577\) 29.4294i 1.22516i 0.790408 + 0.612581i \(0.209869\pi\)
−0.790408 + 0.612581i \(0.790131\pi\)
\(578\) − 1.14384i − 0.0475774i
\(579\) 24.5028 1.01830
\(580\) 0 0
\(581\) 21.5226 0.892907
\(582\) − 3.50429i − 0.145257i
\(583\) − 36.0210i − 1.49184i
\(584\) 6.98180 0.288909
\(585\) −7.72752 −0.319494
\(586\) −3.04294 −0.125703
\(587\) 17.4288 0.719365 0.359683 0.933075i \(-0.382885\pi\)
0.359683 + 0.933075i \(0.382885\pi\)
\(588\) − 4.41353i − 0.182011i
\(589\) −13.0879 −0.539276
\(590\) 12.4957i 0.514439i
\(591\) − 2.07769i − 0.0854647i
\(592\) − 2.71423i − 0.111554i
\(593\) 29.9077 1.22816 0.614080 0.789244i \(-0.289527\pi\)
0.614080 + 0.789244i \(0.289527\pi\)
\(594\) 19.5285i 0.801265i
\(595\) 11.7288i 0.480833i
\(596\) −0.725140 −0.0297029
\(597\) − 6.55839i − 0.268417i
\(598\) 3.49215i 0.142804i
\(599\) − 26.7834i − 1.09434i −0.837021 0.547170i \(-0.815705\pi\)
0.837021 0.547170i \(-0.184295\pi\)
\(600\) 4.44852 0.181610
\(601\) − 25.7155i − 1.04896i −0.851424 0.524478i \(-0.824260\pi\)
0.851424 0.524478i \(-0.175740\pi\)
\(602\) −21.9666 −0.895290
\(603\) −11.4458 −0.466107
\(604\) 9.36422 0.381025
\(605\) −1.29573 −0.0526791
\(606\) 10.4593i 0.424880i
\(607\) 16.6333i 0.675125i 0.941303 + 0.337562i \(0.109602\pi\)
−0.941303 + 0.337562i \(0.890398\pi\)
\(608\) 2.16857 0.0879472
\(609\) 0 0
\(610\) 13.3022 0.538590
\(611\) − 30.4809i − 1.23312i
\(612\) 3.88410i 0.157005i
\(613\) 0.801874 0.0323874 0.0161937 0.999869i \(-0.494845\pi\)
0.0161937 + 0.999869i \(0.494845\pi\)
\(614\) 23.6143 0.952997
\(615\) 18.3189 0.738688
\(616\) −6.86232 −0.276491
\(617\) − 5.83648i − 0.234968i −0.993075 0.117484i \(-0.962517\pi\)
0.993075 0.117484i \(-0.0374829\pi\)
\(618\) −11.4760 −0.461633
\(619\) 18.5627i 0.746097i 0.927812 + 0.373048i \(0.121687\pi\)
−0.927812 + 0.373048i \(0.878313\pi\)
\(620\) 8.36601i 0.335987i
\(621\) 3.22897i 0.129574i
\(622\) −13.8346 −0.554718
\(623\) − 5.66443i − 0.226941i
\(624\) 8.83429i 0.353655i
\(625\) −0.130680 −0.00522719
\(626\) − 8.59812i − 0.343650i
\(627\) − 10.8258i − 0.432341i
\(628\) − 11.8225i − 0.471767i
\(629\) −11.5614 −0.460984
\(630\) − 2.51081i − 0.100033i
\(631\) −25.5862 −1.01857 −0.509286 0.860597i \(-0.670090\pi\)
−0.509286 + 0.860597i \(0.670090\pi\)
\(632\) −11.6286 −0.462563
\(633\) −15.1516 −0.602220
\(634\) −12.6827 −0.503695
\(635\) − 8.99837i − 0.357090i
\(636\) − 15.0671i − 0.597450i
\(637\) 18.6723 0.739823
\(638\) 0 0
\(639\) −3.90170 −0.154349
\(640\) − 1.38619i − 0.0547941i
\(641\) − 17.0798i − 0.674613i −0.941395 0.337307i \(-0.890484\pi\)
0.941395 0.337307i \(-0.109516\pi\)
\(642\) 18.9576 0.748198
\(643\) 29.6451 1.16909 0.584545 0.811361i \(-0.301273\pi\)
0.584545 + 0.811361i \(0.301273\pi\)
\(644\) −1.13466 −0.0447118
\(645\) −22.1514 −0.872212
\(646\) − 9.23715i − 0.363431i
\(647\) 5.83795 0.229514 0.114757 0.993394i \(-0.463391\pi\)
0.114757 + 0.993394i \(0.463391\pi\)
\(648\) 5.43296i 0.213427i
\(649\) 31.1417i 1.22242i
\(650\) 18.8203i 0.738192i
\(651\) 17.3237 0.678968
\(652\) 13.5610i 0.531091i
\(653\) − 3.36970i − 0.131867i −0.997824 0.0659333i \(-0.978998\pi\)
0.997824 0.0659333i \(-0.0210024\pi\)
\(654\) −7.56802 −0.295933
\(655\) − 3.11955i − 0.121891i
\(656\) 9.14522i 0.357061i
\(657\) 6.36638i 0.248376i
\(658\) 9.90377 0.386089
\(659\) − 39.6531i − 1.54466i −0.635219 0.772332i \(-0.719090\pi\)
0.635219 0.772332i \(-0.280910\pi\)
\(660\) −6.92007 −0.269363
\(661\) 19.5912 0.762008 0.381004 0.924573i \(-0.375578\pi\)
0.381004 + 0.924573i \(0.375578\pi\)
\(662\) 5.21791 0.202800
\(663\) 37.6302 1.46144
\(664\) 10.8350i 0.420481i
\(665\) 5.97120i 0.231553i
\(666\) 2.47498 0.0959035
\(667\) 0 0
\(668\) −4.64283 −0.179637
\(669\) 31.4767i 1.21696i
\(670\) − 17.3998i − 0.672211i
\(671\) 33.1518 1.27981
\(672\) −2.87041 −0.110729
\(673\) 32.1812 1.24049 0.620247 0.784406i \(-0.287032\pi\)
0.620247 + 0.784406i \(0.287032\pi\)
\(674\) 3.68768 0.142044
\(675\) 17.4019i 0.669801i
\(676\) −24.3751 −0.937505
\(677\) − 11.9918i − 0.460883i −0.973086 0.230441i \(-0.925983\pi\)
0.973086 0.230441i \(-0.0740170\pi\)
\(678\) − 0.200751i − 0.00770979i
\(679\) 4.81708i 0.184862i
\(680\) −5.90457 −0.226430
\(681\) − 27.6465i − 1.05942i
\(682\) 20.8498i 0.798379i
\(683\) 36.1343 1.38264 0.691321 0.722548i \(-0.257029\pi\)
0.691321 + 0.722548i \(0.257029\pi\)
\(684\) 1.97742i 0.0756085i
\(685\) − 10.4828i − 0.400527i
\(686\) 19.9717i 0.762522i
\(687\) 36.9874 1.41116
\(688\) − 11.0585i − 0.421603i
\(689\) 63.7442 2.42846
\(690\) −1.14421 −0.0435593
\(691\) 5.03899 0.191692 0.0958461 0.995396i \(-0.469444\pi\)
0.0958461 + 0.995396i \(0.469444\pi\)
\(692\) −9.49522 −0.360954
\(693\) − 6.25743i − 0.237700i
\(694\) 3.61233i 0.137122i
\(695\) 8.63989 0.327730
\(696\) 0 0
\(697\) 38.9546 1.47551
\(698\) 14.2824i 0.540598i
\(699\) 39.0623i 1.47747i
\(700\) −6.11504 −0.231127
\(701\) −10.2286 −0.386330 −0.193165 0.981166i \(-0.561875\pi\)
−0.193165 + 0.981166i \(0.561875\pi\)
\(702\) −34.5585 −1.30433
\(703\) −5.88600 −0.221995
\(704\) − 3.45467i − 0.130203i
\(705\) 9.98712 0.376137
\(706\) − 1.22175i − 0.0459811i
\(707\) − 14.3776i − 0.540725i
\(708\) 13.0262i 0.489553i
\(709\) −46.2810 −1.73812 −0.869059 0.494708i \(-0.835275\pi\)
−0.869059 + 0.494708i \(0.835275\pi\)
\(710\) − 5.93133i − 0.222599i
\(711\) − 10.6036i − 0.397667i
\(712\) 2.85162 0.106869
\(713\) 3.44743i 0.129107i
\(714\) 12.2267i 0.457573i
\(715\) − 29.2767i − 1.09489i
\(716\) −7.53207 −0.281487
\(717\) − 37.6650i − 1.40663i
\(718\) −31.1679 −1.16318
\(719\) 0.248398 0.00926368 0.00463184 0.999989i \(-0.498526\pi\)
0.00463184 + 0.999989i \(0.498526\pi\)
\(720\) 1.26401 0.0471067
\(721\) 15.7752 0.587499
\(722\) 14.2973i 0.532090i
\(723\) − 27.3382i − 1.01672i
\(724\) 18.4798 0.686796
\(725\) 0 0
\(726\) −1.35074 −0.0501308
\(727\) 20.7397i 0.769193i 0.923085 + 0.384597i \(0.125659\pi\)
−0.923085 + 0.384597i \(0.874341\pi\)
\(728\) − 12.1438i − 0.450080i
\(729\) −29.4596 −1.09110
\(730\) −9.67812 −0.358203
\(731\) −47.1045 −1.74222
\(732\) 13.8669 0.512537
\(733\) − 4.30302i − 0.158936i −0.996837 0.0794678i \(-0.974678\pi\)
0.996837 0.0794678i \(-0.0253221\pi\)
\(734\) −4.83098 −0.178315
\(735\) 6.11801i 0.225666i
\(736\) − 0.571217i − 0.0210553i
\(737\) − 43.3637i − 1.59732i
\(738\) −8.33911 −0.306967
\(739\) − 15.1636i − 0.557803i −0.960320 0.278901i \(-0.910030\pi\)
0.960320 0.278901i \(-0.0899702\pi\)
\(740\) 3.76244i 0.138310i
\(741\) 19.1578 0.703779
\(742\) 20.7116i 0.760347i
\(743\) 26.3730i 0.967533i 0.875197 + 0.483767i \(0.160732\pi\)
−0.875197 + 0.483767i \(0.839268\pi\)
\(744\) 8.72118i 0.319734i
\(745\) 1.00518 0.0368271
\(746\) − 0.936592i − 0.0342911i
\(747\) −9.87997 −0.361489
\(748\) −14.7154 −0.538047
\(749\) −26.0596 −0.952198
\(750\) −16.1820 −0.590884
\(751\) − 28.2430i − 1.03060i −0.857010 0.515301i \(-0.827680\pi\)
0.857010 0.515301i \(-0.172320\pi\)
\(752\) 4.98582i 0.181814i
\(753\) 33.6236 1.22531
\(754\) 0 0
\(755\) −12.9806 −0.472413
\(756\) − 11.2286i − 0.408382i
\(757\) − 39.2000i − 1.42475i −0.701801 0.712373i \(-0.747620\pi\)
0.701801 0.712373i \(-0.252380\pi\)
\(758\) 1.44585 0.0525158
\(759\) −2.85160 −0.103506
\(760\) −3.00606 −0.109041
\(761\) −11.0366 −0.400075 −0.200037 0.979788i \(-0.564106\pi\)
−0.200037 + 0.979788i \(0.564106\pi\)
\(762\) − 9.38039i − 0.339816i
\(763\) 10.4032 0.376620
\(764\) 11.8574i 0.428986i
\(765\) − 5.38411i − 0.194663i
\(766\) − 7.89594i − 0.285292i
\(767\) −55.1096 −1.98989
\(768\) − 1.44504i − 0.0521435i
\(769\) 20.5297i 0.740321i 0.928968 + 0.370160i \(0.120697\pi\)
−0.928968 + 0.370160i \(0.879303\pi\)
\(770\) 9.51249 0.342806
\(771\) 16.5790i 0.597080i
\(772\) − 16.9564i − 0.610276i
\(773\) − 43.6105i − 1.56856i −0.620406 0.784281i \(-0.713032\pi\)
0.620406 0.784281i \(-0.286968\pi\)
\(774\) 10.0838 0.362454
\(775\) 18.5793i 0.667389i
\(776\) −2.42504 −0.0870539
\(777\) 7.79096 0.279499
\(778\) 8.04652 0.288482
\(779\) 19.8321 0.710557
\(780\) − 12.2460i − 0.438478i
\(781\) − 14.7821i − 0.528944i
\(782\) −2.43313 −0.0870086
\(783\) 0 0
\(784\) −3.05426 −0.109081
\(785\) 16.3882i 0.584920i
\(786\) − 3.25198i − 0.115994i
\(787\) 3.73634 0.133186 0.0665931 0.997780i \(-0.478787\pi\)
0.0665931 + 0.997780i \(0.478787\pi\)
\(788\) −1.43781 −0.0512197
\(789\) −31.2433 −1.11229
\(790\) 16.1195 0.573508
\(791\) 0.275957i 0.00981190i
\(792\) 3.15015 0.111936
\(793\) 58.6666i 2.08331i
\(794\) − 2.56721i − 0.0911068i
\(795\) 20.8859i 0.740747i
\(796\) −4.53854 −0.160864
\(797\) − 11.5294i − 0.408392i −0.978930 0.204196i \(-0.934542\pi\)
0.978930 0.204196i \(-0.0654581\pi\)
\(798\) 6.22470i 0.220352i
\(799\) 21.2374 0.751324
\(800\) − 3.07847i − 0.108840i
\(801\) 2.60026i 0.0918758i
\(802\) − 7.62689i − 0.269315i
\(803\) −24.1198 −0.851170
\(804\) − 18.1384i − 0.639693i
\(805\) 1.57286 0.0554359
\(806\) −36.8966 −1.29963
\(807\) −6.57615 −0.231491
\(808\) 7.23806 0.254634
\(809\) − 46.3046i − 1.62798i −0.580877 0.813991i \(-0.697290\pi\)
0.580877 0.813991i \(-0.302710\pi\)
\(810\) − 7.53113i − 0.264617i
\(811\) 31.6055 1.10982 0.554909 0.831911i \(-0.312753\pi\)
0.554909 + 0.831911i \(0.312753\pi\)
\(812\) 0 0
\(813\) −11.6047 −0.406995
\(814\) 9.37676i 0.328655i
\(815\) − 18.7982i − 0.658472i
\(816\) −6.15524 −0.215477
\(817\) −23.9812 −0.838997
\(818\) 2.17471 0.0760371
\(819\) 11.0734 0.386936
\(820\) − 12.6770i − 0.442701i
\(821\) 9.95432 0.347408 0.173704 0.984798i \(-0.444426\pi\)
0.173704 + 0.984798i \(0.444426\pi\)
\(822\) − 10.9278i − 0.381152i
\(823\) − 19.9537i − 0.695541i −0.937580 0.347771i \(-0.886939\pi\)
0.937580 0.347771i \(-0.113061\pi\)
\(824\) 7.94165i 0.276660i
\(825\) −15.3682 −0.535051
\(826\) − 17.9061i − 0.623032i
\(827\) − 32.1706i − 1.11868i −0.828938 0.559341i \(-0.811054\pi\)
0.828938 0.559341i \(-0.188946\pi\)
\(828\) 0.520866 0.0181014
\(829\) 18.4924i 0.642269i 0.947034 + 0.321134i \(0.104064\pi\)
−0.947034 + 0.321134i \(0.895936\pi\)
\(830\) − 15.0194i − 0.521333i
\(831\) − 41.1443i − 1.42728i
\(832\) 6.11352 0.211948
\(833\) 13.0098i 0.450763i
\(834\) 9.00669 0.311876
\(835\) 6.43586 0.222722
\(836\) −7.49170 −0.259106
\(837\) −34.1160 −1.17922
\(838\) 11.0437i 0.381499i
\(839\) 11.3409i 0.391530i 0.980651 + 0.195765i \(0.0627190\pi\)
−0.980651 + 0.195765i \(0.937281\pi\)
\(840\) 3.97895 0.137287
\(841\) 0 0
\(842\) −3.65914 −0.126102
\(843\) − 28.8611i − 0.994028i
\(844\) 10.4852i 0.360916i
\(845\) 33.7886 1.16236
\(846\) −4.54634 −0.156306
\(847\) 1.85676 0.0637991
\(848\) −10.4268 −0.358057
\(849\) 6.18837i 0.212384i
\(850\) −13.1129 −0.449769
\(851\) 1.55041i 0.0531475i
\(852\) − 6.18314i − 0.211831i
\(853\) − 20.9622i − 0.717733i −0.933389 0.358867i \(-0.883163\pi\)
0.933389 0.358867i \(-0.116837\pi\)
\(854\) −19.0618 −0.652282
\(855\) − 2.74109i − 0.0937432i
\(856\) − 13.1191i − 0.448401i
\(857\) 15.5712 0.531903 0.265951 0.963986i \(-0.414314\pi\)
0.265951 + 0.963986i \(0.414314\pi\)
\(858\) − 30.5196i − 1.04192i
\(859\) − 44.1276i − 1.50561i −0.658241 0.752807i \(-0.728699\pi\)
0.658241 0.752807i \(-0.271301\pi\)
\(860\) 15.3293i 0.522724i
\(861\) −26.2506 −0.894617
\(862\) 6.36313i 0.216729i
\(863\) −40.0443 −1.36312 −0.681562 0.731760i \(-0.738699\pi\)
−0.681562 + 0.731760i \(0.738699\pi\)
\(864\) 5.65279 0.192312
\(865\) 13.1622 0.447529
\(866\) −21.8657 −0.743026
\(867\) 1.65289i 0.0561352i
\(868\) − 11.9883i − 0.406911i
\(869\) 40.1731 1.36278
\(870\) 0 0
\(871\) 76.7380 2.60017
\(872\) 5.23723i 0.177355i
\(873\) − 2.21128i − 0.0748406i
\(874\) −1.23872 −0.0419005
\(875\) 22.2442 0.751991
\(876\) −10.0890 −0.340875
\(877\) −11.5880 −0.391298 −0.195649 0.980674i \(-0.562681\pi\)
−0.195649 + 0.980674i \(0.562681\pi\)
\(878\) − 20.6588i − 0.697202i
\(879\) 4.39718 0.148313
\(880\) 4.78884i 0.161432i
\(881\) − 3.35136i − 0.112910i −0.998405 0.0564550i \(-0.982020\pi\)
0.998405 0.0564550i \(-0.0179797\pi\)
\(882\) − 2.78504i − 0.0937772i
\(883\) 51.3940 1.72955 0.864773 0.502163i \(-0.167462\pi\)
0.864773 + 0.502163i \(0.167462\pi\)
\(884\) − 26.0409i − 0.875850i
\(885\) − 18.0568i − 0.606972i
\(886\) −2.56232 −0.0860829
\(887\) − 42.3730i − 1.42275i −0.702814 0.711374i \(-0.748073\pi\)
0.702814 0.711374i \(-0.251927\pi\)
\(888\) 3.92217i 0.131620i
\(889\) 12.8945i 0.432468i
\(890\) −3.95290 −0.132501
\(891\) − 18.7691i − 0.628788i
\(892\) 21.7825 0.729333
\(893\) 10.8121 0.361813
\(894\) 1.04786 0.0350456
\(895\) 10.4409 0.349001
\(896\) 1.98639i 0.0663606i
\(897\) − 5.04630i − 0.168491i
\(898\) −40.7652 −1.36035
\(899\) 0 0
\(900\) 2.80711 0.0935705
\(901\) 44.4134i 1.47963i
\(902\) − 31.5937i − 1.05196i
\(903\) 31.7426 1.05633
\(904\) −0.138924 −0.00462054
\(905\) −25.6166 −0.851523
\(906\) −13.5317 −0.449560
\(907\) − 40.1367i − 1.33272i −0.745632 0.666358i \(-0.767852\pi\)
0.745632 0.666358i \(-0.232148\pi\)
\(908\) −19.1320 −0.634916
\(909\) 6.60006i 0.218910i
\(910\) 16.8337i 0.558031i
\(911\) − 39.7506i − 1.31700i −0.752582 0.658499i \(-0.771192\pi\)
0.752582 0.658499i \(-0.228808\pi\)
\(912\) −3.13368 −0.103766
\(913\) − 37.4315i − 1.23880i
\(914\) 25.2066i 0.833759i
\(915\) −19.2222 −0.635468
\(916\) − 25.5961i − 0.845718i
\(917\) 4.47025i 0.147621i
\(918\) − 24.0784i − 0.794706i
\(919\) −29.8687 −0.985277 −0.492639 0.870234i \(-0.663968\pi\)
−0.492639 + 0.870234i \(0.663968\pi\)
\(920\) 0.791817i 0.0261054i
\(921\) −34.1237 −1.12441
\(922\) 41.0649 1.35240
\(923\) 26.1589 0.861031
\(924\) 9.91633 0.326223
\(925\) 8.35567i 0.274733i
\(926\) − 33.1170i − 1.08829i
\(927\) −7.24162 −0.237846
\(928\) 0 0
\(929\) −0.307389 −0.0100851 −0.00504256 0.999987i \(-0.501605\pi\)
−0.00504256 + 0.999987i \(0.501605\pi\)
\(930\) − 12.0892i − 0.396422i
\(931\) 6.62338i 0.217073i
\(932\) 27.0319 0.885461
\(933\) 19.9916 0.654496
\(934\) −15.1228 −0.494833
\(935\) 20.3983 0.667097
\(936\) 5.57464i 0.182213i
\(937\) −54.6031 −1.78381 −0.891903 0.452227i \(-0.850630\pi\)
−0.891903 + 0.452227i \(0.850630\pi\)
\(938\) 24.9335i 0.814108i
\(939\) 12.4246i 0.405463i
\(940\) − 6.91130i − 0.225422i
\(941\) −27.6969 −0.902894 −0.451447 0.892298i \(-0.649092\pi\)
−0.451447 + 0.892298i \(0.649092\pi\)
\(942\) 17.0839i 0.556625i
\(943\) − 5.22390i − 0.170114i
\(944\) 9.01438 0.293393
\(945\) 15.5651i 0.506332i
\(946\) 38.2036i 1.24211i
\(947\) − 37.5978i − 1.22177i −0.791721 0.610883i \(-0.790815\pi\)
0.791721 0.610883i \(-0.209185\pi\)
\(948\) 16.8039 0.545765
\(949\) − 42.6834i − 1.38556i
\(950\) −6.67588 −0.216594
\(951\) 18.3271 0.594296
\(952\) 8.46114 0.274227
\(953\) 15.4013 0.498897 0.249449 0.968388i \(-0.419751\pi\)
0.249449 + 0.968388i \(0.419751\pi\)
\(954\) − 9.50769i − 0.307823i
\(955\) − 16.4367i − 0.531878i
\(956\) −26.0650 −0.843002
\(957\) 0 0
\(958\) 24.5410 0.792885
\(959\) 15.0217i 0.485075i
\(960\) 2.00311i 0.0646500i
\(961\) −5.42418 −0.174974
\(962\) −16.5935 −0.534996
\(963\) 11.9627 0.385493
\(964\) −18.9186 −0.609328
\(965\) 23.5049i 0.756650i
\(966\) 1.63963 0.0527542
\(967\) 42.1501i 1.35546i 0.735313 + 0.677728i \(0.237035\pi\)
−0.735313 + 0.677728i \(0.762965\pi\)
\(968\) 0.934743i 0.0300438i
\(969\) 13.3481i 0.428802i
\(970\) 3.36158 0.107934
\(971\) 22.0724i 0.708337i 0.935182 + 0.354169i \(0.115236\pi\)
−0.935182 + 0.354169i \(0.884764\pi\)
\(972\) 9.10752i 0.292124i
\(973\) −12.3808 −0.396910
\(974\) 28.4159i 0.910503i
\(975\) − 27.1961i − 0.870972i
\(976\) − 9.59621i − 0.307167i
\(977\) −28.2838 −0.904881 −0.452440 0.891795i \(-0.649446\pi\)
−0.452440 + 0.891795i \(0.649446\pi\)
\(978\) − 19.5962i − 0.626619i
\(979\) −9.85141 −0.314853
\(980\) 4.23379 0.135244
\(981\) −4.77559 −0.152473
\(982\) 22.4508 0.716434
\(983\) 4.39607i 0.140213i 0.997540 + 0.0701064i \(0.0223339\pi\)
−0.997540 + 0.0701064i \(0.977666\pi\)
\(984\) − 13.2152i − 0.421286i
\(985\) 1.99308 0.0635047
\(986\) 0 0
\(987\) −14.3114 −0.455536
\(988\) − 13.2576i − 0.421781i
\(989\) 6.31683i 0.200863i
\(990\) −4.36672 −0.138784
\(991\) 0.985266 0.0312980 0.0156490 0.999878i \(-0.495019\pi\)
0.0156490 + 0.999878i \(0.495019\pi\)
\(992\) 6.03525 0.191619
\(993\) −7.54010 −0.239278
\(994\) 8.49948i 0.269587i
\(995\) 6.29130 0.199448
\(996\) − 15.6571i − 0.496113i
\(997\) 3.95435i 0.125235i 0.998038 + 0.0626177i \(0.0199449\pi\)
−0.998038 + 0.0626177i \(0.980055\pi\)
\(998\) 19.6240i 0.621186i
\(999\) −15.3430 −0.485430
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.b.j.1681.10 12
29.6 even 14 58.2.e.a.51.1 yes 12
29.12 odd 4 1682.2.a.r.1.3 6
29.17 odd 4 1682.2.a.s.1.3 6
29.24 even 7 58.2.e.a.33.1 12
29.28 even 2 inner 1682.2.b.j.1681.4 12
87.35 odd 14 522.2.n.a.109.2 12
87.53 odd 14 522.2.n.a.91.2 12
116.35 odd 14 464.2.y.c.225.1 12
116.111 odd 14 464.2.y.c.33.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.e.a.33.1 12 29.24 even 7
58.2.e.a.51.1 yes 12 29.6 even 14
464.2.y.c.33.1 12 116.111 odd 14
464.2.y.c.225.1 12 116.35 odd 14
522.2.n.a.91.2 12 87.53 odd 14
522.2.n.a.109.2 12 87.35 odd 14
1682.2.a.r.1.3 6 29.12 odd 4
1682.2.a.s.1.3 6 29.17 odd 4
1682.2.b.j.1681.4 12 29.28 even 2 inner
1682.2.b.j.1681.10 12 1.1 even 1 trivial