Properties

Label 1680.2.cz.f.97.7
Level $1680$
Weight $2$
Character 1680.97
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(97,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.cz (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 97.7
Character \(\chi\) \(=\) 1680.97
Dual form 1680.2.cz.f.433.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{3} +(-0.503511 + 2.17864i) q^{5} +(-0.918874 + 2.48106i) q^{7} +1.00000i q^{9} +5.08039 q^{11} +(3.79668 + 3.79668i) q^{13} +(-1.89657 + 1.18450i) q^{15} +(-2.83651 + 2.83651i) q^{17} -3.66311 q^{19} +(-2.40412 + 1.10463i) q^{21} +(0.591502 - 0.591502i) q^{23} +(-4.49295 - 2.19394i) q^{25} +(-0.707107 + 0.707107i) q^{27} +1.05509i q^{29} -8.77757i q^{31} +(3.59238 + 3.59238i) q^{33} +(-4.94268 - 3.25114i) q^{35} +(4.95648 + 4.95648i) q^{37} +5.36932i q^{39} -2.91664i q^{41} +(6.86314 - 6.86314i) q^{43} +(-2.17864 - 0.503511i) q^{45} +(1.97475 - 1.97475i) q^{47} +(-5.31134 - 4.55957i) q^{49} -4.01144 q^{51} +(-5.54555 + 5.54555i) q^{53} +(-2.55803 + 11.0684i) q^{55} +(-2.59021 - 2.59021i) q^{57} -1.49914 q^{59} +12.3856i q^{61} +(-2.48106 - 0.918874i) q^{63} +(-10.1833 + 6.35993i) q^{65} +(-4.30496 - 4.30496i) q^{67} +0.836510 q^{69} -9.87966 q^{71} +(7.02795 + 7.02795i) q^{73} +(-1.62565 - 4.72835i) q^{75} +(-4.66824 + 12.6048i) q^{77} +11.9511i q^{79} -1.00000 q^{81} +(-5.33465 - 5.33465i) q^{83} +(-4.75153 - 7.60796i) q^{85} +(-0.746061 + 0.746061i) q^{87} +1.75715 q^{89} +(-12.9085 + 5.93113i) q^{91} +(6.20668 - 6.20668i) q^{93} +(1.84442 - 7.98061i) q^{95} +(-3.26203 + 3.26203i) q^{97} +5.08039i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{7} + 8 q^{11} + 16 q^{13} - 4 q^{15} + 20 q^{17} - 8 q^{19} - 24 q^{23} - 4 q^{25} + 4 q^{37} + 16 q^{43} - 4 q^{45} + 24 q^{47} + 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 24 q^{65}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) −0.503511 + 2.17864i −0.225177 + 0.974318i
\(6\) 0 0
\(7\) −0.918874 + 2.48106i −0.347302 + 0.937753i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 5.08039 1.53180 0.765898 0.642962i \(-0.222295\pi\)
0.765898 + 0.642962i \(0.222295\pi\)
\(12\) 0 0
\(13\) 3.79668 + 3.79668i 1.05301 + 1.05301i 0.998514 + 0.0544954i \(0.0173550\pi\)
0.0544954 + 0.998514i \(0.482645\pi\)
\(14\) 0 0
\(15\) −1.89657 + 1.18450i −0.489692 + 0.305835i
\(16\) 0 0
\(17\) −2.83651 + 2.83651i −0.687956 + 0.687956i −0.961780 0.273824i \(-0.911711\pi\)
0.273824 + 0.961780i \(0.411711\pi\)
\(18\) 0 0
\(19\) −3.66311 −0.840376 −0.420188 0.907437i \(-0.638036\pi\)
−0.420188 + 0.907437i \(0.638036\pi\)
\(20\) 0 0
\(21\) −2.40412 + 1.10463i −0.524622 + 0.241051i
\(22\) 0 0
\(23\) 0.591502 0.591502i 0.123337 0.123337i −0.642744 0.766081i \(-0.722204\pi\)
0.766081 + 0.642744i \(0.222204\pi\)
\(24\) 0 0
\(25\) −4.49295 2.19394i −0.898591 0.438788i
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 1.05509i 0.195925i 0.995190 + 0.0979627i \(0.0312326\pi\)
−0.995190 + 0.0979627i \(0.968767\pi\)
\(30\) 0 0
\(31\) 8.77757i 1.57650i −0.615357 0.788249i \(-0.710988\pi\)
0.615357 0.788249i \(-0.289012\pi\)
\(32\) 0 0
\(33\) 3.59238 + 3.59238i 0.625353 + 0.625353i
\(34\) 0 0
\(35\) −4.94268 3.25114i −0.835465 0.549543i
\(36\) 0 0
\(37\) 4.95648 + 4.95648i 0.814840 + 0.814840i 0.985355 0.170515i \(-0.0545432\pi\)
−0.170515 + 0.985355i \(0.554543\pi\)
\(38\) 0 0
\(39\) 5.36932i 0.859779i
\(40\) 0 0
\(41\) 2.91664i 0.455502i −0.973719 0.227751i \(-0.926863\pi\)
0.973719 0.227751i \(-0.0731372\pi\)
\(42\) 0 0
\(43\) 6.86314 6.86314i 1.04662 1.04662i 0.0477606 0.998859i \(-0.484792\pi\)
0.998859 0.0477606i \(-0.0152085\pi\)
\(44\) 0 0
\(45\) −2.17864 0.503511i −0.324773 0.0750590i
\(46\) 0 0
\(47\) 1.97475 1.97475i 0.288047 0.288047i −0.548261 0.836307i \(-0.684710\pi\)
0.836307 + 0.548261i \(0.184710\pi\)
\(48\) 0 0
\(49\) −5.31134 4.55957i −0.758763 0.651367i
\(50\) 0 0
\(51\) −4.01144 −0.561713
\(52\) 0 0
\(53\) −5.54555 + 5.54555i −0.761740 + 0.761740i −0.976637 0.214897i \(-0.931058\pi\)
0.214897 + 0.976637i \(0.431058\pi\)
\(54\) 0 0
\(55\) −2.55803 + 11.0684i −0.344925 + 1.49246i
\(56\) 0 0
\(57\) −2.59021 2.59021i −0.343082 0.343082i
\(58\) 0 0
\(59\) −1.49914 −0.195172 −0.0975859 0.995227i \(-0.531112\pi\)
−0.0975859 + 0.995227i \(0.531112\pi\)
\(60\) 0 0
\(61\) 12.3856i 1.58581i 0.609345 + 0.792905i \(0.291432\pi\)
−0.609345 + 0.792905i \(0.708568\pi\)
\(62\) 0 0
\(63\) −2.48106 0.918874i −0.312584 0.115767i
\(64\) 0 0
\(65\) −10.1833 + 6.35993i −1.26308 + 0.788852i
\(66\) 0 0
\(67\) −4.30496 4.30496i −0.525935 0.525935i 0.393423 0.919358i \(-0.371291\pi\)
−0.919358 + 0.393423i \(0.871291\pi\)
\(68\) 0 0
\(69\) 0.836510 0.100704
\(70\) 0 0
\(71\) −9.87966 −1.17250 −0.586250 0.810130i \(-0.699396\pi\)
−0.586250 + 0.810130i \(0.699396\pi\)
\(72\) 0 0
\(73\) 7.02795 + 7.02795i 0.822560 + 0.822560i 0.986474 0.163915i \(-0.0524123\pi\)
−0.163915 + 0.986474i \(0.552412\pi\)
\(74\) 0 0
\(75\) −1.62565 4.72835i −0.187714 0.545983i
\(76\) 0 0
\(77\) −4.66824 + 12.6048i −0.531996 + 1.43645i
\(78\) 0 0
\(79\) 11.9511i 1.34460i 0.740279 + 0.672300i \(0.234694\pi\)
−0.740279 + 0.672300i \(0.765306\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −5.33465 5.33465i −0.585554 0.585554i 0.350870 0.936424i \(-0.385886\pi\)
−0.936424 + 0.350870i \(0.885886\pi\)
\(84\) 0 0
\(85\) −4.75153 7.60796i −0.515376 0.825199i
\(86\) 0 0
\(87\) −0.746061 + 0.746061i −0.0799862 + 0.0799862i
\(88\) 0 0
\(89\) 1.75715 0.186258 0.0931290 0.995654i \(-0.470313\pi\)
0.0931290 + 0.995654i \(0.470313\pi\)
\(90\) 0 0
\(91\) −12.9085 + 5.93113i −1.35318 + 0.621751i
\(92\) 0 0
\(93\) 6.20668 6.20668i 0.643603 0.643603i
\(94\) 0 0
\(95\) 1.84442 7.98061i 0.189233 0.818793i
\(96\) 0 0
\(97\) −3.26203 + 3.26203i −0.331209 + 0.331209i −0.853046 0.521836i \(-0.825247\pi\)
0.521836 + 0.853046i \(0.325247\pi\)
\(98\) 0 0
\(99\) 5.08039i 0.510599i
\(100\) 0 0
\(101\) 5.83234i 0.580339i −0.956975 0.290170i \(-0.906288\pi\)
0.956975 0.290170i \(-0.0937117\pi\)
\(102\) 0 0
\(103\) 10.8302 + 10.8302i 1.06713 + 1.06713i 0.997578 + 0.0695538i \(0.0221576\pi\)
0.0695538 + 0.997578i \(0.477842\pi\)
\(104\) 0 0
\(105\) −1.19610 5.79391i −0.116727 0.565427i
\(106\) 0 0
\(107\) −7.42709 7.42709i −0.718003 0.718003i 0.250193 0.968196i \(-0.419506\pi\)
−0.968196 + 0.250193i \(0.919506\pi\)
\(108\) 0 0
\(109\) 19.8285i 1.89922i −0.313428 0.949612i \(-0.601477\pi\)
0.313428 0.949612i \(-0.398523\pi\)
\(110\) 0 0
\(111\) 7.00952i 0.665314i
\(112\) 0 0
\(113\) −8.77932 + 8.77932i −0.825889 + 0.825889i −0.986945 0.161056i \(-0.948510\pi\)
0.161056 + 0.986945i \(0.448510\pi\)
\(114\) 0 0
\(115\) 0.990842 + 1.58650i 0.0923965 + 0.147942i
\(116\) 0 0
\(117\) −3.79668 + 3.79668i −0.351003 + 0.351003i
\(118\) 0 0
\(119\) −4.43117 9.64397i −0.406204 0.884061i
\(120\) 0 0
\(121\) 14.8104 1.34640
\(122\) 0 0
\(123\) 2.06237 2.06237i 0.185958 0.185958i
\(124\) 0 0
\(125\) 7.04206 8.68386i 0.629861 0.776708i
\(126\) 0 0
\(127\) 10.2392 + 10.2392i 0.908584 + 0.908584i 0.996158 0.0875740i \(-0.0279114\pi\)
−0.0875740 + 0.996158i \(0.527911\pi\)
\(128\) 0 0
\(129\) 9.70595 0.854561
\(130\) 0 0
\(131\) 7.00093i 0.611674i 0.952084 + 0.305837i \(0.0989363\pi\)
−0.952084 + 0.305837i \(0.901064\pi\)
\(132\) 0 0
\(133\) 3.36594 9.08841i 0.291864 0.788065i
\(134\) 0 0
\(135\) −1.18450 1.89657i −0.101945 0.163231i
\(136\) 0 0
\(137\) −7.58950 7.58950i −0.648414 0.648414i 0.304195 0.952610i \(-0.401612\pi\)
−0.952610 + 0.304195i \(0.901612\pi\)
\(138\) 0 0
\(139\) −2.97723 −0.252525 −0.126262 0.991997i \(-0.540298\pi\)
−0.126262 + 0.991997i \(0.540298\pi\)
\(140\) 0 0
\(141\) 2.79272 0.235189
\(142\) 0 0
\(143\) 19.2886 + 19.2886i 1.61300 + 1.61300i
\(144\) 0 0
\(145\) −2.29866 0.531250i −0.190894 0.0441179i
\(146\) 0 0
\(147\) −0.531583 6.97979i −0.0438442 0.575683i
\(148\) 0 0
\(149\) 0.823646i 0.0674757i −0.999431 0.0337379i \(-0.989259\pi\)
0.999431 0.0337379i \(-0.0107411\pi\)
\(150\) 0 0
\(151\) 14.0056 1.13976 0.569878 0.821729i \(-0.306990\pi\)
0.569878 + 0.821729i \(0.306990\pi\)
\(152\) 0 0
\(153\) −2.83651 2.83651i −0.229319 0.229319i
\(154\) 0 0
\(155\) 19.1232 + 4.41960i 1.53601 + 0.354991i
\(156\) 0 0
\(157\) 5.47815 5.47815i 0.437204 0.437204i −0.453866 0.891070i \(-0.649956\pi\)
0.891070 + 0.453866i \(0.149956\pi\)
\(158\) 0 0
\(159\) −7.84259 −0.621958
\(160\) 0 0
\(161\) 0.924037 + 2.01107i 0.0728243 + 0.158494i
\(162\) 0 0
\(163\) 7.94626 7.94626i 0.622399 0.622399i −0.323745 0.946144i \(-0.604942\pi\)
0.946144 + 0.323745i \(0.104942\pi\)
\(164\) 0 0
\(165\) −9.63531 + 6.01770i −0.750108 + 0.468477i
\(166\) 0 0
\(167\) 3.60896 3.60896i 0.279270 0.279270i −0.553548 0.832817i \(-0.686726\pi\)
0.832817 + 0.553548i \(0.186726\pi\)
\(168\) 0 0
\(169\) 15.8296i 1.21766i
\(170\) 0 0
\(171\) 3.66311i 0.280125i
\(172\) 0 0
\(173\) −13.8617 13.8617i −1.05389 1.05389i −0.998463 0.0554234i \(-0.982349\pi\)
−0.0554234 0.998463i \(-0.517651\pi\)
\(174\) 0 0
\(175\) 9.57176 9.13134i 0.723557 0.690264i
\(176\) 0 0
\(177\) −1.06005 1.06005i −0.0796786 0.0796786i
\(178\) 0 0
\(179\) 5.59676i 0.418321i 0.977881 + 0.209161i \(0.0670732\pi\)
−0.977881 + 0.209161i \(0.932927\pi\)
\(180\) 0 0
\(181\) 5.12872i 0.381215i −0.981666 0.190607i \(-0.938954\pi\)
0.981666 0.190607i \(-0.0610458\pi\)
\(182\) 0 0
\(183\) −8.75792 + 8.75792i −0.647404 + 0.647404i
\(184\) 0 0
\(185\) −13.2940 + 8.30274i −0.977396 + 0.610430i
\(186\) 0 0
\(187\) −14.4106 + 14.4106i −1.05381 + 1.05381i
\(188\) 0 0
\(189\) −1.10463 2.40412i −0.0803503 0.174874i
\(190\) 0 0
\(191\) −20.7696 −1.50283 −0.751417 0.659828i \(-0.770629\pi\)
−0.751417 + 0.659828i \(0.770629\pi\)
\(192\) 0 0
\(193\) 8.70770 8.70770i 0.626794 0.626794i −0.320466 0.947260i \(-0.603840\pi\)
0.947260 + 0.320466i \(0.103840\pi\)
\(194\) 0 0
\(195\) −11.6978 2.70351i −0.837698 0.193602i
\(196\) 0 0
\(197\) 16.5465 + 16.5465i 1.17889 + 1.17889i 0.980027 + 0.198866i \(0.0637258\pi\)
0.198866 + 0.980027i \(0.436274\pi\)
\(198\) 0 0
\(199\) 18.7309 1.32780 0.663898 0.747823i \(-0.268901\pi\)
0.663898 + 0.747823i \(0.268901\pi\)
\(200\) 0 0
\(201\) 6.08814i 0.429424i
\(202\) 0 0
\(203\) −2.61774 0.969495i −0.183730 0.0680452i
\(204\) 0 0
\(205\) 6.35430 + 1.46856i 0.443804 + 0.102569i
\(206\) 0 0
\(207\) 0.591502 + 0.591502i 0.0411122 + 0.0411122i
\(208\) 0 0
\(209\) −18.6100 −1.28728
\(210\) 0 0
\(211\) 3.46472 0.238521 0.119261 0.992863i \(-0.461948\pi\)
0.119261 + 0.992863i \(0.461948\pi\)
\(212\) 0 0
\(213\) −6.98598 6.98598i −0.478671 0.478671i
\(214\) 0 0
\(215\) 11.4967 + 18.4080i 0.784065 + 1.25541i
\(216\) 0 0
\(217\) 21.7777 + 8.06548i 1.47837 + 0.547521i
\(218\) 0 0
\(219\) 9.93903i 0.671617i
\(220\) 0 0
\(221\) −21.5387 −1.44885
\(222\) 0 0
\(223\) −4.32013 4.32013i −0.289298 0.289298i 0.547505 0.836802i \(-0.315578\pi\)
−0.836802 + 0.547505i \(0.815578\pi\)
\(224\) 0 0
\(225\) 2.19394 4.49295i 0.146263 0.299530i
\(226\) 0 0
\(227\) −5.66818 + 5.66818i −0.376211 + 0.376211i −0.869733 0.493522i \(-0.835709\pi\)
0.493522 + 0.869733i \(0.335709\pi\)
\(228\) 0 0
\(229\) 12.7174 0.840391 0.420196 0.907434i \(-0.361961\pi\)
0.420196 + 0.907434i \(0.361961\pi\)
\(230\) 0 0
\(231\) −12.2139 + 5.61197i −0.803613 + 0.369241i
\(232\) 0 0
\(233\) 6.79433 6.79433i 0.445111 0.445111i −0.448614 0.893726i \(-0.648082\pi\)
0.893726 + 0.448614i \(0.148082\pi\)
\(234\) 0 0
\(235\) 3.30796 + 5.29658i 0.215788 + 0.345511i
\(236\) 0 0
\(237\) −8.45068 + 8.45068i −0.548931 + 0.548931i
\(238\) 0 0
\(239\) 28.2489i 1.82727i 0.406538 + 0.913634i \(0.366736\pi\)
−0.406538 + 0.913634i \(0.633264\pi\)
\(240\) 0 0
\(241\) 6.78799i 0.437253i −0.975809 0.218626i \(-0.929842\pi\)
0.975809 0.218626i \(-0.0701576\pi\)
\(242\) 0 0
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) 12.6080 9.27571i 0.805494 0.592603i
\(246\) 0 0
\(247\) −13.9077 13.9077i −0.884923 0.884923i
\(248\) 0 0
\(249\) 7.54433i 0.478103i
\(250\) 0 0
\(251\) 18.7505i 1.18352i −0.806113 0.591762i \(-0.798432\pi\)
0.806113 0.591762i \(-0.201568\pi\)
\(252\) 0 0
\(253\) 3.00506 3.00506i 0.188927 0.188927i
\(254\) 0 0
\(255\) 2.01980 8.73948i 0.126485 0.547287i
\(256\) 0 0
\(257\) 5.38224 5.38224i 0.335735 0.335735i −0.519024 0.854759i \(-0.673705\pi\)
0.854759 + 0.519024i \(0.173705\pi\)
\(258\) 0 0
\(259\) −16.8517 + 7.74295i −1.04711 + 0.481124i
\(260\) 0 0
\(261\) −1.05509 −0.0653084
\(262\) 0 0
\(263\) 8.81499 8.81499i 0.543555 0.543555i −0.381014 0.924569i \(-0.624425\pi\)
0.924569 + 0.381014i \(0.124425\pi\)
\(264\) 0 0
\(265\) −9.28951 14.8740i −0.570650 0.913703i
\(266\) 0 0
\(267\) 1.24250 + 1.24250i 0.0760395 + 0.0760395i
\(268\) 0 0
\(269\) 21.3194 1.29987 0.649934 0.759991i \(-0.274797\pi\)
0.649934 + 0.759991i \(0.274797\pi\)
\(270\) 0 0
\(271\) 12.9351i 0.785753i −0.919591 0.392877i \(-0.871480\pi\)
0.919591 0.392877i \(-0.128520\pi\)
\(272\) 0 0
\(273\) −13.3216 4.93373i −0.806260 0.298603i
\(274\) 0 0
\(275\) −22.8260 11.1461i −1.37646 0.672134i
\(276\) 0 0
\(277\) −15.1831 15.1831i −0.912266 0.912266i 0.0841838 0.996450i \(-0.473172\pi\)
−0.996450 + 0.0841838i \(0.973172\pi\)
\(278\) 0 0
\(279\) 8.77757 0.525499
\(280\) 0 0
\(281\) 20.8186 1.24193 0.620967 0.783836i \(-0.286740\pi\)
0.620967 + 0.783836i \(0.286740\pi\)
\(282\) 0 0
\(283\) −5.35026 5.35026i −0.318040 0.318040i 0.529974 0.848014i \(-0.322202\pi\)
−0.848014 + 0.529974i \(0.822202\pi\)
\(284\) 0 0
\(285\) 6.94734 4.33894i 0.411525 0.257017i
\(286\) 0 0
\(287\) 7.23636 + 2.68002i 0.427149 + 0.158197i
\(288\) 0 0
\(289\) 0.908384i 0.0534343i
\(290\) 0 0
\(291\) −4.61321 −0.270431
\(292\) 0 0
\(293\) 18.0617 + 18.0617i 1.05517 + 1.05517i 0.998386 + 0.0567868i \(0.0180855\pi\)
0.0567868 + 0.998386i \(0.481914\pi\)
\(294\) 0 0
\(295\) 0.754836 3.26610i 0.0439482 0.190159i
\(296\) 0 0
\(297\) −3.59238 + 3.59238i −0.208451 + 0.208451i
\(298\) 0 0
\(299\) 4.49149 0.259749
\(300\) 0 0
\(301\) 10.7215 + 23.3342i 0.617978 + 1.34496i
\(302\) 0 0
\(303\) 4.12409 4.12409i 0.236923 0.236923i
\(304\) 0 0
\(305\) −26.9837 6.23627i −1.54508 0.357088i
\(306\) 0 0
\(307\) 9.25219 9.25219i 0.528051 0.528051i −0.391940 0.919991i \(-0.628196\pi\)
0.919991 + 0.391940i \(0.128196\pi\)
\(308\) 0 0
\(309\) 15.3162i 0.871310i
\(310\) 0 0
\(311\) 20.0604i 1.13752i −0.822503 0.568761i \(-0.807423\pi\)
0.822503 0.568761i \(-0.192577\pi\)
\(312\) 0 0
\(313\) 14.6085 + 14.6085i 0.825719 + 0.825719i 0.986921 0.161202i \(-0.0515371\pi\)
−0.161202 + 0.986921i \(0.551537\pi\)
\(314\) 0 0
\(315\) 3.25114 4.94268i 0.183181 0.278488i
\(316\) 0 0
\(317\) 22.5736 + 22.5736i 1.26786 + 1.26786i 0.947192 + 0.320666i \(0.103907\pi\)
0.320666 + 0.947192i \(0.396093\pi\)
\(318\) 0 0
\(319\) 5.36027i 0.300118i
\(320\) 0 0
\(321\) 10.5035i 0.586247i
\(322\) 0 0
\(323\) 10.3905 10.3905i 0.578141 0.578141i
\(324\) 0 0
\(325\) −8.72861 25.3880i −0.484176 1.40827i
\(326\) 0 0
\(327\) 14.0209 14.0209i 0.775355 0.775355i
\(328\) 0 0
\(329\) 3.08493 + 6.71402i 0.170078 + 0.370156i
\(330\) 0 0
\(331\) 25.6086 1.40758 0.703788 0.710410i \(-0.251490\pi\)
0.703788 + 0.710410i \(0.251490\pi\)
\(332\) 0 0
\(333\) −4.95648 + 4.95648i −0.271613 + 0.271613i
\(334\) 0 0
\(335\) 11.5466 7.21137i 0.630856 0.393999i
\(336\) 0 0
\(337\) 20.4201 + 20.4201i 1.11236 + 1.11236i 0.992831 + 0.119524i \(0.0381369\pi\)
0.119524 + 0.992831i \(0.461863\pi\)
\(338\) 0 0
\(339\) −12.4158 −0.674335
\(340\) 0 0
\(341\) 44.5935i 2.41487i
\(342\) 0 0
\(343\) 16.1930 8.98810i 0.874341 0.485312i
\(344\) 0 0
\(345\) −0.421192 + 1.82245i −0.0226762 + 0.0981177i
\(346\) 0 0
\(347\) 4.09932 + 4.09932i 0.220063 + 0.220063i 0.808525 0.588462i \(-0.200266\pi\)
−0.588462 + 0.808525i \(0.700266\pi\)
\(348\) 0 0
\(349\) −12.1807 −0.652020 −0.326010 0.945366i \(-0.605704\pi\)
−0.326010 + 0.945366i \(0.605704\pi\)
\(350\) 0 0
\(351\) −5.36932 −0.286593
\(352\) 0 0
\(353\) −2.45858 2.45858i −0.130857 0.130857i 0.638645 0.769502i \(-0.279495\pi\)
−0.769502 + 0.638645i \(0.779495\pi\)
\(354\) 0 0
\(355\) 4.97452 21.5242i 0.264020 1.14239i
\(356\) 0 0
\(357\) 3.68600 9.95262i 0.195084 0.526749i
\(358\) 0 0
\(359\) 14.6393i 0.772634i 0.922366 + 0.386317i \(0.126253\pi\)
−0.922366 + 0.386317i \(0.873747\pi\)
\(360\) 0 0
\(361\) −5.58161 −0.293769
\(362\) 0 0
\(363\) 10.4725 + 10.4725i 0.549665 + 0.549665i
\(364\) 0 0
\(365\) −18.8500 + 11.7727i −0.986656 + 0.616213i
\(366\) 0 0
\(367\) −12.2264 + 12.2264i −0.638215 + 0.638215i −0.950115 0.311900i \(-0.899035\pi\)
0.311900 + 0.950115i \(0.399035\pi\)
\(368\) 0 0
\(369\) 2.91664 0.151834
\(370\) 0 0
\(371\) −8.66319 18.8545i −0.449770 0.978878i
\(372\) 0 0
\(373\) 14.8689 14.8689i 0.769880 0.769880i −0.208205 0.978085i \(-0.566762\pi\)
0.978085 + 0.208205i \(0.0667621\pi\)
\(374\) 0 0
\(375\) 11.1199 1.16093i 0.574229 0.0599499i
\(376\) 0 0
\(377\) −4.00584 + 4.00584i −0.206311 + 0.206311i
\(378\) 0 0
\(379\) 26.4447i 1.35837i 0.733967 + 0.679185i \(0.237667\pi\)
−0.733967 + 0.679185i \(0.762333\pi\)
\(380\) 0 0
\(381\) 14.4804i 0.741856i
\(382\) 0 0
\(383\) 6.67462 + 6.67462i 0.341057 + 0.341057i 0.856765 0.515707i \(-0.172471\pi\)
−0.515707 + 0.856765i \(0.672471\pi\)
\(384\) 0 0
\(385\) −25.1108 16.5171i −1.27976 0.841788i
\(386\) 0 0
\(387\) 6.86314 + 6.86314i 0.348873 + 0.348873i
\(388\) 0 0
\(389\) 11.5269i 0.584436i 0.956352 + 0.292218i \(0.0943933\pi\)
−0.956352 + 0.292218i \(0.905607\pi\)
\(390\) 0 0
\(391\) 3.35561i 0.169700i
\(392\) 0 0
\(393\) −4.95041 + 4.95041i −0.249715 + 0.249715i
\(394\) 0 0
\(395\) −26.0371 6.01750i −1.31007 0.302773i
\(396\) 0 0
\(397\) −5.96065 + 5.96065i −0.299156 + 0.299156i −0.840683 0.541527i \(-0.817846\pi\)
0.541527 + 0.840683i \(0.317846\pi\)
\(398\) 0 0
\(399\) 8.80655 4.04640i 0.440879 0.202573i
\(400\) 0 0
\(401\) −13.9884 −0.698549 −0.349275 0.937020i \(-0.613572\pi\)
−0.349275 + 0.937020i \(0.613572\pi\)
\(402\) 0 0
\(403\) 33.3256 33.3256i 1.66007 1.66007i
\(404\) 0 0
\(405\) 0.503511 2.17864i 0.0250197 0.108258i
\(406\) 0 0
\(407\) 25.1809 + 25.1809i 1.24817 + 1.24817i
\(408\) 0 0
\(409\) 12.3032 0.608355 0.304177 0.952615i \(-0.401618\pi\)
0.304177 + 0.952615i \(0.401618\pi\)
\(410\) 0 0
\(411\) 10.7332i 0.529428i
\(412\) 0 0
\(413\) 1.37752 3.71947i 0.0677835 0.183023i
\(414\) 0 0
\(415\) 14.3083 8.93623i 0.702369 0.438662i
\(416\) 0 0
\(417\) −2.10522 2.10522i −0.103093 0.103093i
\(418\) 0 0
\(419\) −37.8137 −1.84732 −0.923660 0.383213i \(-0.874818\pi\)
−0.923660 + 0.383213i \(0.874818\pi\)
\(420\) 0 0
\(421\) −25.0323 −1.22000 −0.610001 0.792401i \(-0.708831\pi\)
−0.610001 + 0.792401i \(0.708831\pi\)
\(422\) 0 0
\(423\) 1.97475 + 1.97475i 0.0960156 + 0.0960156i
\(424\) 0 0
\(425\) 18.9675 6.52118i 0.920057 0.316324i
\(426\) 0 0
\(427\) −30.7294 11.3808i −1.48710 0.550755i
\(428\) 0 0
\(429\) 27.2782i 1.31701i
\(430\) 0 0
\(431\) −8.96315 −0.431740 −0.215870 0.976422i \(-0.569259\pi\)
−0.215870 + 0.976422i \(0.569259\pi\)
\(432\) 0 0
\(433\) 10.3418 + 10.3418i 0.496994 + 0.496994i 0.910501 0.413507i \(-0.135696\pi\)
−0.413507 + 0.910501i \(0.635696\pi\)
\(434\) 0 0
\(435\) −1.24975 2.00105i −0.0599209 0.0959430i
\(436\) 0 0
\(437\) −2.16674 + 2.16674i −0.103649 + 0.103649i
\(438\) 0 0
\(439\) 18.1867 0.868004 0.434002 0.900912i \(-0.357101\pi\)
0.434002 + 0.900912i \(0.357101\pi\)
\(440\) 0 0
\(441\) 4.55957 5.31134i 0.217122 0.252921i
\(442\) 0 0
\(443\) −11.5143 + 11.5143i −0.547059 + 0.547059i −0.925589 0.378530i \(-0.876430\pi\)
0.378530 + 0.925589i \(0.376430\pi\)
\(444\) 0 0
\(445\) −0.884747 + 3.82821i −0.0419410 + 0.181474i
\(446\) 0 0
\(447\) 0.582406 0.582406i 0.0275468 0.0275468i
\(448\) 0 0
\(449\) 27.6618i 1.30544i −0.757598 0.652721i \(-0.773627\pi\)
0.757598 0.652721i \(-0.226373\pi\)
\(450\) 0 0
\(451\) 14.8177i 0.697736i
\(452\) 0 0
\(453\) 9.90343 + 9.90343i 0.465304 + 0.465304i
\(454\) 0 0
\(455\) −6.42224 31.1093i −0.301079 1.45843i
\(456\) 0 0
\(457\) 15.6299 + 15.6299i 0.731135 + 0.731135i 0.970845 0.239710i \(-0.0770523\pi\)
−0.239710 + 0.970845i \(0.577052\pi\)
\(458\) 0 0
\(459\) 4.01144i 0.187238i
\(460\) 0 0
\(461\) 31.1692i 1.45170i 0.687855 + 0.725848i \(0.258552\pi\)
−0.687855 + 0.725848i \(0.741448\pi\)
\(462\) 0 0
\(463\) 11.6018 11.6018i 0.539181 0.539181i −0.384108 0.923288i \(-0.625491\pi\)
0.923288 + 0.384108i \(0.125491\pi\)
\(464\) 0 0
\(465\) 10.3970 + 16.6473i 0.482149 + 0.771998i
\(466\) 0 0
\(467\) 21.0876 21.0876i 0.975817 0.975817i −0.0238976 0.999714i \(-0.507608\pi\)
0.999714 + 0.0238976i \(0.00760757\pi\)
\(468\) 0 0
\(469\) 14.6366 6.72516i 0.675855 0.310539i
\(470\) 0 0
\(471\) 7.74727 0.356975
\(472\) 0 0
\(473\) 34.8675 34.8675i 1.60321 1.60321i
\(474\) 0 0
\(475\) 16.4582 + 8.03665i 0.755154 + 0.368747i
\(476\) 0 0
\(477\) −5.54555 5.54555i −0.253913 0.253913i
\(478\) 0 0
\(479\) −33.9667 −1.55198 −0.775989 0.630746i \(-0.782749\pi\)
−0.775989 + 0.630746i \(0.782749\pi\)
\(480\) 0 0
\(481\) 37.6363i 1.71607i
\(482\) 0 0
\(483\) −0.768647 + 2.07543i −0.0349747 + 0.0944355i
\(484\) 0 0
\(485\) −5.46433 8.74927i −0.248122 0.397284i
\(486\) 0 0
\(487\) 5.25831 + 5.25831i 0.238277 + 0.238277i 0.816136 0.577860i \(-0.196112\pi\)
−0.577860 + 0.816136i \(0.696112\pi\)
\(488\) 0 0
\(489\) 11.2377 0.508187
\(490\) 0 0
\(491\) 13.1492 0.593416 0.296708 0.954968i \(-0.404111\pi\)
0.296708 + 0.954968i \(0.404111\pi\)
\(492\) 0 0
\(493\) −2.99278 2.99278i −0.134788 0.134788i
\(494\) 0 0
\(495\) −11.0684 2.55803i −0.497485 0.114975i
\(496\) 0 0
\(497\) 9.07817 24.5121i 0.407211 1.09952i
\(498\) 0 0
\(499\) 7.15984i 0.320519i −0.987075 0.160259i \(-0.948767\pi\)
0.987075 0.160259i \(-0.0512330\pi\)
\(500\) 0 0
\(501\) 5.10384 0.228023
\(502\) 0 0
\(503\) −14.6373 14.6373i −0.652646 0.652646i 0.300983 0.953629i \(-0.402685\pi\)
−0.953629 + 0.300983i \(0.902685\pi\)
\(504\) 0 0
\(505\) 12.7066 + 2.93665i 0.565435 + 0.130679i
\(506\) 0 0
\(507\) −11.1932 + 11.1932i −0.497107 + 0.497107i
\(508\) 0 0
\(509\) −37.3089 −1.65369 −0.826844 0.562432i \(-0.809866\pi\)
−0.826844 + 0.562432i \(0.809866\pi\)
\(510\) 0 0
\(511\) −23.8946 + 10.9790i −1.05703 + 0.485682i
\(512\) 0 0
\(513\) 2.59021 2.59021i 0.114361 0.114361i
\(514\) 0 0
\(515\) −29.0483 + 18.1420i −1.28002 + 0.799432i
\(516\) 0 0
\(517\) 10.0325 10.0325i 0.441229 0.441229i
\(518\) 0 0
\(519\) 19.6034i 0.860495i
\(520\) 0 0
\(521\) 21.3380i 0.934835i −0.884037 0.467418i \(-0.845184\pi\)
0.884037 0.467418i \(-0.154816\pi\)
\(522\) 0 0
\(523\) −29.0131 29.0131i −1.26865 1.26865i −0.946784 0.321869i \(-0.895689\pi\)
−0.321869 0.946784i \(-0.604311\pi\)
\(524\) 0 0
\(525\) 13.2251 + 0.311425i 0.577190 + 0.0135917i
\(526\) 0 0
\(527\) 24.8977 + 24.8977i 1.08456 + 1.08456i
\(528\) 0 0
\(529\) 22.3003i 0.969576i
\(530\) 0 0
\(531\) 1.49914i 0.0650573i
\(532\) 0 0
\(533\) 11.0735 11.0735i 0.479648 0.479648i
\(534\) 0 0
\(535\) 19.9206 12.4413i 0.861242 0.537886i
\(536\) 0 0
\(537\) −3.95751 + 3.95751i −0.170779 + 0.170779i
\(538\) 0 0
\(539\) −26.9837 23.1644i −1.16227 0.997761i
\(540\) 0 0
\(541\) −8.65845 −0.372256 −0.186128 0.982526i \(-0.559594\pi\)
−0.186128 + 0.982526i \(0.559594\pi\)
\(542\) 0 0
\(543\) 3.62655 3.62655i 0.155630 0.155630i
\(544\) 0 0
\(545\) 43.1991 + 9.98386i 1.85045 + 0.427662i
\(546\) 0 0
\(547\) 14.4212 + 14.4212i 0.616607 + 0.616607i 0.944659 0.328053i \(-0.106392\pi\)
−0.328053 + 0.944659i \(0.606392\pi\)
\(548\) 0 0
\(549\) −12.3856 −0.528603
\(550\) 0 0
\(551\) 3.86491i 0.164651i
\(552\) 0 0
\(553\) −29.6513 10.9815i −1.26090 0.466982i
\(554\) 0 0
\(555\) −15.2712 3.52937i −0.648227 0.149813i
\(556\) 0 0
\(557\) −27.5065 27.5065i −1.16549 1.16549i −0.983255 0.182234i \(-0.941667\pi\)
−0.182234 0.983255i \(-0.558333\pi\)
\(558\) 0 0
\(559\) 52.1143 2.20420
\(560\) 0 0
\(561\) −20.3797 −0.860430
\(562\) 0 0
\(563\) 21.2610 + 21.2610i 0.896045 + 0.896045i 0.995084 0.0990389i \(-0.0315768\pi\)
−0.0990389 + 0.995084i \(0.531577\pi\)
\(564\) 0 0
\(565\) −14.7065 23.5475i −0.618707 0.990649i
\(566\) 0 0
\(567\) 0.918874 2.48106i 0.0385891 0.104195i
\(568\) 0 0
\(569\) 10.3990i 0.435951i 0.975954 + 0.217975i \(0.0699452\pi\)
−0.975954 + 0.217975i \(0.930055\pi\)
\(570\) 0 0
\(571\) 3.29077 0.137714 0.0688572 0.997627i \(-0.478065\pi\)
0.0688572 + 0.997627i \(0.478065\pi\)
\(572\) 0 0
\(573\) −14.6863 14.6863i −0.613529 0.613529i
\(574\) 0 0
\(575\) −3.95531 + 1.35987i −0.164948 + 0.0567105i
\(576\) 0 0
\(577\) −2.14044 + 2.14044i −0.0891077 + 0.0891077i −0.750256 0.661148i \(-0.770070\pi\)
0.661148 + 0.750256i \(0.270070\pi\)
\(578\) 0 0
\(579\) 12.3145 0.511775
\(580\) 0 0
\(581\) 18.1375 8.33373i 0.752469 0.345741i
\(582\) 0 0
\(583\) −28.1736 + 28.1736i −1.16683 + 1.16683i
\(584\) 0 0
\(585\) −6.35993 10.1833i −0.262951 0.421026i
\(586\) 0 0
\(587\) 30.3080 30.3080i 1.25095 1.25095i 0.295650 0.955296i \(-0.404464\pi\)
0.955296 0.295650i \(-0.0955363\pi\)
\(588\) 0 0
\(589\) 32.1532i 1.32485i
\(590\) 0 0
\(591\) 23.4003i 0.962562i
\(592\) 0 0
\(593\) 17.1981 + 17.1981i 0.706240 + 0.706240i 0.965742 0.259503i \(-0.0835587\pi\)
−0.259503 + 0.965742i \(0.583559\pi\)
\(594\) 0 0
\(595\) 23.2419 4.79808i 0.952824 0.196702i
\(596\) 0 0
\(597\) 13.2447 + 13.2447i 0.542071 + 0.542071i
\(598\) 0 0
\(599\) 11.8799i 0.485398i −0.970102 0.242699i \(-0.921967\pi\)
0.970102 0.242699i \(-0.0780327\pi\)
\(600\) 0 0
\(601\) 22.3993i 0.913688i −0.889547 0.456844i \(-0.848980\pi\)
0.889547 0.456844i \(-0.151020\pi\)
\(602\) 0 0
\(603\) 4.30496 4.30496i 0.175312 0.175312i
\(604\) 0 0
\(605\) −7.45720 + 32.2665i −0.303178 + 1.31182i
\(606\) 0 0
\(607\) −8.64290 + 8.64290i −0.350805 + 0.350805i −0.860409 0.509604i \(-0.829792\pi\)
0.509604 + 0.860409i \(0.329792\pi\)
\(608\) 0 0
\(609\) −1.16549 2.53656i −0.0472280 0.102787i
\(610\) 0 0
\(611\) 14.9950 0.606632
\(612\) 0 0
\(613\) −9.65057 + 9.65057i −0.389783 + 0.389783i −0.874610 0.484827i \(-0.838882\pi\)
0.484827 + 0.874610i \(0.338882\pi\)
\(614\) 0 0
\(615\) 3.45474 + 5.53160i 0.139309 + 0.223056i
\(616\) 0 0
\(617\) 7.44264 + 7.44264i 0.299629 + 0.299629i 0.840869 0.541239i \(-0.182045\pi\)
−0.541239 + 0.840869i \(0.682045\pi\)
\(618\) 0 0
\(619\) −8.47487 −0.340634 −0.170317 0.985389i \(-0.554479\pi\)
−0.170317 + 0.985389i \(0.554479\pi\)
\(620\) 0 0
\(621\) 0.836510i 0.0335680i
\(622\) 0 0
\(623\) −1.61460 + 4.35961i −0.0646877 + 0.174664i
\(624\) 0 0
\(625\) 15.3733 + 19.7145i 0.614930 + 0.788582i
\(626\) 0 0
\(627\) −13.1593 13.1593i −0.525531 0.525531i
\(628\) 0 0
\(629\) −28.1182 −1.12115
\(630\) 0 0
\(631\) 9.06900 0.361031 0.180516 0.983572i \(-0.442223\pi\)
0.180516 + 0.983572i \(0.442223\pi\)
\(632\) 0 0
\(633\) 2.44993 + 2.44993i 0.0973758 + 0.0973758i
\(634\) 0 0
\(635\) −27.4632 + 17.1520i −1.08984 + 0.680657i
\(636\) 0 0
\(637\) −2.85424 37.4767i −0.113089 1.48488i
\(638\) 0 0
\(639\) 9.87966i 0.390833i
\(640\) 0 0
\(641\) 9.82777 0.388174 0.194087 0.980984i \(-0.437826\pi\)
0.194087 + 0.980984i \(0.437826\pi\)
\(642\) 0 0
\(643\) −15.5098 15.5098i −0.611648 0.611648i 0.331727 0.943375i \(-0.392369\pi\)
−0.943375 + 0.331727i \(0.892369\pi\)
\(644\) 0 0
\(645\) −4.88705 + 21.1458i −0.192428 + 0.832614i
\(646\) 0 0
\(647\) 9.72240 9.72240i 0.382227 0.382227i −0.489677 0.871904i \(-0.662885\pi\)
0.871904 + 0.489677i \(0.162885\pi\)
\(648\) 0 0
\(649\) −7.61624 −0.298963
\(650\) 0 0
\(651\) 9.69600 + 21.1023i 0.380016 + 0.827065i
\(652\) 0 0
\(653\) 4.17455 4.17455i 0.163363 0.163363i −0.620692 0.784055i \(-0.713148\pi\)
0.784055 + 0.620692i \(0.213148\pi\)
\(654\) 0 0
\(655\) −15.2525 3.52505i −0.595965 0.137735i
\(656\) 0 0
\(657\) −7.02795 + 7.02795i −0.274187 + 0.274187i
\(658\) 0 0
\(659\) 8.93891i 0.348210i −0.984727 0.174105i \(-0.944297\pi\)
0.984727 0.174105i \(-0.0557033\pi\)
\(660\) 0 0
\(661\) 18.8737i 0.734103i 0.930201 + 0.367052i \(0.119633\pi\)
−0.930201 + 0.367052i \(0.880367\pi\)
\(662\) 0 0
\(663\) −15.2301 15.2301i −0.591489 0.591489i
\(664\) 0 0
\(665\) 18.1056 + 11.9093i 0.702105 + 0.461822i
\(666\) 0 0
\(667\) 0.624088 + 0.624088i 0.0241648 + 0.0241648i
\(668\) 0 0
\(669\) 6.10959i 0.236210i
\(670\) 0 0
\(671\) 62.9236i 2.42914i
\(672\) 0 0
\(673\) 7.82024 7.82024i 0.301448 0.301448i −0.540132 0.841580i \(-0.681626\pi\)
0.841580 + 0.540132i \(0.181626\pi\)
\(674\) 0 0
\(675\) 4.72835 1.62565i 0.181994 0.0625712i
\(676\) 0 0
\(677\) −0.751759 + 0.751759i −0.0288925 + 0.0288925i −0.721405 0.692513i \(-0.756504\pi\)
0.692513 + 0.721405i \(0.256504\pi\)
\(678\) 0 0
\(679\) −5.09591 11.0907i −0.195563 0.425622i
\(680\) 0 0
\(681\) −8.01602 −0.307175
\(682\) 0 0
\(683\) 8.20512 8.20512i 0.313960 0.313960i −0.532482 0.846442i \(-0.678740\pi\)
0.846442 + 0.532482i \(0.178740\pi\)
\(684\) 0 0
\(685\) 20.3562 12.7134i 0.777770 0.485754i
\(686\) 0 0
\(687\) 8.99258 + 8.99258i 0.343088 + 0.343088i
\(688\) 0 0
\(689\) −42.1093 −1.60424
\(690\) 0 0
\(691\) 10.5920i 0.402939i 0.979495 + 0.201469i \(0.0645717\pi\)
−0.979495 + 0.201469i \(0.935428\pi\)
\(692\) 0 0
\(693\) −12.6048 4.66824i −0.478816 0.177332i
\(694\) 0 0
\(695\) 1.49907 6.48631i 0.0568628 0.246040i
\(696\) 0 0
\(697\) 8.27308 + 8.27308i 0.313365 + 0.313365i
\(698\) 0 0
\(699\) 9.60864 0.363432
\(700\) 0 0
\(701\) 31.8176 1.20173 0.600867 0.799349i \(-0.294822\pi\)
0.600867 + 0.799349i \(0.294822\pi\)
\(702\) 0 0
\(703\) −18.1561 18.1561i −0.684772 0.684772i
\(704\) 0 0
\(705\) −1.40616 + 6.08433i −0.0529592 + 0.229149i
\(706\) 0 0
\(707\) 14.4704 + 5.35919i 0.544215 + 0.201553i
\(708\) 0 0
\(709\) 42.1965i 1.58472i −0.610053 0.792361i \(-0.708852\pi\)
0.610053 0.792361i \(-0.291148\pi\)
\(710\) 0 0
\(711\) −11.9511 −0.448200
\(712\) 0 0
\(713\) −5.19195 5.19195i −0.194440 0.194440i
\(714\) 0 0
\(715\) −51.7350 + 32.3109i −1.93478 + 1.20836i
\(716\) 0 0
\(717\) −19.9750 + 19.9750i −0.745979 + 0.745979i
\(718\) 0 0
\(719\) −1.40331 −0.0523347 −0.0261673 0.999658i \(-0.508330\pi\)
−0.0261673 + 0.999658i \(0.508330\pi\)
\(720\) 0 0
\(721\) −36.8220 + 16.9188i −1.37132 + 0.630090i
\(722\) 0 0
\(723\) 4.79983 4.79983i 0.178508 0.178508i
\(724\) 0 0
\(725\) 2.31480 4.74047i 0.0859697 0.176057i
\(726\) 0 0
\(727\) −35.1101 + 35.1101i −1.30216 + 1.30216i −0.375227 + 0.926933i \(0.622435\pi\)
−0.926933 + 0.375227i \(0.877565\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 38.9348i 1.44006i
\(732\) 0 0
\(733\) 27.0142 + 27.0142i 0.997794 + 0.997794i 0.999998 0.00220403i \(-0.000701565\pi\)
−0.00220403 + 0.999998i \(0.500702\pi\)
\(734\) 0 0
\(735\) 15.4741 + 2.35627i 0.570771 + 0.0869124i
\(736\) 0 0
\(737\) −21.8709 21.8709i −0.805625 0.805625i
\(738\) 0 0
\(739\) 23.2327i 0.854629i −0.904103 0.427315i \(-0.859460\pi\)
0.904103 0.427315i \(-0.140540\pi\)
\(740\) 0 0
\(741\) 19.6684i 0.722537i
\(742\) 0 0
\(743\) −29.5948 + 29.5948i −1.08573 + 1.08573i −0.0897655 + 0.995963i \(0.528612\pi\)
−0.995963 + 0.0897655i \(0.971388\pi\)
\(744\) 0 0
\(745\) 1.79443 + 0.414715i 0.0657428 + 0.0151940i
\(746\) 0 0
\(747\) 5.33465 5.33465i 0.195185 0.195185i
\(748\) 0 0
\(749\) 25.2516 11.6025i 0.922674 0.423946i
\(750\) 0 0
\(751\) −38.7569 −1.41426 −0.707129 0.707084i \(-0.750010\pi\)
−0.707129 + 0.707084i \(0.750010\pi\)
\(752\) 0 0
\(753\) 13.2586 13.2586i 0.483172 0.483172i
\(754\) 0 0
\(755\) −7.05196 + 30.5131i −0.256647 + 1.11049i
\(756\) 0 0
\(757\) 6.96551 + 6.96551i 0.253166 + 0.253166i 0.822267 0.569101i \(-0.192709\pi\)
−0.569101 + 0.822267i \(0.692709\pi\)
\(758\) 0 0
\(759\) 4.24980 0.154258
\(760\) 0 0
\(761\) 50.6708i 1.83681i −0.395637 0.918407i \(-0.629476\pi\)
0.395637 0.918407i \(-0.370524\pi\)
\(762\) 0 0
\(763\) 49.1957 + 18.2199i 1.78100 + 0.659604i
\(764\) 0 0
\(765\) 7.60796 4.75153i 0.275066 0.171792i
\(766\) 0 0
\(767\) −5.69177 5.69177i −0.205518 0.205518i
\(768\) 0 0
\(769\) −46.6219 −1.68123 −0.840615 0.541633i \(-0.817806\pi\)
−0.840615 + 0.541633i \(0.817806\pi\)
\(770\) 0 0
\(771\) 7.61164 0.274126
\(772\) 0 0
\(773\) 1.27891 + 1.27891i 0.0459993 + 0.0459993i 0.729732 0.683733i \(-0.239645\pi\)
−0.683733 + 0.729732i \(0.739645\pi\)
\(774\) 0 0
\(775\) −19.2575 + 39.4372i −0.691748 + 1.41663i
\(776\) 0 0
\(777\) −17.3911 6.44087i −0.623900 0.231065i
\(778\) 0 0
\(779\) 10.6840i 0.382793i
\(780\) 0 0
\(781\) −50.1926 −1.79603
\(782\) 0 0
\(783\) −0.746061 0.746061i −0.0266621 0.0266621i
\(784\) 0 0
\(785\) 9.17661 + 14.6932i 0.327527 + 0.524424i
\(786\) 0 0
\(787\) −2.35551 + 2.35551i −0.0839648 + 0.0839648i −0.747842 0.663877i \(-0.768910\pi\)
0.663877 + 0.747842i \(0.268910\pi\)
\(788\) 0 0
\(789\) 12.4663 0.443811
\(790\) 0 0
\(791\) −13.7149 29.8491i −0.487647 1.06131i
\(792\) 0 0
\(793\) −47.0240 + 47.0240i −1.66987 + 1.66987i
\(794\) 0 0
\(795\) 3.94883 17.0862i 0.140051 0.605985i
\(796\) 0 0
\(797\) −9.61236 + 9.61236i −0.340487 + 0.340487i −0.856551 0.516063i \(-0.827397\pi\)
0.516063 + 0.856551i \(0.327397\pi\)
\(798\) 0 0
\(799\) 11.2028i 0.396327i
\(800\) 0 0
\(801\) 1.75715i 0.0620860i
\(802\) 0 0
\(803\) 35.7048 + 35.7048i 1.25999 + 1.25999i
\(804\) 0 0
\(805\) −4.84666 + 1.00055i −0.170822 + 0.0352647i
\(806\) 0 0
\(807\) 15.0751 + 15.0751i 0.530669 + 0.530669i
\(808\) 0 0
\(809\) 44.2735i 1.55657i −0.627909 0.778287i \(-0.716089\pi\)
0.627909 0.778287i \(-0.283911\pi\)
\(810\) 0 0
\(811\) 11.3215i 0.397552i 0.980045 + 0.198776i \(0.0636966\pi\)
−0.980045 + 0.198776i \(0.936303\pi\)
\(812\) 0 0
\(813\) 9.14652 9.14652i 0.320782 0.320782i
\(814\) 0 0
\(815\) 13.3110 + 21.3131i 0.466265 + 0.746565i
\(816\) 0 0
\(817\) −25.1405 + 25.1405i −0.879553 + 0.879553i
\(818\) 0 0
\(819\) −5.93113 12.9085i −0.207250 0.451058i
\(820\) 0 0
\(821\) 1.84371 0.0643458 0.0321729 0.999482i \(-0.489757\pi\)
0.0321729 + 0.999482i \(0.489757\pi\)
\(822\) 0 0
\(823\) −30.7730 + 30.7730i −1.07268 + 1.07268i −0.0755344 + 0.997143i \(0.524066\pi\)
−0.997143 + 0.0755344i \(0.975934\pi\)
\(824\) 0 0
\(825\) −8.25893 24.0219i −0.287539 0.836334i
\(826\) 0 0
\(827\) −27.0430 27.0430i −0.940376 0.940376i 0.0579435 0.998320i \(-0.481546\pi\)
−0.998320 + 0.0579435i \(0.981546\pi\)
\(828\) 0 0
\(829\) 5.40143 0.187599 0.0937997 0.995591i \(-0.470099\pi\)
0.0937997 + 0.995591i \(0.470099\pi\)
\(830\) 0 0
\(831\) 21.4722i 0.744862i
\(832\) 0 0
\(833\) 27.9990 2.13241i 0.970107 0.0738837i
\(834\) 0 0
\(835\) 6.04548 + 9.67978i 0.209212 + 0.334983i
\(836\) 0 0
\(837\) 6.20668 + 6.20668i 0.214534 + 0.214534i
\(838\) 0 0
\(839\) −26.0436 −0.899125 −0.449562 0.893249i \(-0.648420\pi\)
−0.449562 + 0.893249i \(0.648420\pi\)
\(840\) 0 0
\(841\) 27.8868 0.961613
\(842\) 0 0
\(843\) 14.7210 + 14.7210i 0.507018 + 0.507018i
\(844\) 0 0
\(845\) −34.4869 7.97036i −1.18639 0.274189i
\(846\) 0 0
\(847\) −13.6089 + 36.7455i −0.467607 + 1.26259i
\(848\) 0 0
\(849\) 7.56642i 0.259679i
\(850\) 0 0
\(851\) 5.86353 0.200999
\(852\) 0 0
\(853\) 3.78906 + 3.78906i 0.129735 + 0.129735i 0.768993 0.639258i \(-0.220758\pi\)
−0.639258 + 0.768993i \(0.720758\pi\)
\(854\) 0 0
\(855\) 7.98061 + 1.84442i 0.272931 + 0.0630778i
\(856\) 0 0
\(857\) 36.7692 36.7692i 1.25601 1.25601i 0.303032 0.952980i \(-0.402001\pi\)
0.952980 0.303032i \(-0.0979990\pi\)
\(858\) 0 0
\(859\) 33.1556 1.13125 0.565626 0.824662i \(-0.308634\pi\)
0.565626 + 0.824662i \(0.308634\pi\)
\(860\) 0 0
\(861\) 3.22182 + 7.01194i 0.109799 + 0.238966i
\(862\) 0 0
\(863\) 1.68139 1.68139i 0.0572350 0.0572350i −0.677910 0.735145i \(-0.737114\pi\)
0.735145 + 0.677910i \(0.237114\pi\)
\(864\) 0 0
\(865\) 37.1792 23.2202i 1.26413 0.789509i
\(866\) 0 0
\(867\) −0.642324 + 0.642324i −0.0218145 + 0.0218145i
\(868\) 0 0
\(869\) 60.7161i 2.05965i
\(870\) 0 0
\(871\) 32.6891i 1.10763i
\(872\) 0 0
\(873\) −3.26203 3.26203i −0.110403 0.110403i
\(874\) 0 0
\(875\) 15.0744 + 25.4512i 0.509609 + 0.860406i
\(876\) 0 0
\(877\) −2.69980 2.69980i −0.0911658 0.0911658i 0.660053 0.751219i \(-0.270534\pi\)
−0.751219 + 0.660053i \(0.770534\pi\)
\(878\) 0 0
\(879\) 25.5430i 0.861545i
\(880\) 0 0
\(881\) 44.2080i 1.48940i 0.667397 + 0.744702i \(0.267408\pi\)
−0.667397 + 0.744702i \(0.732592\pi\)
\(882\) 0 0
\(883\) −13.9894 + 13.9894i −0.470781 + 0.470781i −0.902167 0.431386i \(-0.858025\pi\)
0.431386 + 0.902167i \(0.358025\pi\)
\(884\) 0 0
\(885\) 2.84323 1.77573i 0.0955740 0.0596905i
\(886\) 0 0
\(887\) −25.3656 + 25.3656i −0.851693 + 0.851693i −0.990342 0.138649i \(-0.955724\pi\)
0.138649 + 0.990342i \(0.455724\pi\)
\(888\) 0 0
\(889\) −34.8127 + 15.9956i −1.16758 + 0.536475i
\(890\) 0 0
\(891\) −5.08039 −0.170200
\(892\) 0 0
\(893\) −7.23373 + 7.23373i −0.242067 + 0.242067i
\(894\) 0 0
\(895\) −12.1933 2.81803i −0.407578 0.0941964i
\(896\) 0 0
\(897\) 3.17596 + 3.17596i 0.106042 + 0.106042i
\(898\) 0 0
\(899\) 9.26113 0.308876
\(900\) 0 0
\(901\) 31.4600i 1.04809i
\(902\) 0 0
\(903\) −8.91855 + 24.0811i −0.296791 + 0.801368i
\(904\) 0 0
\(905\) 11.1736 + 2.58237i 0.371425 + 0.0858409i
\(906\) 0 0
\(907\) −19.2797 19.2797i −0.640170 0.640170i 0.310427 0.950597i \(-0.399528\pi\)
−0.950597 + 0.310427i \(0.899528\pi\)
\(908\) 0 0
\(909\) 5.83234 0.193446
\(910\) 0 0
\(911\) 40.8927 1.35484 0.677418 0.735598i \(-0.263099\pi\)
0.677418 + 0.735598i \(0.263099\pi\)
\(912\) 0 0
\(913\) −27.1021 27.1021i −0.896949 0.896949i
\(914\) 0 0
\(915\) −14.6707 23.4901i −0.484997 0.776558i
\(916\) 0 0
\(917\) −17.3698 6.43298i −0.573600 0.212436i
\(918\) 0 0
\(919\) 21.9749i 0.724886i −0.932006 0.362443i \(-0.881943\pi\)
0.932006 0.362443i \(-0.118057\pi\)
\(920\) 0 0
\(921\) 13.0846 0.431152
\(922\) 0 0
\(923\) −37.5099 37.5099i −1.23465 1.23465i
\(924\) 0 0
\(925\) −11.3950 33.1434i −0.374665 1.08975i
\(926\) 0 0
\(927\) −10.8302 + 10.8302i −0.355711 + 0.355711i
\(928\) 0 0
\(929\) −22.1143 −0.725546 −0.362773 0.931878i \(-0.618170\pi\)
−0.362773 + 0.931878i \(0.618170\pi\)
\(930\) 0 0
\(931\) 19.4560 + 16.7022i 0.637646 + 0.547393i
\(932\) 0 0
\(933\) 14.1849 14.1849i 0.464391 0.464391i
\(934\) 0 0
\(935\) −24.1396 38.6514i −0.789450 1.26404i
\(936\) 0 0
\(937\) 10.7013 10.7013i 0.349595 0.349595i −0.510364 0.859959i \(-0.670489\pi\)
0.859959 + 0.510364i \(0.170489\pi\)
\(938\) 0 0
\(939\) 20.6595i 0.674197i
\(940\) 0 0
\(941\) 12.6198i 0.411394i 0.978616 + 0.205697i \(0.0659461\pi\)
−0.978616 + 0.205697i \(0.934054\pi\)
\(942\) 0 0
\(943\) −1.72520 1.72520i −0.0561801 0.0561801i
\(944\) 0 0
\(945\) 5.79391 1.19610i 0.188476 0.0389091i
\(946\) 0 0
\(947\) 8.86560 + 8.86560i 0.288093 + 0.288093i 0.836326 0.548233i \(-0.184699\pi\)
−0.548233 + 0.836326i \(0.684699\pi\)
\(948\) 0 0
\(949\) 53.3658i 1.73233i
\(950\) 0 0
\(951\) 31.9239i 1.03520i
\(952\) 0 0
\(953\) −33.3776 + 33.3776i −1.08121 + 1.08121i −0.0848083 + 0.996397i \(0.527028\pi\)
−0.996397 + 0.0848083i \(0.972972\pi\)
\(954\) 0 0
\(955\) 10.4577 45.2494i 0.338404 1.46424i
\(956\) 0 0
\(957\) −3.79028 + 3.79028i −0.122522 + 0.122522i
\(958\) 0 0
\(959\) 25.8038 11.8562i 0.833248 0.382857i
\(960\) 0 0
\(961\) −46.0457 −1.48535
\(962\) 0 0
\(963\) 7.42709 7.42709i 0.239334 0.239334i
\(964\) 0 0
\(965\) 14.5865 + 23.3554i 0.469557 + 0.751836i
\(966\) 0 0
\(967\) 9.46838 + 9.46838i 0.304483 + 0.304483i 0.842765 0.538282i \(-0.180926\pi\)
−0.538282 + 0.842765i \(0.680926\pi\)
\(968\) 0 0
\(969\) 14.6943 0.472050
\(970\) 0 0
\(971\) 10.3533i 0.332254i 0.986104 + 0.166127i \(0.0531261\pi\)
−0.986104 + 0.166127i \(0.946874\pi\)
\(972\) 0 0
\(973\) 2.73570 7.38668i 0.0877024 0.236806i
\(974\) 0 0
\(975\) 11.7800 24.1241i 0.377261 0.772589i
\(976\) 0 0
\(977\) 41.5769 + 41.5769i 1.33016 + 1.33016i 0.905219 + 0.424945i \(0.139707\pi\)
0.424945 + 0.905219i \(0.360293\pi\)
\(978\) 0 0
\(979\) 8.92703 0.285309
\(980\) 0 0
\(981\) 19.8285 0.633075
\(982\) 0 0
\(983\) 23.4334 + 23.4334i 0.747409 + 0.747409i 0.973992 0.226583i \(-0.0727555\pi\)
−0.226583 + 0.973992i \(0.572755\pi\)
\(984\) 0 0
\(985\) −44.3804 + 27.7176i −1.41408 + 0.883157i
\(986\) 0 0
\(987\) −2.56616 + 6.92890i −0.0816816 + 0.220549i
\(988\) 0 0
\(989\) 8.11912i 0.258173i
\(990\) 0 0
\(991\) −1.89662 −0.0602482 −0.0301241 0.999546i \(-0.509590\pi\)
−0.0301241 + 0.999546i \(0.509590\pi\)
\(992\) 0 0
\(993\) 18.1080 + 18.1080i 0.574641 + 0.574641i
\(994\) 0 0
\(995\) −9.43121 + 40.8079i −0.298989 + 1.29370i
\(996\) 0 0
\(997\) 33.5228 33.5228i 1.06168 1.06168i 0.0637106 0.997968i \(-0.479707\pi\)
0.997968 0.0637106i \(-0.0202935\pi\)
\(998\) 0 0
\(999\) −7.00952 −0.221771
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.cz.f.97.7 24
4.3 odd 2 840.2.bt.a.97.4 24
5.3 odd 4 1680.2.cz.e.433.6 24
7.6 odd 2 1680.2.cz.e.97.6 24
20.3 even 4 840.2.bt.b.433.9 yes 24
28.27 even 2 840.2.bt.b.97.9 yes 24
35.13 even 4 inner 1680.2.cz.f.433.7 24
140.83 odd 4 840.2.bt.a.433.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.4 24 4.3 odd 2
840.2.bt.a.433.4 yes 24 140.83 odd 4
840.2.bt.b.97.9 yes 24 28.27 even 2
840.2.bt.b.433.9 yes 24 20.3 even 4
1680.2.cz.e.97.6 24 7.6 odd 2
1680.2.cz.e.433.6 24 5.3 odd 4
1680.2.cz.f.97.7 24 1.1 even 1 trivial
1680.2.cz.f.433.7 24 35.13 even 4 inner