Properties

Label 1680.2.di.d.529.1
Level $1680$
Weight $2$
Character 1680.529
Analytic conductor $13.415$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(289,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.di (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,2,0,0,0,8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.27814731656356152999936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} - 14 x^{12} + 38 x^{11} - 40 x^{10} + 64 x^{9} + 291 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.1
Root \(0.526774 - 1.96595i\) of defining polynomial
Character \(\chi\) \(=\) 1680.529
Dual form 1680.2.di.d.289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{3} +(-1.98074 + 1.03763i) q^{5} +(-0.478401 - 2.60214i) q^{7} +(0.500000 + 0.866025i) q^{9} +(2.21538 - 3.83715i) q^{11} -1.73246i q^{13} +(2.23418 + 0.0917505i) q^{15} +(2.36638 + 1.36623i) q^{17} +(0.152578 + 0.264273i) q^{19} +(-0.886763 + 2.49272i) q^{21} +(-6.08316 + 3.51212i) q^{23} +(2.84663 - 4.11056i) q^{25} -1.00000i q^{27} +7.79430 q^{29} +(-2.64243 + 4.57683i) q^{31} +(-3.83715 + 2.21538i) q^{33} +(3.64765 + 4.65775i) q^{35} +(-3.18183 + 1.83703i) q^{37} +(-0.866230 + 1.50035i) q^{39} -6.71562 q^{41} -9.71562i q^{43} +(-1.88899 - 1.19655i) q^{45} +(-1.57313 + 0.908250i) q^{47} +(-6.54227 + 2.48973i) q^{49} +(-1.36623 - 2.36638i) q^{51} +(-1.48535 - 0.857566i) q^{53} +(-0.406524 + 9.89912i) q^{55} -0.305156i q^{57} +(0.571217 - 0.989377i) q^{59} +(-4.77818 - 8.27604i) q^{61} +(2.01432 - 1.71538i) q^{63} +(1.79766 + 3.43154i) q^{65} +(-7.26104 - 4.19216i) q^{67} +7.02423 q^{69} -10.2888 q^{71} +(-11.1028 - 6.41022i) q^{73} +(-4.52053 + 2.13653i) q^{75} +(-11.0446 - 3.92903i) q^{77} +(-3.35686 - 5.81425i) q^{79} +(-0.500000 + 0.866025i) q^{81} +5.09946i q^{83} +(-6.10482 - 0.250704i) q^{85} +(-6.75007 - 3.89715i) q^{87} +(2.03533 + 3.52529i) q^{89} +(-4.50810 + 0.828810i) q^{91} +(4.57683 - 2.64243i) q^{93} +(-0.576436 - 0.365135i) q^{95} -2.87834i q^{97} +4.43075 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{5} + 8 q^{9} + 4 q^{15} + 24 q^{19} - 4 q^{21} - 4 q^{25} + 24 q^{29} - 16 q^{31} + 10 q^{35} + 4 q^{39} + 16 q^{41} - 2 q^{45} - 40 q^{49} - 4 q^{51} - 8 q^{55} - 4 q^{59} + 16 q^{61} + 30 q^{65}+ \cdots + 22 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 0 0
\(5\) −1.98074 + 1.03763i −0.885812 + 0.464044i
\(6\) 0 0
\(7\) −0.478401 2.60214i −0.180818 0.983516i
\(8\) 0 0
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.21538 3.83715i 0.667961 1.15694i −0.310512 0.950569i \(-0.600500\pi\)
0.978473 0.206373i \(-0.0661662\pi\)
\(12\) 0 0
\(13\) 1.73246i 0.480498i −0.970711 0.240249i \(-0.922771\pi\)
0.970711 0.240249i \(-0.0772291\pi\)
\(14\) 0 0
\(15\) 2.23418 + 0.0917505i 0.576864 + 0.0236899i
\(16\) 0 0
\(17\) 2.36638 + 1.36623i 0.573931 + 0.331359i 0.758718 0.651419i \(-0.225826\pi\)
−0.184787 + 0.982779i \(0.559159\pi\)
\(18\) 0 0
\(19\) 0.152578 + 0.264273i 0.0350038 + 0.0606284i 0.882997 0.469379i \(-0.155522\pi\)
−0.847993 + 0.530008i \(0.822189\pi\)
\(20\) 0 0
\(21\) −0.886763 + 2.49272i −0.193508 + 0.543956i
\(22\) 0 0
\(23\) −6.08316 + 3.51212i −1.26843 + 0.732327i −0.974690 0.223560i \(-0.928232\pi\)
−0.293737 + 0.955886i \(0.594899\pi\)
\(24\) 0 0
\(25\) 2.84663 4.11056i 0.569326 0.822112i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 7.79430 1.44737 0.723683 0.690132i \(-0.242448\pi\)
0.723683 + 0.690132i \(0.242448\pi\)
\(30\) 0 0
\(31\) −2.64243 + 4.57683i −0.474595 + 0.822023i −0.999577 0.0290906i \(-0.990739\pi\)
0.524982 + 0.851114i \(0.324072\pi\)
\(32\) 0 0
\(33\) −3.83715 + 2.21538i −0.667961 + 0.385648i
\(34\) 0 0
\(35\) 3.64765 + 4.65775i 0.616566 + 0.787303i
\(36\) 0 0
\(37\) −3.18183 + 1.83703i −0.523090 + 0.302006i −0.738198 0.674584i \(-0.764323\pi\)
0.215108 + 0.976590i \(0.430990\pi\)
\(38\) 0 0
\(39\) −0.866230 + 1.50035i −0.138708 + 0.240249i
\(40\) 0 0
\(41\) −6.71562 −1.04880 −0.524402 0.851471i \(-0.675711\pi\)
−0.524402 + 0.851471i \(0.675711\pi\)
\(42\) 0 0
\(43\) 9.71562i 1.48162i −0.671715 0.740809i \(-0.734442\pi\)
0.671715 0.740809i \(-0.265558\pi\)
\(44\) 0 0
\(45\) −1.88899 1.19655i −0.281593 0.178371i
\(46\) 0 0
\(47\) −1.57313 + 0.908250i −0.229465 + 0.132482i −0.610325 0.792151i \(-0.708961\pi\)
0.380860 + 0.924633i \(0.375628\pi\)
\(48\) 0 0
\(49\) −6.54227 + 2.48973i −0.934609 + 0.355676i
\(50\) 0 0
\(51\) −1.36623 2.36638i −0.191310 0.331359i
\(52\) 0 0
\(53\) −1.48535 0.857566i −0.204028 0.117796i 0.394505 0.918894i \(-0.370916\pi\)
−0.598533 + 0.801098i \(0.704249\pi\)
\(54\) 0 0
\(55\) −0.406524 + 9.89912i −0.0548157 + 1.33480i
\(56\) 0 0
\(57\) 0.305156i 0.0404189i
\(58\) 0 0
\(59\) 0.571217 0.989377i 0.0743661 0.128806i −0.826444 0.563018i \(-0.809640\pi\)
0.900810 + 0.434213i \(0.142973\pi\)
\(60\) 0 0
\(61\) −4.77818 8.27604i −0.611783 1.05964i −0.990940 0.134307i \(-0.957119\pi\)
0.379157 0.925332i \(-0.376214\pi\)
\(62\) 0 0
\(63\) 2.01432 1.71538i 0.253780 0.216117i
\(64\) 0 0
\(65\) 1.79766 + 3.43154i 0.222972 + 0.425631i
\(66\) 0 0
\(67\) −7.26104 4.19216i −0.887078 0.512154i −0.0140921 0.999901i \(-0.504486\pi\)
−0.872985 + 0.487746i \(0.837819\pi\)
\(68\) 0 0
\(69\) 7.02423 0.845618
\(70\) 0 0
\(71\) −10.2888 −1.22106 −0.610529 0.791994i \(-0.709043\pi\)
−0.610529 + 0.791994i \(0.709043\pi\)
\(72\) 0 0
\(73\) −11.1028 6.41022i −1.29949 0.750260i −0.319172 0.947697i \(-0.603405\pi\)
−0.980316 + 0.197437i \(0.936738\pi\)
\(74\) 0 0
\(75\) −4.52053 + 2.13653i −0.521986 + 0.246706i
\(76\) 0 0
\(77\) −11.0446 3.92903i −1.25865 0.447754i
\(78\) 0 0
\(79\) −3.35686 5.81425i −0.377676 0.654154i 0.613048 0.790046i \(-0.289943\pi\)
−0.990724 + 0.135892i \(0.956610\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 5.09946i 0.559739i 0.960038 + 0.279869i \(0.0902911\pi\)
−0.960038 + 0.279869i \(0.909709\pi\)
\(84\) 0 0
\(85\) −6.10482 0.250704i −0.662161 0.0271927i
\(86\) 0 0
\(87\) −6.75007 3.89715i −0.723683 0.417819i
\(88\) 0 0
\(89\) 2.03533 + 3.52529i 0.215744 + 0.373680i 0.953503 0.301385i \(-0.0974489\pi\)
−0.737758 + 0.675065i \(0.764116\pi\)
\(90\) 0 0
\(91\) −4.50810 + 0.828810i −0.472577 + 0.0868829i
\(92\) 0 0
\(93\) 4.57683 2.64243i 0.474595 0.274008i
\(94\) 0 0
\(95\) −0.576436 0.365135i −0.0591411 0.0374620i
\(96\) 0 0
\(97\) 2.87834i 0.292252i −0.989266 0.146126i \(-0.953320\pi\)
0.989266 0.146126i \(-0.0466804\pi\)
\(98\) 0 0
\(99\) 4.43075 0.445308
\(100\) 0 0
\(101\) −3.60883 + 6.25068i −0.359092 + 0.621966i −0.987809 0.155668i \(-0.950247\pi\)
0.628717 + 0.777634i \(0.283580\pi\)
\(102\) 0 0
\(103\) −9.76304 + 5.63670i −0.961981 + 0.555400i −0.896782 0.442472i \(-0.854102\pi\)
−0.0651989 + 0.997872i \(0.520768\pi\)
\(104\) 0 0
\(105\) −0.830088 5.85756i −0.0810083 0.571639i
\(106\) 0 0
\(107\) 5.98940 3.45798i 0.579017 0.334296i −0.181726 0.983349i \(-0.558168\pi\)
0.760743 + 0.649054i \(0.224835\pi\)
\(108\) 0 0
\(109\) 2.21097 3.82952i 0.211773 0.366801i −0.740497 0.672060i \(-0.765410\pi\)
0.952269 + 0.305259i \(0.0987430\pi\)
\(110\) 0 0
\(111\) 3.67406 0.348727
\(112\) 0 0
\(113\) 2.86151i 0.269188i −0.990901 0.134594i \(-0.957027\pi\)
0.990901 0.134594i \(-0.0429730\pi\)
\(114\) 0 0
\(115\) 8.40485 13.2687i 0.783756 1.23731i
\(116\) 0 0
\(117\) 1.50035 0.866230i 0.138708 0.0800830i
\(118\) 0 0
\(119\) 2.42304 6.81125i 0.222120 0.624387i
\(120\) 0 0
\(121\) −4.31579 7.47517i −0.392345 0.679561i
\(122\) 0 0
\(123\) 5.81590 + 3.35781i 0.524402 + 0.302764i
\(124\) 0 0
\(125\) −1.37317 + 11.0957i −0.122820 + 0.992429i
\(126\) 0 0
\(127\) 13.7325i 1.21856i 0.792956 + 0.609279i \(0.208541\pi\)
−0.792956 + 0.609279i \(0.791459\pi\)
\(128\) 0 0
\(129\) −4.85781 + 8.41398i −0.427706 + 0.740809i
\(130\) 0 0
\(131\) 10.9909 + 19.0368i 0.960277 + 1.66325i 0.721801 + 0.692100i \(0.243314\pi\)
0.238476 + 0.971148i \(0.423352\pi\)
\(132\) 0 0
\(133\) 0.614682 0.523458i 0.0532997 0.0453896i
\(134\) 0 0
\(135\) 1.03763 + 1.98074i 0.0893053 + 0.170475i
\(136\) 0 0
\(137\) 2.59973 + 1.50095i 0.222110 + 0.128235i 0.606927 0.794758i \(-0.292402\pi\)
−0.384817 + 0.922993i \(0.625735\pi\)
\(138\) 0 0
\(139\) −21.7364 −1.84366 −0.921829 0.387597i \(-0.873305\pi\)
−0.921829 + 0.387597i \(0.873305\pi\)
\(140\) 0 0
\(141\) 1.81650 0.152977
\(142\) 0 0
\(143\) −6.64770 3.83805i −0.555908 0.320954i
\(144\) 0 0
\(145\) −15.4385 + 8.08764i −1.28209 + 0.671642i
\(146\) 0 0
\(147\) 6.91063 + 1.11496i 0.569979 + 0.0919606i
\(148\) 0 0
\(149\) −2.60654 4.51467i −0.213536 0.369856i 0.739282 0.673396i \(-0.235165\pi\)
−0.952819 + 0.303540i \(0.901832\pi\)
\(150\) 0 0
\(151\) −4.85686 + 8.41233i −0.395246 + 0.684585i −0.993132 0.116995i \(-0.962674\pi\)
0.597887 + 0.801580i \(0.296007\pi\)
\(152\) 0 0
\(153\) 2.73246i 0.220906i
\(154\) 0 0
\(155\) 0.484889 11.8074i 0.0389472 0.948391i
\(156\) 0 0
\(157\) 8.20284 + 4.73591i 0.654658 + 0.377967i 0.790238 0.612800i \(-0.209957\pi\)
−0.135581 + 0.990766i \(0.543290\pi\)
\(158\) 0 0
\(159\) 0.857566 + 1.48535i 0.0680094 + 0.117796i
\(160\) 0 0
\(161\) 12.0492 + 14.1490i 0.949610 + 1.11510i
\(162\) 0 0
\(163\) 4.67358 2.69830i 0.366063 0.211347i −0.305674 0.952136i \(-0.598882\pi\)
0.671737 + 0.740789i \(0.265548\pi\)
\(164\) 0 0
\(165\) 5.30162 8.36963i 0.412731 0.651575i
\(166\) 0 0
\(167\) 0.312550i 0.0241859i 0.999927 + 0.0120929i \(0.00384939\pi\)
−0.999927 + 0.0120929i \(0.996151\pi\)
\(168\) 0 0
\(169\) 9.99859 0.769122
\(170\) 0 0
\(171\) −0.152578 + 0.264273i −0.0116679 + 0.0202095i
\(172\) 0 0
\(173\) −8.32661 + 4.80737i −0.633061 + 0.365498i −0.781937 0.623358i \(-0.785768\pi\)
0.148876 + 0.988856i \(0.452435\pi\)
\(174\) 0 0
\(175\) −12.0581 5.44084i −0.911505 0.411289i
\(176\) 0 0
\(177\) −0.989377 + 0.571217i −0.0743661 + 0.0429353i
\(178\) 0 0
\(179\) 4.42730 7.66831i 0.330912 0.573157i −0.651779 0.758409i \(-0.725977\pi\)
0.982691 + 0.185252i \(0.0593103\pi\)
\(180\) 0 0
\(181\) −16.9234 −1.25790 −0.628952 0.777445i \(-0.716516\pi\)
−0.628952 + 0.777445i \(0.716516\pi\)
\(182\) 0 0
\(183\) 9.55635i 0.706426i
\(184\) 0 0
\(185\) 4.39620 6.94026i 0.323215 0.510258i
\(186\) 0 0
\(187\) 10.4848 6.05343i 0.766728 0.442670i
\(188\) 0 0
\(189\) −2.60214 + 0.478401i −0.189278 + 0.0347985i
\(190\) 0 0
\(191\) 0.159271 + 0.275865i 0.0115244 + 0.0199609i 0.871730 0.489986i \(-0.162998\pi\)
−0.860206 + 0.509947i \(0.829665\pi\)
\(192\) 0 0
\(193\) 1.81289 + 1.04667i 0.130494 + 0.0753410i 0.563826 0.825894i \(-0.309329\pi\)
−0.433332 + 0.901234i \(0.642662\pi\)
\(194\) 0 0
\(195\) 0.158954 3.87063i 0.0113829 0.277182i
\(196\) 0 0
\(197\) 22.5798i 1.60874i −0.594126 0.804372i \(-0.702502\pi\)
0.594126 0.804372i \(-0.297498\pi\)
\(198\) 0 0
\(199\) 3.75204 6.49872i 0.265975 0.460682i −0.701844 0.712331i \(-0.747639\pi\)
0.967819 + 0.251649i \(0.0809728\pi\)
\(200\) 0 0
\(201\) 4.19216 + 7.26104i 0.295693 + 0.512154i
\(202\) 0 0
\(203\) −3.72880 20.2819i −0.261710 1.42351i
\(204\) 0 0
\(205\) 13.3019 6.96836i 0.929043 0.486691i
\(206\) 0 0
\(207\) −6.08316 3.51212i −0.422809 0.244109i
\(208\) 0 0
\(209\) 1.35207 0.0935248
\(210\) 0 0
\(211\) −7.67216 −0.528173 −0.264087 0.964499i \(-0.585070\pi\)
−0.264087 + 0.964499i \(0.585070\pi\)
\(212\) 0 0
\(213\) 8.91037 + 5.14441i 0.610529 + 0.352489i
\(214\) 0 0
\(215\) 10.0813 + 19.2441i 0.687536 + 1.31244i
\(216\) 0 0
\(217\) 13.1737 + 4.68643i 0.894289 + 0.318135i
\(218\) 0 0
\(219\) 6.41022 + 11.1028i 0.433163 + 0.750260i
\(220\) 0 0
\(221\) 2.36694 4.09966i 0.159217 0.275773i
\(222\) 0 0
\(223\) 6.90208i 0.462198i 0.972930 + 0.231099i \(0.0742321\pi\)
−0.972930 + 0.231099i \(0.925768\pi\)
\(224\) 0 0
\(225\) 4.98316 + 0.409975i 0.332211 + 0.0273317i
\(226\) 0 0
\(227\) 5.49684 + 3.17360i 0.364838 + 0.210639i 0.671201 0.741275i \(-0.265779\pi\)
−0.306363 + 0.951915i \(0.599112\pi\)
\(228\) 0 0
\(229\) 3.37834 + 5.85146i 0.223247 + 0.386676i 0.955792 0.294043i \(-0.0950009\pi\)
−0.732545 + 0.680719i \(0.761668\pi\)
\(230\) 0 0
\(231\) 7.60041 + 8.92495i 0.500071 + 0.587219i
\(232\) 0 0
\(233\) −6.41899 + 3.70601i −0.420522 + 0.242789i −0.695301 0.718719i \(-0.744729\pi\)
0.274779 + 0.961508i \(0.411395\pi\)
\(234\) 0 0
\(235\) 2.17353 3.43134i 0.141786 0.223836i
\(236\) 0 0
\(237\) 6.71372i 0.436103i
\(238\) 0 0
\(239\) 7.36355 0.476309 0.238154 0.971227i \(-0.423458\pi\)
0.238154 + 0.971227i \(0.423458\pi\)
\(240\) 0 0
\(241\) −6.84002 + 11.8473i −0.440605 + 0.763149i −0.997734 0.0672759i \(-0.978569\pi\)
0.557130 + 0.830425i \(0.311903\pi\)
\(242\) 0 0
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 0 0
\(245\) 10.3751 11.7200i 0.662839 0.748762i
\(246\) 0 0
\(247\) 0.457842 0.264335i 0.0291318 0.0168193i
\(248\) 0 0
\(249\) 2.54973 4.41626i 0.161583 0.279869i
\(250\) 0 0
\(251\) −23.4843 −1.48231 −0.741157 0.671331i \(-0.765723\pi\)
−0.741157 + 0.671331i \(0.765723\pi\)
\(252\) 0 0
\(253\) 31.1226i 1.95666i
\(254\) 0 0
\(255\) 5.16158 + 3.26953i 0.323230 + 0.204746i
\(256\) 0 0
\(257\) 12.6417 7.29871i 0.788570 0.455281i −0.0508890 0.998704i \(-0.516205\pi\)
0.839459 + 0.543423i \(0.182872\pi\)
\(258\) 0 0
\(259\) 6.30241 + 7.40074i 0.391612 + 0.459860i
\(260\) 0 0
\(261\) 3.89715 + 6.75007i 0.241228 + 0.417819i
\(262\) 0 0
\(263\) 4.40755 + 2.54470i 0.271781 + 0.156913i 0.629697 0.776841i \(-0.283179\pi\)
−0.357916 + 0.933754i \(0.616512\pi\)
\(264\) 0 0
\(265\) 3.83192 + 0.157364i 0.235393 + 0.00966680i
\(266\) 0 0
\(267\) 4.07065i 0.249120i
\(268\) 0 0
\(269\) 15.2550 26.4224i 0.930112 1.61100i 0.146984 0.989139i \(-0.453043\pi\)
0.783127 0.621862i \(-0.213623\pi\)
\(270\) 0 0
\(271\) −9.74401 16.8771i −0.591907 1.02521i −0.993975 0.109603i \(-0.965042\pi\)
0.402069 0.915609i \(-0.368291\pi\)
\(272\) 0 0
\(273\) 4.31854 + 1.53628i 0.261370 + 0.0929799i
\(274\) 0 0
\(275\) −9.46645 20.0294i −0.570849 1.20782i
\(276\) 0 0
\(277\) −22.0665 12.7401i −1.32585 0.765478i −0.341193 0.939993i \(-0.610831\pi\)
−0.984655 + 0.174515i \(0.944164\pi\)
\(278\) 0 0
\(279\) −5.28487 −0.316397
\(280\) 0 0
\(281\) −22.1914 −1.32383 −0.661914 0.749580i \(-0.730255\pi\)
−0.661914 + 0.749580i \(0.730255\pi\)
\(282\) 0 0
\(283\) 15.6960 + 9.06209i 0.933031 + 0.538685i 0.887769 0.460290i \(-0.152254\pi\)
0.0452618 + 0.998975i \(0.485588\pi\)
\(284\) 0 0
\(285\) 0.316641 + 0.604434i 0.0187562 + 0.0358036i
\(286\) 0 0
\(287\) 3.21276 + 17.4750i 0.189643 + 1.03152i
\(288\) 0 0
\(289\) −4.76683 8.25640i −0.280402 0.485670i
\(290\) 0 0
\(291\) −1.43917 + 2.49272i −0.0843658 + 0.146126i
\(292\) 0 0
\(293\) 13.8958i 0.811801i 0.913917 + 0.405901i \(0.133042\pi\)
−0.913917 + 0.405901i \(0.866958\pi\)
\(294\) 0 0
\(295\) −0.104819 + 2.55241i −0.00610279 + 0.148607i
\(296\) 0 0
\(297\) −3.83715 2.21538i −0.222654 0.128549i
\(298\) 0 0
\(299\) 6.08460 + 10.5388i 0.351881 + 0.609476i
\(300\) 0 0
\(301\) −25.2814 + 4.64796i −1.45720 + 0.267904i
\(302\) 0 0
\(303\) 6.25068 3.60883i 0.359092 0.207322i
\(304\) 0 0
\(305\) 18.0518 + 11.4347i 1.03364 + 0.654747i
\(306\) 0 0
\(307\) 29.8332i 1.70267i −0.524622 0.851335i \(-0.675793\pi\)
0.524622 0.851335i \(-0.324207\pi\)
\(308\) 0 0
\(309\) 11.2734 0.641321
\(310\) 0 0
\(311\) 6.75662 11.7028i 0.383133 0.663606i −0.608375 0.793650i \(-0.708178\pi\)
0.991508 + 0.130044i \(0.0415117\pi\)
\(312\) 0 0
\(313\) 25.1023 14.4928i 1.41887 0.819184i 0.422669 0.906284i \(-0.361093\pi\)
0.996200 + 0.0871001i \(0.0277600\pi\)
\(314\) 0 0
\(315\) −2.20990 + 5.48784i −0.124514 + 0.309205i
\(316\) 0 0
\(317\) 1.00341 0.579319i 0.0563571 0.0325378i −0.471557 0.881836i \(-0.656308\pi\)
0.527914 + 0.849298i \(0.322974\pi\)
\(318\) 0 0
\(319\) 17.2673 29.9079i 0.966785 1.67452i
\(320\) 0 0
\(321\) −6.91596 −0.386011
\(322\) 0 0
\(323\) 0.833827i 0.0463954i
\(324\) 0 0
\(325\) −7.12138 4.93167i −0.395023 0.273560i
\(326\) 0 0
\(327\) −3.82952 + 2.21097i −0.211773 + 0.122267i
\(328\) 0 0
\(329\) 3.11598 + 3.65901i 0.171790 + 0.201728i
\(330\) 0 0
\(331\) −14.1746 24.5511i −0.779104 1.34945i −0.932459 0.361277i \(-0.882341\pi\)
0.153355 0.988171i \(-0.450992\pi\)
\(332\) 0 0
\(333\) −3.18183 1.83703i −0.174363 0.100669i
\(334\) 0 0
\(335\) 18.7321 + 0.769266i 1.02345 + 0.0420295i
\(336\) 0 0
\(337\) 15.9729i 0.870101i 0.900406 + 0.435051i \(0.143270\pi\)
−0.900406 + 0.435051i \(0.856730\pi\)
\(338\) 0 0
\(339\) −1.43075 + 2.47814i −0.0777079 + 0.134594i
\(340\) 0 0
\(341\) 11.7080 + 20.2788i 0.634023 + 1.09816i
\(342\) 0 0
\(343\) 9.60845 + 15.8328i 0.518808 + 0.854891i
\(344\) 0 0
\(345\) −13.9131 + 7.28858i −0.749059 + 0.392404i
\(346\) 0 0
\(347\) 11.2687 + 6.50599i 0.604935 + 0.349260i 0.770981 0.636859i \(-0.219766\pi\)
−0.166045 + 0.986118i \(0.553100\pi\)
\(348\) 0 0
\(349\) −32.0724 −1.71680 −0.858398 0.512984i \(-0.828540\pi\)
−0.858398 + 0.512984i \(0.828540\pi\)
\(350\) 0 0
\(351\) −1.73246 −0.0924718
\(352\) 0 0
\(353\) 11.5778 + 6.68445i 0.616225 + 0.355778i 0.775398 0.631473i \(-0.217549\pi\)
−0.159173 + 0.987251i \(0.550883\pi\)
\(354\) 0 0
\(355\) 20.3794 10.6760i 1.08163 0.566624i
\(356\) 0 0
\(357\) −5.50404 + 4.68720i −0.291305 + 0.248073i
\(358\) 0 0
\(359\) 6.55974 + 11.3618i 0.346210 + 0.599653i 0.985573 0.169252i \(-0.0541352\pi\)
−0.639363 + 0.768905i \(0.720802\pi\)
\(360\) 0 0
\(361\) 9.45344 16.3738i 0.497549 0.861781i
\(362\) 0 0
\(363\) 8.63158i 0.453041i
\(364\) 0 0
\(365\) 28.6432 + 1.17628i 1.49926 + 0.0615694i
\(366\) 0 0
\(367\) 11.3761 + 6.56798i 0.593826 + 0.342846i 0.766609 0.642114i \(-0.221943\pi\)
−0.172783 + 0.984960i \(0.555276\pi\)
\(368\) 0 0
\(369\) −3.35781 5.81590i −0.174801 0.302764i
\(370\) 0 0
\(371\) −1.52091 + 4.27534i −0.0789620 + 0.221965i
\(372\) 0 0
\(373\) 25.6514 14.8099i 1.32818 0.766826i 0.343163 0.939276i \(-0.388502\pi\)
0.985018 + 0.172450i \(0.0551682\pi\)
\(374\) 0 0
\(375\) 6.73704 8.92257i 0.347900 0.460759i
\(376\) 0 0
\(377\) 13.5033i 0.695456i
\(378\) 0 0
\(379\) 7.47689 0.384062 0.192031 0.981389i \(-0.438493\pi\)
0.192031 + 0.981389i \(0.438493\pi\)
\(380\) 0 0
\(381\) 6.86623 11.8927i 0.351768 0.609279i
\(382\) 0 0
\(383\) −20.5586 + 11.8695i −1.05050 + 0.606505i −0.922789 0.385307i \(-0.874096\pi\)
−0.127709 + 0.991812i \(0.540762\pi\)
\(384\) 0 0
\(385\) 25.9534 3.67791i 1.32271 0.187444i
\(386\) 0 0
\(387\) 8.41398 4.85781i 0.427706 0.246936i
\(388\) 0 0
\(389\) −7.06523 + 12.2373i −0.358221 + 0.620458i −0.987664 0.156589i \(-0.949950\pi\)
0.629442 + 0.777047i \(0.283283\pi\)
\(390\) 0 0
\(391\) −19.1934 −0.970653
\(392\) 0 0
\(393\) 21.9817i 1.10883i
\(394\) 0 0
\(395\) 12.6821 + 8.03330i 0.638106 + 0.404199i
\(396\) 0 0
\(397\) 9.75974 5.63479i 0.489827 0.282802i −0.234676 0.972074i \(-0.575403\pi\)
0.724503 + 0.689272i \(0.242069\pi\)
\(398\) 0 0
\(399\) −0.794059 + 0.145987i −0.0397527 + 0.00730849i
\(400\) 0 0
\(401\) −11.6484 20.1757i −0.581694 1.00752i −0.995279 0.0970583i \(-0.969057\pi\)
0.413584 0.910466i \(-0.364277\pi\)
\(402\) 0 0
\(403\) 7.92917 + 4.57791i 0.394980 + 0.228042i
\(404\) 0 0
\(405\) 0.0917505 2.23418i 0.00455912 0.111018i
\(406\) 0 0
\(407\) 16.2789i 0.806914i
\(408\) 0 0
\(409\) 10.3239 17.8815i 0.510484 0.884184i −0.489443 0.872036i \(-0.662800\pi\)
0.999926 0.0121481i \(-0.00386695\pi\)
\(410\) 0 0
\(411\) −1.50095 2.59973i −0.0740366 0.128235i
\(412\) 0 0
\(413\) −2.84777 1.01307i −0.140130 0.0498498i
\(414\) 0 0
\(415\) −5.29138 10.1007i −0.259743 0.495823i
\(416\) 0 0
\(417\) 18.8243 + 10.8682i 0.921829 + 0.532218i
\(418\) 0 0
\(419\) −5.48254 −0.267839 −0.133920 0.990992i \(-0.542756\pi\)
−0.133920 + 0.990992i \(0.542756\pi\)
\(420\) 0 0
\(421\) −3.78079 −0.184264 −0.0921322 0.995747i \(-0.529368\pi\)
−0.0921322 + 0.995747i \(0.529368\pi\)
\(422\) 0 0
\(423\) −1.57313 0.908250i −0.0764884 0.0441606i
\(424\) 0 0
\(425\) 12.3522 5.83799i 0.599168 0.283184i
\(426\) 0 0
\(427\) −19.2495 + 16.3927i −0.931551 + 0.793301i
\(428\) 0 0
\(429\) 3.83805 + 6.64770i 0.185303 + 0.320954i
\(430\) 0 0
\(431\) −13.7564 + 23.8267i −0.662621 + 1.14769i 0.317303 + 0.948324i \(0.397223\pi\)
−0.979924 + 0.199369i \(0.936111\pi\)
\(432\) 0 0
\(433\) 8.75514i 0.420745i −0.977621 0.210373i \(-0.932532\pi\)
0.977621 0.210373i \(-0.0674677\pi\)
\(434\) 0 0
\(435\) 17.4139 + 0.715131i 0.834933 + 0.0342879i
\(436\) 0 0
\(437\) −1.85631 1.07174i −0.0887996 0.0512685i
\(438\) 0 0
\(439\) 5.30636 + 9.19088i 0.253259 + 0.438657i 0.964421 0.264371i \(-0.0851643\pi\)
−0.711163 + 0.703028i \(0.751831\pi\)
\(440\) 0 0
\(441\) −5.42730 4.42090i −0.258443 0.210519i
\(442\) 0 0
\(443\) 17.3080 9.99278i 0.822328 0.474771i −0.0288905 0.999583i \(-0.509197\pi\)
0.851219 + 0.524811i \(0.175864\pi\)
\(444\) 0 0
\(445\) −7.68941 4.87074i −0.364513 0.230895i
\(446\) 0 0
\(447\) 5.21309i 0.246571i
\(448\) 0 0
\(449\) −3.02578 −0.142795 −0.0713976 0.997448i \(-0.522746\pi\)
−0.0713976 + 0.997448i \(0.522746\pi\)
\(450\) 0 0
\(451\) −14.8776 + 25.7688i −0.700561 + 1.21341i
\(452\) 0 0
\(453\) 8.41233 4.85686i 0.395246 0.228195i
\(454\) 0 0
\(455\) 8.06936 6.31941i 0.378297 0.296259i
\(456\) 0 0
\(457\) −1.97570 + 1.14067i −0.0924195 + 0.0533584i −0.545497 0.838112i \(-0.683659\pi\)
0.453078 + 0.891471i \(0.350326\pi\)
\(458\) 0 0
\(459\) 1.36623 2.36638i 0.0637701 0.110453i
\(460\) 0 0
\(461\) −24.0678 −1.12095 −0.560475 0.828171i \(-0.689381\pi\)
−0.560475 + 0.828171i \(0.689381\pi\)
\(462\) 0 0
\(463\) 11.1290i 0.517211i −0.965983 0.258605i \(-0.916737\pi\)
0.965983 0.258605i \(-0.0832629\pi\)
\(464\) 0 0
\(465\) −6.32361 + 9.98304i −0.293251 + 0.462952i
\(466\) 0 0
\(467\) 24.7481 14.2883i 1.14521 0.661185i 0.197491 0.980305i \(-0.436721\pi\)
0.947714 + 0.319120i \(0.103387\pi\)
\(468\) 0 0
\(469\) −7.43491 + 20.8998i −0.343312 + 0.965062i
\(470\) 0 0
\(471\) −4.73591 8.20284i −0.218219 0.377967i
\(472\) 0 0
\(473\) −37.2803 21.5238i −1.71415 0.989664i
\(474\) 0 0
\(475\) 1.52064 + 0.125106i 0.0697719 + 0.00574028i
\(476\) 0 0
\(477\) 1.71513i 0.0785305i
\(478\) 0 0
\(479\) 2.79005 4.83250i 0.127480 0.220803i −0.795219 0.606322i \(-0.792644\pi\)
0.922700 + 0.385519i \(0.125978\pi\)
\(480\) 0 0
\(481\) 3.18258 + 5.51240i 0.145113 + 0.251344i
\(482\) 0 0
\(483\) −3.36040 18.2780i −0.152903 0.831679i
\(484\) 0 0
\(485\) 2.98667 + 5.70124i 0.135618 + 0.258880i
\(486\) 0 0
\(487\) −7.22858 4.17342i −0.327558 0.189116i 0.327198 0.944956i \(-0.393895\pi\)
−0.654756 + 0.755840i \(0.727229\pi\)
\(488\) 0 0
\(489\) −5.39659 −0.244042
\(490\) 0 0
\(491\) −0.557405 −0.0251554 −0.0125777 0.999921i \(-0.504004\pi\)
−0.0125777 + 0.999921i \(0.504004\pi\)
\(492\) 0 0
\(493\) 18.4443 + 10.6488i 0.830689 + 0.479598i
\(494\) 0 0
\(495\) −8.77615 + 4.59750i −0.394459 + 0.206642i
\(496\) 0 0
\(497\) 4.92217 + 26.7729i 0.220790 + 1.20093i
\(498\) 0 0
\(499\) 13.0168 + 22.5458i 0.582713 + 1.00929i 0.995156 + 0.0983057i \(0.0313423\pi\)
−0.412443 + 0.910983i \(0.635324\pi\)
\(500\) 0 0
\(501\) 0.156275 0.270676i 0.00698186 0.0120929i
\(502\) 0 0
\(503\) 5.52409i 0.246307i −0.992388 0.123154i \(-0.960699\pi\)
0.992388 0.123154i \(-0.0393008\pi\)
\(504\) 0 0
\(505\) 0.662224 16.1256i 0.0294686 0.717580i
\(506\) 0 0
\(507\) −8.65903 4.99929i −0.384561 0.222026i
\(508\) 0 0
\(509\) 11.4446 + 19.8227i 0.507274 + 0.878625i 0.999965 + 0.00842016i \(0.00268025\pi\)
−0.492690 + 0.870205i \(0.663986\pi\)
\(510\) 0 0
\(511\) −11.3687 + 31.9578i −0.502921 + 1.41373i
\(512\) 0 0
\(513\) 0.264273 0.152578i 0.0116679 0.00673649i
\(514\) 0 0
\(515\) 13.4892 21.2953i 0.594404 0.938382i
\(516\) 0 0
\(517\) 8.04846i 0.353971i
\(518\) 0 0
\(519\) 9.61475 0.422041
\(520\) 0 0
\(521\) −13.0995 + 22.6889i −0.573898 + 0.994020i 0.422263 + 0.906474i \(0.361236\pi\)
−0.996160 + 0.0875466i \(0.972097\pi\)
\(522\) 0 0
\(523\) 23.2753 13.4380i 1.01776 0.587603i 0.104304 0.994545i \(-0.466738\pi\)
0.913454 + 0.406943i \(0.133405\pi\)
\(524\) 0 0
\(525\) 7.72218 + 10.7409i 0.337024 + 0.468773i
\(526\) 0 0
\(527\) −12.5060 + 7.22034i −0.544770 + 0.314523i
\(528\) 0 0
\(529\) 13.1699 22.8109i 0.572605 0.991780i
\(530\) 0 0
\(531\) 1.14243 0.0495774
\(532\) 0 0
\(533\) 11.6345i 0.503948i
\(534\) 0 0
\(535\) −8.27530 + 13.0641i −0.357772 + 0.564812i
\(536\) 0 0
\(537\) −7.66831 + 4.42730i −0.330912 + 0.191052i
\(538\) 0 0
\(539\) −4.94013 + 30.6193i −0.212786 + 1.31887i
\(540\) 0 0
\(541\) 9.39222 + 16.2678i 0.403803 + 0.699408i 0.994181 0.107719i \(-0.0343547\pi\)
−0.590378 + 0.807127i \(0.701021\pi\)
\(542\) 0 0
\(543\) 14.6561 + 8.46168i 0.628952 + 0.363125i
\(544\) 0 0
\(545\) −0.405716 + 9.87944i −0.0173789 + 0.423189i
\(546\) 0 0
\(547\) 13.4126i 0.573483i −0.958008 0.286742i \(-0.907428\pi\)
0.958008 0.286742i \(-0.0925721\pi\)
\(548\) 0 0
\(549\) 4.77818 8.27604i 0.203928 0.353213i
\(550\) 0 0
\(551\) 1.18924 + 2.05982i 0.0506633 + 0.0877515i
\(552\) 0 0
\(553\) −13.5236 + 11.5166i −0.575081 + 0.489734i
\(554\) 0 0
\(555\) −7.27735 + 3.81233i −0.308906 + 0.161825i
\(556\) 0 0
\(557\) 34.8008 + 20.0922i 1.47456 + 0.851336i 0.999589 0.0286677i \(-0.00912646\pi\)
0.474968 + 0.880003i \(0.342460\pi\)
\(558\) 0 0
\(559\) −16.8319 −0.711914
\(560\) 0 0
\(561\) −12.1069 −0.511152
\(562\) 0 0
\(563\) −21.8134 12.5940i −0.919325 0.530772i −0.0359052 0.999355i \(-0.511431\pi\)
−0.883420 + 0.468583i \(0.844765\pi\)
\(564\) 0 0
\(565\) 2.96920 + 5.66789i 0.124915 + 0.238450i
\(566\) 0 0
\(567\) 2.49272 + 0.886763i 0.104684 + 0.0372405i
\(568\) 0 0
\(569\) −5.51757 9.55672i −0.231309 0.400638i 0.726885 0.686759i \(-0.240967\pi\)
−0.958194 + 0.286121i \(0.907634\pi\)
\(570\) 0 0
\(571\) 14.3573 24.8677i 0.600836 1.04068i −0.391858 0.920026i \(-0.628168\pi\)
0.992695 0.120654i \(-0.0384990\pi\)
\(572\) 0 0
\(573\) 0.318541i 0.0133073i
\(574\) 0 0
\(575\) −2.87976 + 35.0029i −0.120094 + 1.45972i
\(576\) 0 0
\(577\) −5.94444 3.43202i −0.247470 0.142877i 0.371135 0.928579i \(-0.378969\pi\)
−0.618605 + 0.785702i \(0.712302\pi\)
\(578\) 0 0
\(579\) −1.04667 1.81289i −0.0434981 0.0753410i
\(580\) 0 0
\(581\) 13.2695 2.43959i 0.550512 0.101211i
\(582\) 0 0
\(583\) −6.58121 + 3.79966i −0.272566 + 0.157366i
\(584\) 0 0
\(585\) −2.07298 + 3.27259i −0.0857070 + 0.135305i
\(586\) 0 0
\(587\) 9.03965i 0.373106i 0.982445 + 0.186553i \(0.0597317\pi\)
−0.982445 + 0.186553i \(0.940268\pi\)
\(588\) 0 0
\(589\) −1.61271 −0.0664506
\(590\) 0 0
\(591\) −11.2899 + 19.5547i −0.464404 + 0.804372i
\(592\) 0 0
\(593\) −4.42364 + 2.55399i −0.181657 + 0.104880i −0.588071 0.808809i \(-0.700112\pi\)
0.406414 + 0.913689i \(0.366779\pi\)
\(594\) 0 0
\(595\) 2.26818 + 16.0055i 0.0929864 + 0.656163i
\(596\) 0 0
\(597\) −6.49872 + 3.75204i −0.265975 + 0.153561i
\(598\) 0 0
\(599\) 14.9721 25.9325i 0.611745 1.05957i −0.379202 0.925314i \(-0.623801\pi\)
0.990946 0.134259i \(-0.0428654\pi\)
\(600\) 0 0
\(601\) −12.5387 −0.511466 −0.255733 0.966747i \(-0.582317\pi\)
−0.255733 + 0.966747i \(0.582317\pi\)
\(602\) 0 0
\(603\) 8.38433i 0.341436i
\(604\) 0 0
\(605\) 16.3049 + 10.3281i 0.662890 + 0.419898i
\(606\) 0 0
\(607\) 8.31216 4.79903i 0.337380 0.194786i −0.321733 0.946831i \(-0.604265\pi\)
0.659113 + 0.752044i \(0.270932\pi\)
\(608\) 0 0
\(609\) −6.91170 + 19.4290i −0.280076 + 0.787304i
\(610\) 0 0
\(611\) 1.57351 + 2.72539i 0.0636572 + 0.110258i
\(612\) 0 0
\(613\) −23.9583 13.8323i −0.967665 0.558682i −0.0691416 0.997607i \(-0.522026\pi\)
−0.898524 + 0.438925i \(0.855359\pi\)
\(614\) 0 0
\(615\) −15.0039 0.616162i −0.605017 0.0248460i
\(616\) 0 0
\(617\) 20.4155i 0.821896i 0.911659 + 0.410948i \(0.134802\pi\)
−0.911659 + 0.410948i \(0.865198\pi\)
\(618\) 0 0
\(619\) 7.72112 13.3734i 0.310338 0.537521i −0.668098 0.744074i \(-0.732891\pi\)
0.978435 + 0.206553i \(0.0662245\pi\)
\(620\) 0 0
\(621\) 3.51212 + 6.08316i 0.140936 + 0.244109i
\(622\) 0 0
\(623\) 8.19960 6.98271i 0.328510 0.279756i
\(624\) 0 0
\(625\) −8.79339 23.4025i −0.351735 0.936099i
\(626\) 0 0
\(627\) −1.17093 0.676036i −0.0467624 0.0269983i
\(628\) 0 0
\(629\) −10.0392 −0.400290
\(630\) 0 0
\(631\) 38.1722 1.51961 0.759805 0.650151i \(-0.225295\pi\)
0.759805 + 0.650151i \(0.225295\pi\)
\(632\) 0 0
\(633\) 6.64428 + 3.83608i 0.264087 + 0.152470i
\(634\) 0 0
\(635\) −14.2493 27.2004i −0.565465 1.07941i
\(636\) 0 0
\(637\) 4.31336 + 11.3342i 0.170901 + 0.449078i
\(638\) 0 0
\(639\) −5.14441 8.91037i −0.203510 0.352489i
\(640\) 0 0
\(641\) 8.39007 14.5320i 0.331388 0.573981i −0.651396 0.758738i \(-0.725816\pi\)
0.982784 + 0.184757i \(0.0591498\pi\)
\(642\) 0 0
\(643\) 14.2002i 0.560001i 0.960000 + 0.280001i \(0.0903346\pi\)
−0.960000 + 0.280001i \(0.909665\pi\)
\(644\) 0 0
\(645\) 0.891413 21.7065i 0.0350994 0.854692i
\(646\) 0 0
\(647\) −12.5474 7.24426i −0.493290 0.284801i 0.232648 0.972561i \(-0.425261\pi\)
−0.725938 + 0.687760i \(0.758594\pi\)
\(648\) 0 0
\(649\) −2.53092 4.38369i −0.0993474 0.172075i
\(650\) 0 0
\(651\) −9.06554 10.6454i −0.355307 0.417227i
\(652\) 0 0
\(653\) 8.90562 5.14166i 0.348504 0.201209i −0.315522 0.948918i \(-0.602180\pi\)
0.664026 + 0.747709i \(0.268846\pi\)
\(654\) 0 0
\(655\) −41.5232 26.3023i −1.62245 1.02771i
\(656\) 0 0
\(657\) 12.8204i 0.500173i
\(658\) 0 0
\(659\) 14.9773 0.583433 0.291717 0.956505i \(-0.405774\pi\)
0.291717 + 0.956505i \(0.405774\pi\)
\(660\) 0 0
\(661\) −1.22323 + 2.11870i −0.0475782 + 0.0824079i −0.888834 0.458230i \(-0.848484\pi\)
0.841256 + 0.540638i \(0.181817\pi\)
\(662\) 0 0
\(663\) −4.09966 + 2.36694i −0.159217 + 0.0919242i
\(664\) 0 0
\(665\) −0.674365 + 1.67465i −0.0261507 + 0.0649400i
\(666\) 0 0
\(667\) −47.4140 + 27.3745i −1.83588 + 1.05994i
\(668\) 0 0
\(669\) 3.45104 5.97738i 0.133425 0.231099i
\(670\) 0 0
\(671\) −42.3418 −1.63459
\(672\) 0 0
\(673\) 17.2596i 0.665310i 0.943049 + 0.332655i \(0.107945\pi\)
−0.943049 + 0.332655i \(0.892055\pi\)
\(674\) 0 0
\(675\) −4.11056 2.84663i −0.158215 0.109567i
\(676\) 0 0
\(677\) −10.0791 + 5.81918i −0.387372 + 0.223649i −0.681021 0.732264i \(-0.738464\pi\)
0.293649 + 0.955913i \(0.405130\pi\)
\(678\) 0 0
\(679\) −7.48986 + 1.37700i −0.287434 + 0.0528445i
\(680\) 0 0
\(681\) −3.17360 5.49684i −0.121613 0.210639i
\(682\) 0 0
\(683\) −26.9299 15.5480i −1.03044 0.594928i −0.113333 0.993557i \(-0.536153\pi\)
−0.917112 + 0.398629i \(0.869486\pi\)
\(684\) 0 0
\(685\) −6.70681 0.275426i −0.256254 0.0105235i
\(686\) 0 0
\(687\) 6.75669i 0.257784i
\(688\) 0 0
\(689\) −1.48570 + 2.57330i −0.0566006 + 0.0980351i
\(690\) 0 0
\(691\) −8.96695 15.5312i −0.341119 0.590835i 0.643522 0.765428i \(-0.277473\pi\)
−0.984641 + 0.174592i \(0.944139\pi\)
\(692\) 0 0
\(693\) −2.11968 11.5294i −0.0805198 0.437967i
\(694\) 0 0
\(695\) 43.0541 22.5544i 1.63313 0.855538i
\(696\) 0 0
\(697\) −15.8917 9.17508i −0.601941 0.347531i
\(698\) 0 0
\(699\) 7.41201 0.280348
\(700\) 0 0
\(701\) 7.04488 0.266081 0.133041 0.991111i \(-0.457526\pi\)
0.133041 + 0.991111i \(0.457526\pi\)
\(702\) 0 0
\(703\) −0.970956 0.560582i −0.0366203 0.0211427i
\(704\) 0 0
\(705\) −3.59801 + 1.88486i −0.135509 + 0.0709880i
\(706\) 0 0
\(707\) 17.9916 + 6.40036i 0.676644 + 0.240710i
\(708\) 0 0
\(709\) −12.9622 22.4511i −0.486804 0.843170i 0.513080 0.858341i \(-0.328504\pi\)
−0.999885 + 0.0151705i \(0.995171\pi\)
\(710\) 0 0
\(711\) 3.35686 5.81425i 0.125892 0.218051i
\(712\) 0 0
\(713\) 37.1221i 1.39023i
\(714\) 0 0
\(715\) 17.1498 + 0.704286i 0.641367 + 0.0263388i
\(716\) 0 0
\(717\) −6.37702 3.68178i −0.238154 0.137498i
\(718\) 0 0
\(719\) −15.6427 27.0940i −0.583376 1.01044i −0.995076 0.0991173i \(-0.968398\pi\)
0.411700 0.911320i \(-0.364935\pi\)
\(720\) 0 0
\(721\) 19.3381 + 22.7082i 0.720189 + 0.845698i
\(722\) 0 0
\(723\) 11.8473 6.84002i 0.440605 0.254383i
\(724\) 0 0
\(725\) 22.1875 32.0389i 0.824023 1.18990i
\(726\) 0 0
\(727\) 22.8312i 0.846761i −0.905952 0.423380i \(-0.860843\pi\)
0.905952 0.423380i \(-0.139157\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 13.2738 22.9908i 0.490948 0.850347i
\(732\) 0 0
\(733\) 5.15661 2.97717i 0.190464 0.109964i −0.401736 0.915756i \(-0.631593\pi\)
0.592200 + 0.805791i \(0.298260\pi\)
\(734\) 0 0
\(735\) −14.8451 + 4.96226i −0.547568 + 0.183036i
\(736\) 0 0
\(737\) −32.1719 + 18.5745i −1.18507 + 0.684199i
\(738\) 0 0
\(739\) −20.7539 + 35.9469i −0.763446 + 1.32233i 0.177618 + 0.984099i \(0.443161\pi\)
−0.941064 + 0.338228i \(0.890173\pi\)
\(740\) 0 0
\(741\) −0.528671 −0.0194212
\(742\) 0 0
\(743\) 6.80015i 0.249473i −0.992190 0.124737i \(-0.960191\pi\)
0.992190 0.124737i \(-0.0398086\pi\)
\(744\) 0 0
\(745\) 9.84745 + 6.23773i 0.360783 + 0.228533i
\(746\) 0 0
\(747\) −4.41626 + 2.54973i −0.161583 + 0.0932898i
\(748\) 0 0
\(749\) −11.8635 13.9310i −0.433482 0.509026i
\(750\) 0 0
\(751\) 11.8056 + 20.4480i 0.430794 + 0.746157i 0.996942 0.0781464i \(-0.0249001\pi\)
−0.566148 + 0.824304i \(0.691567\pi\)
\(752\) 0 0
\(753\) 20.3380 + 11.7421i 0.741157 + 0.427907i
\(754\) 0 0
\(755\) 0.891238 21.7022i 0.0324355 0.789825i
\(756\) 0 0
\(757\) 16.2267i 0.589769i 0.955533 + 0.294884i \(0.0952811\pi\)
−0.955533 + 0.294884i \(0.904719\pi\)
\(758\) 0 0
\(759\) 15.5613 26.9530i 0.564840 0.978332i
\(760\) 0 0
\(761\) 1.27754 + 2.21276i 0.0463108 + 0.0802126i 0.888252 0.459357i \(-0.151920\pi\)
−0.841941 + 0.539570i \(0.818587\pi\)
\(762\) 0 0
\(763\) −11.0227 3.92122i −0.399047 0.141958i
\(764\) 0 0
\(765\) −2.83529 5.41228i −0.102510 0.195681i
\(766\) 0 0
\(767\) −1.71406 0.989610i −0.0618910 0.0357328i
\(768\) 0 0
\(769\) 45.4525 1.63906 0.819530 0.573037i \(-0.194235\pi\)
0.819530 + 0.573037i \(0.194235\pi\)
\(770\) 0 0
\(771\) −14.5974 −0.525713
\(772\) 0 0
\(773\) −44.5909 25.7446i −1.60382 0.925968i −0.990713 0.135970i \(-0.956585\pi\)
−0.613110 0.789997i \(-0.710082\pi\)
\(774\) 0 0
\(775\) 11.2913 + 23.8904i 0.405595 + 0.858170i
\(776\) 0 0
\(777\) −1.75767 9.56043i −0.0630562 0.342979i
\(778\) 0 0
\(779\) −1.02466 1.77476i −0.0367121 0.0635873i
\(780\) 0 0
\(781\) −22.7936 + 39.4797i −0.815619 + 1.41269i
\(782\) 0 0
\(783\) 7.79430i 0.278546i
\(784\) 0 0
\(785\) −21.1618 0.869044i −0.755297 0.0310175i
\(786\) 0 0
\(787\) 17.4517 + 10.0757i 0.622085 + 0.359161i 0.777680 0.628660i \(-0.216396\pi\)
−0.155596 + 0.987821i \(0.549730\pi\)
\(788\) 0 0
\(789\) −2.54470 4.40755i −0.0905937 0.156913i
\(790\) 0 0
\(791\) −7.44605 + 1.36895i −0.264751 + 0.0486742i
\(792\) 0 0
\(793\) −14.3379 + 8.27800i −0.509154 + 0.293960i
\(794\) 0 0
\(795\) −3.23986 2.05224i −0.114906 0.0727855i
\(796\) 0 0
\(797\) 13.0702i 0.462971i −0.972838 0.231486i \(-0.925641\pi\)
0.972838 0.231486i \(-0.0743587\pi\)
\(798\) 0 0
\(799\) −4.96351 −0.175596
\(800\) 0 0
\(801\) −2.03533 + 3.52529i −0.0719148 + 0.124560i
\(802\) 0 0
\(803\) −49.1939 + 28.4021i −1.73602 + 1.00229i
\(804\) 0 0
\(805\) −38.5478 15.5229i −1.35863 0.547109i
\(806\) 0 0
\(807\) −26.4224 + 15.2550i −0.930112 + 0.537000i
\(808\) 0 0
\(809\) −0.868598 + 1.50446i −0.0305383 + 0.0528938i −0.880891 0.473320i \(-0.843055\pi\)
0.850352 + 0.526214i \(0.176389\pi\)
\(810\) 0 0
\(811\) 27.9004 0.979715 0.489858 0.871802i \(-0.337049\pi\)
0.489858 + 0.871802i \(0.337049\pi\)
\(812\) 0 0
\(813\) 19.4880i 0.683475i
\(814\) 0 0
\(815\) −6.45729 + 10.1941i −0.226189 + 0.357083i
\(816\) 0 0
\(817\) 2.56758 1.48239i 0.0898282 0.0518623i
\(818\) 0 0
\(819\) −2.97182 3.48973i −0.103844 0.121941i
\(820\) 0 0
\(821\) −8.46799 14.6670i −0.295535 0.511881i 0.679574 0.733607i \(-0.262165\pi\)
−0.975109 + 0.221725i \(0.928831\pi\)
\(822\) 0 0
\(823\) −8.56526 4.94516i −0.298566 0.172377i 0.343232 0.939251i \(-0.388478\pi\)
−0.641799 + 0.766873i \(0.721812\pi\)
\(824\) 0 0
\(825\) −1.81650 + 22.0792i −0.0632424 + 0.768698i
\(826\) 0 0
\(827\) 35.3201i 1.22820i −0.789228 0.614101i \(-0.789519\pi\)
0.789228 0.614101i \(-0.210481\pi\)
\(828\) 0 0
\(829\) 4.64975 8.05361i 0.161493 0.279713i −0.773912 0.633294i \(-0.781703\pi\)
0.935404 + 0.353580i \(0.115036\pi\)
\(830\) 0 0
\(831\) 12.7401 + 22.0665i 0.441949 + 0.765478i
\(832\) 0 0
\(833\) −18.8830 3.04659i −0.654258 0.105558i
\(834\) 0 0
\(835\) −0.324313 0.619080i −0.0112233 0.0214241i
\(836\) 0 0
\(837\) 4.57683 + 2.64243i 0.158198 + 0.0913359i
\(838\) 0 0
\(839\) −7.93405 −0.273914 −0.136957 0.990577i \(-0.543732\pi\)
−0.136957 + 0.990577i \(0.543732\pi\)
\(840\) 0 0
\(841\) 31.7512 1.09487
\(842\) 0 0
\(843\) 19.2183 + 11.0957i 0.661914 + 0.382156i
\(844\) 0 0
\(845\) −19.8046 + 10.3749i −0.681298 + 0.356906i
\(846\) 0 0
\(847\) −17.3868 + 14.8064i −0.597416 + 0.508755i
\(848\) 0 0
\(849\) −9.06209 15.6960i −0.311010 0.538685i
\(850\) 0 0
\(851\) 12.9037 22.3499i 0.442334 0.766146i
\(852\) 0 0
\(853\) 30.0757i 1.02977i −0.857258 0.514887i \(-0.827834\pi\)
0.857258 0.514887i \(-0.172166\pi\)
\(854\) 0 0
\(855\) 0.0279982 0.681775i 0.000957519 0.0233162i
\(856\) 0 0
\(857\) −40.8221 23.5686i −1.39446 0.805090i −0.400652 0.916230i \(-0.631216\pi\)
−0.993805 + 0.111141i \(0.964550\pi\)
\(858\) 0 0
\(859\) 16.3183 + 28.2642i 0.556774 + 0.964361i 0.997763 + 0.0668485i \(0.0212944\pi\)
−0.440989 + 0.897512i \(0.645372\pi\)
\(860\) 0 0
\(861\) 5.95517 16.7402i 0.202951 0.570503i
\(862\) 0 0
\(863\) −32.3982 + 18.7051i −1.10285 + 0.636728i −0.936967 0.349418i \(-0.886379\pi\)
−0.165879 + 0.986146i \(0.553046\pi\)
\(864\) 0 0
\(865\) 11.5045 18.1621i 0.391166 0.617531i
\(866\) 0 0
\(867\) 9.53367i 0.323780i
\(868\) 0 0
\(869\) −29.7468 −1.00909
\(870\) 0 0
\(871\) −7.26275 + 12.5795i −0.246089 + 0.426239i
\(872\) 0 0
\(873\) 2.49272 1.43917i 0.0843658 0.0487086i
\(874\) 0 0
\(875\) 29.5295 1.73501i 0.998278 0.0586541i
\(876\) 0 0
\(877\) −29.0687 + 16.7828i −0.981581 + 0.566716i −0.902747 0.430172i \(-0.858453\pi\)
−0.0788336 + 0.996888i \(0.525120\pi\)
\(878\) 0 0
\(879\) 6.94790 12.0341i 0.234347 0.405901i
\(880\) 0 0
\(881\) −12.1952 −0.410867 −0.205433 0.978671i \(-0.565860\pi\)
−0.205433 + 0.978671i \(0.565860\pi\)
\(882\) 0 0
\(883\) 11.0408i 0.371552i 0.982592 + 0.185776i \(0.0594799\pi\)
−0.982592 + 0.185776i \(0.940520\pi\)
\(884\) 0 0
\(885\) 1.36698 2.15804i 0.0459505 0.0725418i
\(886\) 0 0
\(887\) 1.35180 0.780464i 0.0453891 0.0262054i −0.477134 0.878831i \(-0.658324\pi\)
0.522523 + 0.852625i \(0.324991\pi\)
\(888\) 0 0
\(889\) 35.7338 6.56962i 1.19847 0.220338i
\(890\) 0 0
\(891\) 2.21538 + 3.83715i 0.0742179 + 0.128549i
\(892\) 0 0
\(893\) −0.480052 0.277158i −0.0160643 0.00927474i
\(894\) 0 0
\(895\) −0.812414 + 19.7828i −0.0271560 + 0.661267i
\(896\) 0 0
\(897\) 12.1692i 0.406318i
\(898\) 0 0
\(899\) −20.5959 + 35.6732i −0.686913 + 1.18977i
\(900\) 0 0
\(901\) −2.34326 4.05865i −0.0780654 0.135213i
\(902\) 0 0
\(903\) 24.2183 + 8.61545i 0.805935 + 0.286704i
\(904\) 0 0
\(905\) 33.5207 17.5603i 1.11427 0.583722i
\(906\) 0 0
\(907\) 15.0756 + 8.70390i 0.500577 + 0.289008i 0.728952 0.684565i \(-0.240008\pi\)
−0.228375 + 0.973573i \(0.573341\pi\)
\(908\) 0 0
\(909\) −7.21767 −0.239395
\(910\) 0 0
\(911\) 18.3203 0.606978 0.303489 0.952835i \(-0.401848\pi\)
0.303489 + 0.952835i \(0.401848\pi\)
\(912\) 0 0
\(913\) 19.5674 + 11.2972i 0.647586 + 0.373884i
\(914\) 0 0
\(915\) −9.91600 18.9286i −0.327813 0.625761i
\(916\) 0 0
\(917\) 44.2783 37.7070i 1.46220 1.24519i
\(918\) 0 0
\(919\) −11.2963 19.5658i −0.372632 0.645417i 0.617338 0.786698i \(-0.288211\pi\)
−0.989970 + 0.141281i \(0.954878\pi\)
\(920\) 0 0
\(921\) −14.9166 + 25.8363i −0.491519 + 0.851335i
\(922\) 0 0
\(923\) 17.8249i 0.586715i
\(924\) 0 0
\(925\) −1.50628 + 18.3085i −0.0495260 + 0.601979i
\(926\) 0 0
\(927\) −9.76304 5.63670i −0.320660 0.185133i
\(928\) 0 0
\(929\) 19.3356 + 33.4903i 0.634381 + 1.09878i 0.986646 + 0.162880i \(0.0520783\pi\)
−0.352265 + 0.935900i \(0.614588\pi\)
\(930\) 0 0
\(931\) −1.65618 1.34907i −0.0542790 0.0442139i
\(932\) 0 0
\(933\) −11.7028 + 6.75662i −0.383133 + 0.221202i
\(934\) 0 0
\(935\) −14.4865 + 22.8697i −0.473758 + 0.747918i
\(936\) 0 0
\(937\) 46.7921i 1.52863i −0.644842 0.764316i \(-0.723077\pi\)
0.644842 0.764316i \(-0.276923\pi\)
\(938\) 0 0
\(939\) −28.9857 −0.945912
\(940\) 0 0
\(941\) 20.9461 36.2797i 0.682824 1.18268i −0.291292 0.956634i \(-0.594085\pi\)
0.974116 0.226051i \(-0.0725815\pi\)
\(942\) 0 0
\(943\) 40.8522 23.5860i 1.33033 0.768067i
\(944\) 0 0
\(945\) 4.65775 3.64765i 0.151517 0.118658i
\(946\) 0 0
\(947\) −48.5967 + 28.0573i −1.57918 + 0.911740i −0.584206 + 0.811605i \(0.698594\pi\)
−0.994974 + 0.100134i \(0.968073\pi\)
\(948\) 0 0
\(949\) −11.1054 + 19.2352i −0.360498 + 0.624401i
\(950\) 0 0
\(951\) −1.15864 −0.0375714
\(952\) 0 0
\(953\) 17.7705i 0.575643i −0.957684 0.287821i \(-0.907069\pi\)
0.957684 0.287821i \(-0.0929309\pi\)
\(954\) 0 0
\(955\) −0.601720 0.381151i −0.0194712 0.0123337i
\(956\) 0 0
\(957\) −29.9079 + 17.2673i −0.966785 + 0.558173i
\(958\) 0 0
\(959\) 2.66198 7.48291i 0.0859598 0.241636i
\(960\) 0 0
\(961\) 1.53508 + 2.65884i 0.0495188 + 0.0857690i
\(962\) 0 0
\(963\) 5.98940 + 3.45798i 0.193006 + 0.111432i
\(964\) 0 0
\(965\) −4.67691 0.192065i −0.150555 0.00618279i
\(966\) 0 0
\(967\) 22.5942i 0.726579i 0.931676 + 0.363290i \(0.118346\pi\)
−0.931676 + 0.363290i \(0.881654\pi\)
\(968\) 0 0
\(969\) 0.416913 0.722115i 0.0133932 0.0231977i
\(970\) 0 0
\(971\) 20.5244 + 35.5493i 0.658660 + 1.14083i 0.980963 + 0.194196i \(0.0622096\pi\)
−0.322303 + 0.946637i \(0.604457\pi\)
\(972\) 0 0
\(973\) 10.3987 + 56.5612i 0.333367 + 1.81327i
\(974\) 0 0
\(975\) 3.70146 + 7.83164i 0.118541 + 0.250813i
\(976\) 0 0
\(977\) 16.8644 + 9.73668i 0.539541 + 0.311504i 0.744893 0.667184i \(-0.232501\pi\)
−0.205352 + 0.978688i \(0.565834\pi\)
\(978\) 0 0
\(979\) 18.0361 0.576435
\(980\) 0 0
\(981\) 4.42195 0.141182
\(982\) 0 0
\(983\) −44.7970 25.8636i −1.42880 0.824920i −0.431777 0.901980i \(-0.642113\pi\)
−0.997026 + 0.0770602i \(0.975447\pi\)
\(984\) 0 0
\(985\) 23.4296 + 44.7246i 0.746528 + 1.42505i
\(986\) 0 0
\(987\) −0.869014 4.72678i −0.0276610 0.150455i
\(988\) 0 0
\(989\) 34.1224 + 59.1017i 1.08503 + 1.87932i
\(990\) 0 0
\(991\) 17.9749 31.1335i 0.570992 0.988988i −0.425472 0.904972i \(-0.639892\pi\)
0.996464 0.0840162i \(-0.0267747\pi\)
\(992\) 0 0
\(993\) 28.3491i 0.899632i
\(994\) 0 0
\(995\) −0.688503 + 16.7655i −0.0218270 + 0.531502i
\(996\) 0 0
\(997\) −48.5493 28.0300i −1.53757 0.887718i −0.998980 0.0451513i \(-0.985623\pi\)
−0.538592 0.842567i \(-0.681044\pi\)
\(998\) 0 0
\(999\) 1.83703 + 3.18183i 0.0581211 + 0.100669i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.di.d.529.1 16
4.3 odd 2 105.2.q.a.4.3 16
5.4 even 2 inner 1680.2.di.d.529.8 16
7.2 even 3 inner 1680.2.di.d.289.8 16
12.11 even 2 315.2.bf.b.109.6 16
20.3 even 4 525.2.i.k.151.3 8
20.7 even 4 525.2.i.h.151.2 8
20.19 odd 2 105.2.q.a.4.6 yes 16
28.3 even 6 735.2.d.e.589.3 8
28.11 odd 6 735.2.d.d.589.3 8
28.19 even 6 735.2.q.g.79.6 16
28.23 odd 6 105.2.q.a.79.6 yes 16
28.27 even 2 735.2.q.g.214.3 16
35.9 even 6 inner 1680.2.di.d.289.1 16
60.59 even 2 315.2.bf.b.109.3 16
84.11 even 6 2205.2.d.s.1324.6 8
84.23 even 6 315.2.bf.b.289.3 16
84.59 odd 6 2205.2.d.o.1324.6 8
140.3 odd 12 3675.2.a.bn.1.2 4
140.19 even 6 735.2.q.g.79.3 16
140.23 even 12 525.2.i.k.226.3 8
140.39 odd 6 735.2.d.d.589.6 8
140.59 even 6 735.2.d.e.589.6 8
140.67 even 12 3675.2.a.bz.1.3 4
140.79 odd 6 105.2.q.a.79.3 yes 16
140.87 odd 12 3675.2.a.cb.1.3 4
140.107 even 12 525.2.i.h.226.2 8
140.123 even 12 3675.2.a.bp.1.2 4
140.139 even 2 735.2.q.g.214.6 16
420.59 odd 6 2205.2.d.o.1324.3 8
420.179 even 6 2205.2.d.s.1324.3 8
420.359 even 6 315.2.bf.b.289.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.3 16 4.3 odd 2
105.2.q.a.4.6 yes 16 20.19 odd 2
105.2.q.a.79.3 yes 16 140.79 odd 6
105.2.q.a.79.6 yes 16 28.23 odd 6
315.2.bf.b.109.3 16 60.59 even 2
315.2.bf.b.109.6 16 12.11 even 2
315.2.bf.b.289.3 16 84.23 even 6
315.2.bf.b.289.6 16 420.359 even 6
525.2.i.h.151.2 8 20.7 even 4
525.2.i.h.226.2 8 140.107 even 12
525.2.i.k.151.3 8 20.3 even 4
525.2.i.k.226.3 8 140.23 even 12
735.2.d.d.589.3 8 28.11 odd 6
735.2.d.d.589.6 8 140.39 odd 6
735.2.d.e.589.3 8 28.3 even 6
735.2.d.e.589.6 8 140.59 even 6
735.2.q.g.79.3 16 140.19 even 6
735.2.q.g.79.6 16 28.19 even 6
735.2.q.g.214.3 16 28.27 even 2
735.2.q.g.214.6 16 140.139 even 2
1680.2.di.d.289.1 16 35.9 even 6 inner
1680.2.di.d.289.8 16 7.2 even 3 inner
1680.2.di.d.529.1 16 1.1 even 1 trivial
1680.2.di.d.529.8 16 5.4 even 2 inner
2205.2.d.o.1324.3 8 420.59 odd 6
2205.2.d.o.1324.6 8 84.59 odd 6
2205.2.d.s.1324.3 8 420.179 even 6
2205.2.d.s.1324.6 8 84.11 even 6
3675.2.a.bn.1.2 4 140.3 odd 12
3675.2.a.bp.1.2 4 140.123 even 12
3675.2.a.bz.1.3 4 140.67 even 12
3675.2.a.cb.1.3 4 140.87 odd 12