Properties

Label 1680.2.cz.e.433.6
Level $1680$
Weight $2$
Character 1680.433
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(97,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.cz (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.6
Character \(\chi\) \(=\) 1680.433
Dual form 1680.2.cz.e.97.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(0.503511 + 2.17864i) q^{5} +(2.48106 + 0.918874i) q^{7} -1.00000i q^{9} +5.08039 q^{11} +(-3.79668 + 3.79668i) q^{13} +(-1.89657 - 1.18450i) q^{15} +(2.83651 + 2.83651i) q^{17} +3.66311 q^{19} +(-2.40412 + 1.10463i) q^{21} +(0.591502 + 0.591502i) q^{23} +(-4.49295 + 2.19394i) q^{25} +(0.707107 + 0.707107i) q^{27} -1.05509i q^{29} -8.77757i q^{31} +(-3.59238 + 3.59238i) q^{33} +(-0.752654 + 5.86801i) q^{35} +(4.95648 - 4.95648i) q^{37} -5.36932i q^{39} -2.91664i q^{41} +(6.86314 + 6.86314i) q^{43} +(2.17864 - 0.503511i) q^{45} +(-1.97475 - 1.97475i) q^{47} +(5.31134 + 4.55957i) q^{49} -4.01144 q^{51} +(-5.54555 - 5.54555i) q^{53} +(2.55803 + 11.0684i) q^{55} +(-2.59021 + 2.59021i) q^{57} +1.49914 q^{59} +12.3856i q^{61} +(0.918874 - 2.48106i) q^{63} +(-10.1833 - 6.35993i) q^{65} +(-4.30496 + 4.30496i) q^{67} -0.836510 q^{69} -9.87966 q^{71} +(-7.02795 + 7.02795i) q^{73} +(1.62565 - 4.72835i) q^{75} +(12.6048 + 4.66824i) q^{77} -11.9511i q^{79} -1.00000 q^{81} +(5.33465 - 5.33465i) q^{83} +(-4.75153 + 7.60796i) q^{85} +(0.746061 + 0.746061i) q^{87} -1.75715 q^{89} +(-12.9085 + 5.93113i) q^{91} +(6.20668 + 6.20668i) q^{93} +(1.84442 + 7.98061i) q^{95} +(3.26203 + 3.26203i) q^{97} -5.08039i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{11} - 16 q^{13} - 4 q^{15} - 20 q^{17} + 8 q^{19} - 24 q^{23} - 4 q^{25} + 4 q^{37} + 16 q^{43} + 4 q^{45} - 24 q^{47} - 36 q^{49} + 16 q^{53} + 28 q^{55} + 4 q^{57} + 8 q^{59} - 4 q^{63} + 24 q^{65}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) 0.503511 + 2.17864i 0.225177 + 0.974318i
\(6\) 0 0
\(7\) 2.48106 + 0.918874i 0.937753 + 0.347302i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 5.08039 1.53180 0.765898 0.642962i \(-0.222295\pi\)
0.765898 + 0.642962i \(0.222295\pi\)
\(12\) 0 0
\(13\) −3.79668 + 3.79668i −1.05301 + 1.05301i −0.0544954 + 0.998514i \(0.517355\pi\)
−0.998514 + 0.0544954i \(0.982645\pi\)
\(14\) 0 0
\(15\) −1.89657 1.18450i −0.489692 0.305835i
\(16\) 0 0
\(17\) 2.83651 + 2.83651i 0.687956 + 0.687956i 0.961780 0.273824i \(-0.0882887\pi\)
−0.273824 + 0.961780i \(0.588289\pi\)
\(18\) 0 0
\(19\) 3.66311 0.840376 0.420188 0.907437i \(-0.361964\pi\)
0.420188 + 0.907437i \(0.361964\pi\)
\(20\) 0 0
\(21\) −2.40412 + 1.10463i −0.524622 + 0.241051i
\(22\) 0 0
\(23\) 0.591502 + 0.591502i 0.123337 + 0.123337i 0.766081 0.642744i \(-0.222204\pi\)
−0.642744 + 0.766081i \(0.722204\pi\)
\(24\) 0 0
\(25\) −4.49295 + 2.19394i −0.898591 + 0.438788i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 1.05509i 0.195925i −0.995190 0.0979627i \(-0.968767\pi\)
0.995190 0.0979627i \(-0.0312326\pi\)
\(30\) 0 0
\(31\) 8.77757i 1.57650i −0.615357 0.788249i \(-0.710988\pi\)
0.615357 0.788249i \(-0.289012\pi\)
\(32\) 0 0
\(33\) −3.59238 + 3.59238i −0.625353 + 0.625353i
\(34\) 0 0
\(35\) −0.752654 + 5.86801i −0.127222 + 0.991874i
\(36\) 0 0
\(37\) 4.95648 4.95648i 0.814840 0.814840i −0.170515 0.985355i \(-0.554543\pi\)
0.985355 + 0.170515i \(0.0545432\pi\)
\(38\) 0 0
\(39\) 5.36932i 0.859779i
\(40\) 0 0
\(41\) 2.91664i 0.455502i −0.973719 0.227751i \(-0.926863\pi\)
0.973719 0.227751i \(-0.0731372\pi\)
\(42\) 0 0
\(43\) 6.86314 + 6.86314i 1.04662 + 1.04662i 0.998859 + 0.0477606i \(0.0152085\pi\)
0.0477606 + 0.998859i \(0.484792\pi\)
\(44\) 0 0
\(45\) 2.17864 0.503511i 0.324773 0.0750590i
\(46\) 0 0
\(47\) −1.97475 1.97475i −0.288047 0.288047i 0.548261 0.836307i \(-0.315290\pi\)
−0.836307 + 0.548261i \(0.815290\pi\)
\(48\) 0 0
\(49\) 5.31134 + 4.55957i 0.758763 + 0.651367i
\(50\) 0 0
\(51\) −4.01144 −0.561713
\(52\) 0 0
\(53\) −5.54555 5.54555i −0.761740 0.761740i 0.214897 0.976637i \(-0.431058\pi\)
−0.976637 + 0.214897i \(0.931058\pi\)
\(54\) 0 0
\(55\) 2.55803 + 11.0684i 0.344925 + 1.49246i
\(56\) 0 0
\(57\) −2.59021 + 2.59021i −0.343082 + 0.343082i
\(58\) 0 0
\(59\) 1.49914 0.195172 0.0975859 0.995227i \(-0.468888\pi\)
0.0975859 + 0.995227i \(0.468888\pi\)
\(60\) 0 0
\(61\) 12.3856i 1.58581i 0.609345 + 0.792905i \(0.291432\pi\)
−0.609345 + 0.792905i \(0.708568\pi\)
\(62\) 0 0
\(63\) 0.918874 2.48106i 0.115767 0.312584i
\(64\) 0 0
\(65\) −10.1833 6.35993i −1.26308 0.788852i
\(66\) 0 0
\(67\) −4.30496 + 4.30496i −0.525935 + 0.525935i −0.919358 0.393423i \(-0.871291\pi\)
0.393423 + 0.919358i \(0.371291\pi\)
\(68\) 0 0
\(69\) −0.836510 −0.100704
\(70\) 0 0
\(71\) −9.87966 −1.17250 −0.586250 0.810130i \(-0.699396\pi\)
−0.586250 + 0.810130i \(0.699396\pi\)
\(72\) 0 0
\(73\) −7.02795 + 7.02795i −0.822560 + 0.822560i −0.986474 0.163915i \(-0.947588\pi\)
0.163915 + 0.986474i \(0.447588\pi\)
\(74\) 0 0
\(75\) 1.62565 4.72835i 0.187714 0.545983i
\(76\) 0 0
\(77\) 12.6048 + 4.66824i 1.43645 + 0.531996i
\(78\) 0 0
\(79\) 11.9511i 1.34460i −0.740279 0.672300i \(-0.765306\pi\)
0.740279 0.672300i \(-0.234694\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 5.33465 5.33465i 0.585554 0.585554i −0.350870 0.936424i \(-0.614114\pi\)
0.936424 + 0.350870i \(0.114114\pi\)
\(84\) 0 0
\(85\) −4.75153 + 7.60796i −0.515376 + 0.825199i
\(86\) 0 0
\(87\) 0.746061 + 0.746061i 0.0799862 + 0.0799862i
\(88\) 0 0
\(89\) −1.75715 −0.186258 −0.0931290 0.995654i \(-0.529687\pi\)
−0.0931290 + 0.995654i \(0.529687\pi\)
\(90\) 0 0
\(91\) −12.9085 + 5.93113i −1.35318 + 0.621751i
\(92\) 0 0
\(93\) 6.20668 + 6.20668i 0.643603 + 0.643603i
\(94\) 0 0
\(95\) 1.84442 + 7.98061i 0.189233 + 0.818793i
\(96\) 0 0
\(97\) 3.26203 + 3.26203i 0.331209 + 0.331209i 0.853046 0.521836i \(-0.174753\pi\)
−0.521836 + 0.853046i \(0.674753\pi\)
\(98\) 0 0
\(99\) 5.08039i 0.510599i
\(100\) 0 0
\(101\) 5.83234i 0.580339i −0.956975 0.290170i \(-0.906288\pi\)
0.956975 0.290170i \(-0.0937117\pi\)
\(102\) 0 0
\(103\) −10.8302 + 10.8302i −1.06713 + 1.06713i −0.0695538 + 0.997578i \(0.522158\pi\)
−0.997578 + 0.0695538i \(0.977842\pi\)
\(104\) 0 0
\(105\) −3.61710 4.68151i −0.352993 0.456869i
\(106\) 0 0
\(107\) −7.42709 + 7.42709i −0.718003 + 0.718003i −0.968196 0.250193i \(-0.919506\pi\)
0.250193 + 0.968196i \(0.419506\pi\)
\(108\) 0 0
\(109\) 19.8285i 1.89922i 0.313428 + 0.949612i \(0.398523\pi\)
−0.313428 + 0.949612i \(0.601477\pi\)
\(110\) 0 0
\(111\) 7.00952i 0.665314i
\(112\) 0 0
\(113\) −8.77932 8.77932i −0.825889 0.825889i 0.161056 0.986945i \(-0.448510\pi\)
−0.986945 + 0.161056i \(0.948510\pi\)
\(114\) 0 0
\(115\) −0.990842 + 1.58650i −0.0923965 + 0.147942i
\(116\) 0 0
\(117\) 3.79668 + 3.79668i 0.351003 + 0.351003i
\(118\) 0 0
\(119\) 4.43117 + 9.64397i 0.406204 + 0.884061i
\(120\) 0 0
\(121\) 14.8104 1.34640
\(122\) 0 0
\(123\) 2.06237 + 2.06237i 0.185958 + 0.185958i
\(124\) 0 0
\(125\) −7.04206 8.68386i −0.629861 0.776708i
\(126\) 0 0
\(127\) 10.2392 10.2392i 0.908584 0.908584i −0.0875740 0.996158i \(-0.527911\pi\)
0.996158 + 0.0875740i \(0.0279114\pi\)
\(128\) 0 0
\(129\) −9.70595 −0.854561
\(130\) 0 0
\(131\) 7.00093i 0.611674i 0.952084 + 0.305837i \(0.0989363\pi\)
−0.952084 + 0.305837i \(0.901064\pi\)
\(132\) 0 0
\(133\) 9.08841 + 3.36594i 0.788065 + 0.291864i
\(134\) 0 0
\(135\) −1.18450 + 1.89657i −0.101945 + 0.163231i
\(136\) 0 0
\(137\) −7.58950 + 7.58950i −0.648414 + 0.648414i −0.952610 0.304195i \(-0.901612\pi\)
0.304195 + 0.952610i \(0.401612\pi\)
\(138\) 0 0
\(139\) 2.97723 0.252525 0.126262 0.991997i \(-0.459702\pi\)
0.126262 + 0.991997i \(0.459702\pi\)
\(140\) 0 0
\(141\) 2.79272 0.235189
\(142\) 0 0
\(143\) −19.2886 + 19.2886i −1.61300 + 1.61300i
\(144\) 0 0
\(145\) 2.29866 0.531250i 0.190894 0.0441179i
\(146\) 0 0
\(147\) −6.97979 + 0.531583i −0.575683 + 0.0438442i
\(148\) 0 0
\(149\) 0.823646i 0.0674757i 0.999431 + 0.0337379i \(0.0107411\pi\)
−0.999431 + 0.0337379i \(0.989259\pi\)
\(150\) 0 0
\(151\) 14.0056 1.13976 0.569878 0.821729i \(-0.306990\pi\)
0.569878 + 0.821729i \(0.306990\pi\)
\(152\) 0 0
\(153\) 2.83651 2.83651i 0.229319 0.229319i
\(154\) 0 0
\(155\) 19.1232 4.41960i 1.53601 0.354991i
\(156\) 0 0
\(157\) −5.47815 5.47815i −0.437204 0.437204i 0.453866 0.891070i \(-0.350044\pi\)
−0.891070 + 0.453866i \(0.850044\pi\)
\(158\) 0 0
\(159\) 7.84259 0.621958
\(160\) 0 0
\(161\) 0.924037 + 2.01107i 0.0728243 + 0.158494i
\(162\) 0 0
\(163\) 7.94626 + 7.94626i 0.622399 + 0.622399i 0.946144 0.323745i \(-0.104942\pi\)
−0.323745 + 0.946144i \(0.604942\pi\)
\(164\) 0 0
\(165\) −9.63531 6.01770i −0.750108 0.468477i
\(166\) 0 0
\(167\) −3.60896 3.60896i −0.279270 0.279270i 0.553548 0.832817i \(-0.313274\pi\)
−0.832817 + 0.553548i \(0.813274\pi\)
\(168\) 0 0
\(169\) 15.8296i 1.21766i
\(170\) 0 0
\(171\) 3.66311i 0.280125i
\(172\) 0 0
\(173\) 13.8617 13.8617i 1.05389 1.05389i 0.0554234 0.998463i \(-0.482349\pi\)
0.998463 0.0554234i \(-0.0176508\pi\)
\(174\) 0 0
\(175\) −13.1633 + 1.31484i −0.995048 + 0.0993929i
\(176\) 0 0
\(177\) −1.06005 + 1.06005i −0.0796786 + 0.0796786i
\(178\) 0 0
\(179\) 5.59676i 0.418321i −0.977881 0.209161i \(-0.932927\pi\)
0.977881 0.209161i \(-0.0670732\pi\)
\(180\) 0 0
\(181\) 5.12872i 0.381215i −0.981666 0.190607i \(-0.938954\pi\)
0.981666 0.190607i \(-0.0610458\pi\)
\(182\) 0 0
\(183\) −8.75792 8.75792i −0.647404 0.647404i
\(184\) 0 0
\(185\) 13.2940 + 8.30274i 0.977396 + 0.610430i
\(186\) 0 0
\(187\) 14.4106 + 14.4106i 1.05381 + 1.05381i
\(188\) 0 0
\(189\) 1.10463 + 2.40412i 0.0803503 + 0.174874i
\(190\) 0 0
\(191\) −20.7696 −1.50283 −0.751417 0.659828i \(-0.770629\pi\)
−0.751417 + 0.659828i \(0.770629\pi\)
\(192\) 0 0
\(193\) 8.70770 + 8.70770i 0.626794 + 0.626794i 0.947260 0.320466i \(-0.103840\pi\)
−0.320466 + 0.947260i \(0.603840\pi\)
\(194\) 0 0
\(195\) 11.6978 2.70351i 0.837698 0.193602i
\(196\) 0 0
\(197\) 16.5465 16.5465i 1.17889 1.17889i 0.198866 0.980027i \(-0.436274\pi\)
0.980027 0.198866i \(-0.0637258\pi\)
\(198\) 0 0
\(199\) −18.7309 −1.32780 −0.663898 0.747823i \(-0.731099\pi\)
−0.663898 + 0.747823i \(0.731099\pi\)
\(200\) 0 0
\(201\) 6.08814i 0.429424i
\(202\) 0 0
\(203\) 0.969495 2.61774i 0.0680452 0.183730i
\(204\) 0 0
\(205\) 6.35430 1.46856i 0.443804 0.102569i
\(206\) 0 0
\(207\) 0.591502 0.591502i 0.0411122 0.0411122i
\(208\) 0 0
\(209\) 18.6100 1.28728
\(210\) 0 0
\(211\) 3.46472 0.238521 0.119261 0.992863i \(-0.461948\pi\)
0.119261 + 0.992863i \(0.461948\pi\)
\(212\) 0 0
\(213\) 6.98598 6.98598i 0.478671 0.478671i
\(214\) 0 0
\(215\) −11.4967 + 18.4080i −0.784065 + 1.25541i
\(216\) 0 0
\(217\) 8.06548 21.7777i 0.547521 1.47837i
\(218\) 0 0
\(219\) 9.93903i 0.671617i
\(220\) 0 0
\(221\) −21.5387 −1.44885
\(222\) 0 0
\(223\) 4.32013 4.32013i 0.289298 0.289298i −0.547505 0.836802i \(-0.684422\pi\)
0.836802 + 0.547505i \(0.184422\pi\)
\(224\) 0 0
\(225\) 2.19394 + 4.49295i 0.146263 + 0.299530i
\(226\) 0 0
\(227\) 5.66818 + 5.66818i 0.376211 + 0.376211i 0.869733 0.493522i \(-0.164291\pi\)
−0.493522 + 0.869733i \(0.664291\pi\)
\(228\) 0 0
\(229\) −12.7174 −0.840391 −0.420196 0.907434i \(-0.638039\pi\)
−0.420196 + 0.907434i \(0.638039\pi\)
\(230\) 0 0
\(231\) −12.2139 + 5.61197i −0.803613 + 0.369241i
\(232\) 0 0
\(233\) 6.79433 + 6.79433i 0.445111 + 0.445111i 0.893726 0.448614i \(-0.148082\pi\)
−0.448614 + 0.893726i \(0.648082\pi\)
\(234\) 0 0
\(235\) 3.30796 5.29658i 0.215788 0.345511i
\(236\) 0 0
\(237\) 8.45068 + 8.45068i 0.548931 + 0.548931i
\(238\) 0 0
\(239\) 28.2489i 1.82727i −0.406538 0.913634i \(-0.633264\pi\)
0.406538 0.913634i \(-0.366736\pi\)
\(240\) 0 0
\(241\) 6.78799i 0.437253i −0.975809 0.218626i \(-0.929842\pi\)
0.975809 0.218626i \(-0.0701576\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) −7.25934 + 13.8673i −0.463782 + 0.885949i
\(246\) 0 0
\(247\) −13.9077 + 13.9077i −0.884923 + 0.884923i
\(248\) 0 0
\(249\) 7.54433i 0.478103i
\(250\) 0 0
\(251\) 18.7505i 1.18352i −0.806113 0.591762i \(-0.798432\pi\)
0.806113 0.591762i \(-0.201568\pi\)
\(252\) 0 0
\(253\) 3.00506 + 3.00506i 0.188927 + 0.188927i
\(254\) 0 0
\(255\) −2.01980 8.73948i −0.126485 0.547287i
\(256\) 0 0
\(257\) −5.38224 5.38224i −0.335735 0.335735i 0.519024 0.854759i \(-0.326295\pi\)
−0.854759 + 0.519024i \(0.826295\pi\)
\(258\) 0 0
\(259\) 16.8517 7.74295i 1.04711 0.481124i
\(260\) 0 0
\(261\) −1.05509 −0.0653084
\(262\) 0 0
\(263\) 8.81499 + 8.81499i 0.543555 + 0.543555i 0.924569 0.381014i \(-0.124425\pi\)
−0.381014 + 0.924569i \(0.624425\pi\)
\(264\) 0 0
\(265\) 9.28951 14.8740i 0.570650 0.913703i
\(266\) 0 0
\(267\) 1.24250 1.24250i 0.0760395 0.0760395i
\(268\) 0 0
\(269\) −21.3194 −1.29987 −0.649934 0.759991i \(-0.725203\pi\)
−0.649934 + 0.759991i \(0.725203\pi\)
\(270\) 0 0
\(271\) 12.9351i 0.785753i −0.919591 0.392877i \(-0.871480\pi\)
0.919591 0.392877i \(-0.128520\pi\)
\(272\) 0 0
\(273\) 4.93373 13.3216i 0.298603 0.806260i
\(274\) 0 0
\(275\) −22.8260 + 11.1461i −1.37646 + 0.672134i
\(276\) 0 0
\(277\) −15.1831 + 15.1831i −0.912266 + 0.912266i −0.996450 0.0841838i \(-0.973172\pi\)
0.0841838 + 0.996450i \(0.473172\pi\)
\(278\) 0 0
\(279\) −8.77757 −0.525499
\(280\) 0 0
\(281\) 20.8186 1.24193 0.620967 0.783836i \(-0.286740\pi\)
0.620967 + 0.783836i \(0.286740\pi\)
\(282\) 0 0
\(283\) 5.35026 5.35026i 0.318040 0.318040i −0.529974 0.848014i \(-0.677798\pi\)
0.848014 + 0.529974i \(0.177798\pi\)
\(284\) 0 0
\(285\) −6.94734 4.33894i −0.411525 0.257017i
\(286\) 0 0
\(287\) 2.68002 7.23636i 0.158197 0.427149i
\(288\) 0 0
\(289\) 0.908384i 0.0534343i
\(290\) 0 0
\(291\) −4.61321 −0.270431
\(292\) 0 0
\(293\) −18.0617 + 18.0617i −1.05517 + 1.05517i −0.0567868 + 0.998386i \(0.518086\pi\)
−0.998386 + 0.0567868i \(0.981914\pi\)
\(294\) 0 0
\(295\) 0.754836 + 3.26610i 0.0439482 + 0.190159i
\(296\) 0 0
\(297\) 3.59238 + 3.59238i 0.208451 + 0.208451i
\(298\) 0 0
\(299\) −4.49149 −0.259749
\(300\) 0 0
\(301\) 10.7215 + 23.3342i 0.617978 + 1.34496i
\(302\) 0 0
\(303\) 4.12409 + 4.12409i 0.236923 + 0.236923i
\(304\) 0 0
\(305\) −26.9837 + 6.23627i −1.54508 + 0.357088i
\(306\) 0 0
\(307\) −9.25219 9.25219i −0.528051 0.528051i 0.391940 0.919991i \(-0.371804\pi\)
−0.919991 + 0.391940i \(0.871804\pi\)
\(308\) 0 0
\(309\) 15.3162i 0.871310i
\(310\) 0 0
\(311\) 20.0604i 1.13752i −0.822503 0.568761i \(-0.807423\pi\)
0.822503 0.568761i \(-0.192577\pi\)
\(312\) 0 0
\(313\) −14.6085 + 14.6085i −0.825719 + 0.825719i −0.986921 0.161202i \(-0.948463\pi\)
0.161202 + 0.986921i \(0.448463\pi\)
\(314\) 0 0
\(315\) 5.86801 + 0.752654i 0.330625 + 0.0424073i
\(316\) 0 0
\(317\) 22.5736 22.5736i 1.26786 1.26786i 0.320666 0.947192i \(-0.396093\pi\)
0.947192 0.320666i \(-0.103907\pi\)
\(318\) 0 0
\(319\) 5.36027i 0.300118i
\(320\) 0 0
\(321\) 10.5035i 0.586247i
\(322\) 0 0
\(323\) 10.3905 + 10.3905i 0.578141 + 0.578141i
\(324\) 0 0
\(325\) 8.72861 25.3880i 0.484176 1.40827i
\(326\) 0 0
\(327\) −14.0209 14.0209i −0.775355 0.775355i
\(328\) 0 0
\(329\) −3.08493 6.71402i −0.170078 0.370156i
\(330\) 0 0
\(331\) 25.6086 1.40758 0.703788 0.710410i \(-0.251490\pi\)
0.703788 + 0.710410i \(0.251490\pi\)
\(332\) 0 0
\(333\) −4.95648 4.95648i −0.271613 0.271613i
\(334\) 0 0
\(335\) −11.5466 7.21137i −0.630856 0.393999i
\(336\) 0 0
\(337\) 20.4201 20.4201i 1.11236 1.11236i 0.119524 0.992831i \(-0.461863\pi\)
0.992831 0.119524i \(-0.0381369\pi\)
\(338\) 0 0
\(339\) 12.4158 0.674335
\(340\) 0 0
\(341\) 44.5935i 2.41487i
\(342\) 0 0
\(343\) 8.98810 + 16.1930i 0.485312 + 0.874341i
\(344\) 0 0
\(345\) −0.421192 1.82245i −0.0226762 0.0981177i
\(346\) 0 0
\(347\) 4.09932 4.09932i 0.220063 0.220063i −0.588462 0.808525i \(-0.700266\pi\)
0.808525 + 0.588462i \(0.200266\pi\)
\(348\) 0 0
\(349\) 12.1807 0.652020 0.326010 0.945366i \(-0.394296\pi\)
0.326010 + 0.945366i \(0.394296\pi\)
\(350\) 0 0
\(351\) −5.36932 −0.286593
\(352\) 0 0
\(353\) 2.45858 2.45858i 0.130857 0.130857i −0.638645 0.769502i \(-0.720505\pi\)
0.769502 + 0.638645i \(0.220505\pi\)
\(354\) 0 0
\(355\) −4.97452 21.5242i −0.264020 1.14239i
\(356\) 0 0
\(357\) −9.95262 3.68600i −0.526749 0.195084i
\(358\) 0 0
\(359\) 14.6393i 0.772634i −0.922366 0.386317i \(-0.873747\pi\)
0.922366 0.386317i \(-0.126253\pi\)
\(360\) 0 0
\(361\) −5.58161 −0.293769
\(362\) 0 0
\(363\) −10.4725 + 10.4725i −0.549665 + 0.549665i
\(364\) 0 0
\(365\) −18.8500 11.7727i −0.986656 0.616213i
\(366\) 0 0
\(367\) 12.2264 + 12.2264i 0.638215 + 0.638215i 0.950115 0.311900i \(-0.100965\pi\)
−0.311900 + 0.950115i \(0.600965\pi\)
\(368\) 0 0
\(369\) −2.91664 −0.151834
\(370\) 0 0
\(371\) −8.66319 18.8545i −0.449770 0.978878i
\(372\) 0 0
\(373\) 14.8689 + 14.8689i 0.769880 + 0.769880i 0.978085 0.208205i \(-0.0667621\pi\)
−0.208205 + 0.978085i \(0.566762\pi\)
\(374\) 0 0
\(375\) 11.1199 + 1.16093i 0.574229 + 0.0599499i
\(376\) 0 0
\(377\) 4.00584 + 4.00584i 0.206311 + 0.206311i
\(378\) 0 0
\(379\) 26.4447i 1.35837i −0.733967 0.679185i \(-0.762333\pi\)
0.733967 0.679185i \(-0.237667\pi\)
\(380\) 0 0
\(381\) 14.4804i 0.741856i
\(382\) 0 0
\(383\) −6.67462 + 6.67462i −0.341057 + 0.341057i −0.856765 0.515707i \(-0.827529\pi\)
0.515707 + 0.856765i \(0.327529\pi\)
\(384\) 0 0
\(385\) −3.82378 + 29.8118i −0.194878 + 1.51935i
\(386\) 0 0
\(387\) 6.86314 6.86314i 0.348873 0.348873i
\(388\) 0 0
\(389\) 11.5269i 0.584436i −0.956352 0.292218i \(-0.905607\pi\)
0.956352 0.292218i \(-0.0943933\pi\)
\(390\) 0 0
\(391\) 3.35561i 0.169700i
\(392\) 0 0
\(393\) −4.95041 4.95041i −0.249715 0.249715i
\(394\) 0 0
\(395\) 26.0371 6.01750i 1.31007 0.302773i
\(396\) 0 0
\(397\) 5.96065 + 5.96065i 0.299156 + 0.299156i 0.840683 0.541527i \(-0.182154\pi\)
−0.541527 + 0.840683i \(0.682154\pi\)
\(398\) 0 0
\(399\) −8.80655 + 4.04640i −0.440879 + 0.202573i
\(400\) 0 0
\(401\) −13.9884 −0.698549 −0.349275 0.937020i \(-0.613572\pi\)
−0.349275 + 0.937020i \(0.613572\pi\)
\(402\) 0 0
\(403\) 33.3256 + 33.3256i 1.66007 + 1.66007i
\(404\) 0 0
\(405\) −0.503511 2.17864i −0.0250197 0.108258i
\(406\) 0 0
\(407\) 25.1809 25.1809i 1.24817 1.24817i
\(408\) 0 0
\(409\) −12.3032 −0.608355 −0.304177 0.952615i \(-0.598382\pi\)
−0.304177 + 0.952615i \(0.598382\pi\)
\(410\) 0 0
\(411\) 10.7332i 0.529428i
\(412\) 0 0
\(413\) 3.71947 + 1.37752i 0.183023 + 0.0677835i
\(414\) 0 0
\(415\) 14.3083 + 8.93623i 0.702369 + 0.438662i
\(416\) 0 0
\(417\) −2.10522 + 2.10522i −0.103093 + 0.103093i
\(418\) 0 0
\(419\) 37.8137 1.84732 0.923660 0.383213i \(-0.125182\pi\)
0.923660 + 0.383213i \(0.125182\pi\)
\(420\) 0 0
\(421\) −25.0323 −1.22000 −0.610001 0.792401i \(-0.708831\pi\)
−0.610001 + 0.792401i \(0.708831\pi\)
\(422\) 0 0
\(423\) −1.97475 + 1.97475i −0.0960156 + 0.0960156i
\(424\) 0 0
\(425\) −18.9675 6.52118i −0.920057 0.316324i
\(426\) 0 0
\(427\) −11.3808 + 30.7294i −0.550755 + 1.48710i
\(428\) 0 0
\(429\) 27.2782i 1.31701i
\(430\) 0 0
\(431\) −8.96315 −0.431740 −0.215870 0.976422i \(-0.569259\pi\)
−0.215870 + 0.976422i \(0.569259\pi\)
\(432\) 0 0
\(433\) −10.3418 + 10.3418i −0.496994 + 0.496994i −0.910501 0.413507i \(-0.864304\pi\)
0.413507 + 0.910501i \(0.364304\pi\)
\(434\) 0 0
\(435\) −1.24975 + 2.00105i −0.0599209 + 0.0959430i
\(436\) 0 0
\(437\) 2.16674 + 2.16674i 0.103649 + 0.103649i
\(438\) 0 0
\(439\) −18.1867 −0.868004 −0.434002 0.900912i \(-0.642899\pi\)
−0.434002 + 0.900912i \(0.642899\pi\)
\(440\) 0 0
\(441\) 4.55957 5.31134i 0.217122 0.252921i
\(442\) 0 0
\(443\) −11.5143 11.5143i −0.547059 0.547059i 0.378530 0.925589i \(-0.376430\pi\)
−0.925589 + 0.378530i \(0.876430\pi\)
\(444\) 0 0
\(445\) −0.884747 3.82821i −0.0419410 0.181474i
\(446\) 0 0
\(447\) −0.582406 0.582406i −0.0275468 0.0275468i
\(448\) 0 0
\(449\) 27.6618i 1.30544i 0.757598 + 0.652721i \(0.226373\pi\)
−0.757598 + 0.652721i \(0.773627\pi\)
\(450\) 0 0
\(451\) 14.8177i 0.697736i
\(452\) 0 0
\(453\) −9.90343 + 9.90343i −0.465304 + 0.465304i
\(454\) 0 0
\(455\) −19.4214 25.1365i −0.910487 1.17842i
\(456\) 0 0
\(457\) 15.6299 15.6299i 0.731135 0.731135i −0.239710 0.970845i \(-0.577052\pi\)
0.970845 + 0.239710i \(0.0770523\pi\)
\(458\) 0 0
\(459\) 4.01144i 0.187238i
\(460\) 0 0
\(461\) 31.1692i 1.45170i 0.687855 + 0.725848i \(0.258552\pi\)
−0.687855 + 0.725848i \(0.741448\pi\)
\(462\) 0 0
\(463\) 11.6018 + 11.6018i 0.539181 + 0.539181i 0.923288 0.384108i \(-0.125491\pi\)
−0.384108 + 0.923288i \(0.625491\pi\)
\(464\) 0 0
\(465\) −10.3970 + 16.6473i −0.482149 + 0.771998i
\(466\) 0 0
\(467\) −21.0876 21.0876i −0.975817 0.975817i 0.0238976 0.999714i \(-0.492392\pi\)
−0.999714 + 0.0238976i \(0.992392\pi\)
\(468\) 0 0
\(469\) −14.6366 + 6.72516i −0.675855 + 0.310539i
\(470\) 0 0
\(471\) 7.74727 0.356975
\(472\) 0 0
\(473\) 34.8675 + 34.8675i 1.60321 + 1.60321i
\(474\) 0 0
\(475\) −16.4582 + 8.03665i −0.755154 + 0.368747i
\(476\) 0 0
\(477\) −5.54555 + 5.54555i −0.253913 + 0.253913i
\(478\) 0 0
\(479\) 33.9667 1.55198 0.775989 0.630746i \(-0.217251\pi\)
0.775989 + 0.630746i \(0.217251\pi\)
\(480\) 0 0
\(481\) 37.6363i 1.71607i
\(482\) 0 0
\(483\) −2.07543 0.768647i −0.0944355 0.0349747i
\(484\) 0 0
\(485\) −5.46433 + 8.74927i −0.248122 + 0.397284i
\(486\) 0 0
\(487\) 5.25831 5.25831i 0.238277 0.238277i −0.577860 0.816136i \(-0.696112\pi\)
0.816136 + 0.577860i \(0.196112\pi\)
\(488\) 0 0
\(489\) −11.2377 −0.508187
\(490\) 0 0
\(491\) 13.1492 0.593416 0.296708 0.954968i \(-0.404111\pi\)
0.296708 + 0.954968i \(0.404111\pi\)
\(492\) 0 0
\(493\) 2.99278 2.99278i 0.134788 0.134788i
\(494\) 0 0
\(495\) 11.0684 2.55803i 0.497485 0.114975i
\(496\) 0 0
\(497\) −24.5121 9.07817i −1.09952 0.407211i
\(498\) 0 0
\(499\) 7.15984i 0.320519i 0.987075 + 0.160259i \(0.0512330\pi\)
−0.987075 + 0.160259i \(0.948767\pi\)
\(500\) 0 0
\(501\) 5.10384 0.228023
\(502\) 0 0
\(503\) 14.6373 14.6373i 0.652646 0.652646i −0.300983 0.953629i \(-0.597315\pi\)
0.953629 + 0.300983i \(0.0973148\pi\)
\(504\) 0 0
\(505\) 12.7066 2.93665i 0.565435 0.130679i
\(506\) 0 0
\(507\) 11.1932 + 11.1932i 0.497107 + 0.497107i
\(508\) 0 0
\(509\) 37.3089 1.65369 0.826844 0.562432i \(-0.190134\pi\)
0.826844 + 0.562432i \(0.190134\pi\)
\(510\) 0 0
\(511\) −23.8946 + 10.9790i −1.05703 + 0.485682i
\(512\) 0 0
\(513\) 2.59021 + 2.59021i 0.114361 + 0.114361i
\(514\) 0 0
\(515\) −29.0483 18.1420i −1.28002 0.799432i
\(516\) 0 0
\(517\) −10.0325 10.0325i −0.441229 0.441229i
\(518\) 0 0
\(519\) 19.6034i 0.860495i
\(520\) 0 0
\(521\) 21.3380i 0.934835i −0.884037 0.467418i \(-0.845184\pi\)
0.884037 0.467418i \(-0.154816\pi\)
\(522\) 0 0
\(523\) 29.0131 29.0131i 1.26865 1.26865i 0.321869 0.946784i \(-0.395689\pi\)
0.946784 0.321869i \(-0.104311\pi\)
\(524\) 0 0
\(525\) 8.37809 10.2376i 0.365650 0.446804i
\(526\) 0 0
\(527\) 24.8977 24.8977i 1.08456 1.08456i
\(528\) 0 0
\(529\) 22.3003i 0.969576i
\(530\) 0 0
\(531\) 1.49914i 0.0650573i
\(532\) 0 0
\(533\) 11.0735 + 11.0735i 0.479648 + 0.479648i
\(534\) 0 0
\(535\) −19.9206 12.4413i −0.861242 0.537886i
\(536\) 0 0
\(537\) 3.95751 + 3.95751i 0.170779 + 0.170779i
\(538\) 0 0
\(539\) 26.9837 + 23.1644i 1.16227 + 0.997761i
\(540\) 0 0
\(541\) −8.65845 −0.372256 −0.186128 0.982526i \(-0.559594\pi\)
−0.186128 + 0.982526i \(0.559594\pi\)
\(542\) 0 0
\(543\) 3.62655 + 3.62655i 0.155630 + 0.155630i
\(544\) 0 0
\(545\) −43.1991 + 9.98386i −1.85045 + 0.427662i
\(546\) 0 0
\(547\) 14.4212 14.4212i 0.616607 0.616607i −0.328053 0.944659i \(-0.606392\pi\)
0.944659 + 0.328053i \(0.106392\pi\)
\(548\) 0 0
\(549\) 12.3856 0.528603
\(550\) 0 0
\(551\) 3.86491i 0.164651i
\(552\) 0 0
\(553\) 10.9815 29.6513i 0.466982 1.26090i
\(554\) 0 0
\(555\) −15.2712 + 3.52937i −0.648227 + 0.149813i
\(556\) 0 0
\(557\) −27.5065 + 27.5065i −1.16549 + 1.16549i −0.182234 + 0.983255i \(0.558333\pi\)
−0.983255 + 0.182234i \(0.941667\pi\)
\(558\) 0 0
\(559\) −52.1143 −2.20420
\(560\) 0 0
\(561\) −20.3797 −0.860430
\(562\) 0 0
\(563\) −21.2610 + 21.2610i −0.896045 + 0.896045i −0.995084 0.0990389i \(-0.968423\pi\)
0.0990389 + 0.995084i \(0.468423\pi\)
\(564\) 0 0
\(565\) 14.7065 23.5475i 0.618707 0.990649i
\(566\) 0 0
\(567\) −2.48106 0.918874i −0.104195 0.0385891i
\(568\) 0 0
\(569\) 10.3990i 0.435951i −0.975954 0.217975i \(-0.930055\pi\)
0.975954 0.217975i \(-0.0699452\pi\)
\(570\) 0 0
\(571\) 3.29077 0.137714 0.0688572 0.997627i \(-0.478065\pi\)
0.0688572 + 0.997627i \(0.478065\pi\)
\(572\) 0 0
\(573\) 14.6863 14.6863i 0.613529 0.613529i
\(574\) 0 0
\(575\) −3.95531 1.35987i −0.164948 0.0567105i
\(576\) 0 0
\(577\) 2.14044 + 2.14044i 0.0891077 + 0.0891077i 0.750256 0.661148i \(-0.229930\pi\)
−0.661148 + 0.750256i \(0.729930\pi\)
\(578\) 0 0
\(579\) −12.3145 −0.511775
\(580\) 0 0
\(581\) 18.1375 8.33373i 0.752469 0.345741i
\(582\) 0 0
\(583\) −28.1736 28.1736i −1.16683 1.16683i
\(584\) 0 0
\(585\) −6.35993 + 10.1833i −0.262951 + 0.421026i
\(586\) 0 0
\(587\) −30.3080 30.3080i −1.25095 1.25095i −0.955296 0.295650i \(-0.904464\pi\)
−0.295650 0.955296i \(-0.595536\pi\)
\(588\) 0 0
\(589\) 32.1532i 1.32485i
\(590\) 0 0
\(591\) 23.4003i 0.962562i
\(592\) 0 0
\(593\) −17.1981 + 17.1981i −0.706240 + 0.706240i −0.965742 0.259503i \(-0.916441\pi\)
0.259503 + 0.965742i \(0.416441\pi\)
\(594\) 0 0
\(595\) −18.7796 + 14.5098i −0.769888 + 0.594842i
\(596\) 0 0
\(597\) 13.2447 13.2447i 0.542071 0.542071i
\(598\) 0 0
\(599\) 11.8799i 0.485398i 0.970102 + 0.242699i \(0.0780327\pi\)
−0.970102 + 0.242699i \(0.921967\pi\)
\(600\) 0 0
\(601\) 22.3993i 0.913688i −0.889547 0.456844i \(-0.848980\pi\)
0.889547 0.456844i \(-0.151020\pi\)
\(602\) 0 0
\(603\) 4.30496 + 4.30496i 0.175312 + 0.175312i
\(604\) 0 0
\(605\) 7.45720 + 32.2665i 0.303178 + 1.31182i
\(606\) 0 0
\(607\) 8.64290 + 8.64290i 0.350805 + 0.350805i 0.860409 0.509604i \(-0.170208\pi\)
−0.509604 + 0.860409i \(0.670208\pi\)
\(608\) 0 0
\(609\) 1.16549 + 2.53656i 0.0472280 + 0.102787i
\(610\) 0 0
\(611\) 14.9950 0.606632
\(612\) 0 0
\(613\) −9.65057 9.65057i −0.389783 0.389783i 0.484827 0.874610i \(-0.338882\pi\)
−0.874610 + 0.484827i \(0.838882\pi\)
\(614\) 0 0
\(615\) −3.45474 + 5.53160i −0.139309 + 0.223056i
\(616\) 0 0
\(617\) 7.44264 7.44264i 0.299629 0.299629i −0.541239 0.840869i \(-0.682045\pi\)
0.840869 + 0.541239i \(0.182045\pi\)
\(618\) 0 0
\(619\) 8.47487 0.340634 0.170317 0.985389i \(-0.445521\pi\)
0.170317 + 0.985389i \(0.445521\pi\)
\(620\) 0 0
\(621\) 0.836510i 0.0335680i
\(622\) 0 0
\(623\) −4.35961 1.61460i −0.174664 0.0646877i
\(624\) 0 0
\(625\) 15.3733 19.7145i 0.614930 0.788582i
\(626\) 0 0
\(627\) −13.1593 + 13.1593i −0.525531 + 0.525531i
\(628\) 0 0
\(629\) 28.1182 1.12115
\(630\) 0 0
\(631\) 9.06900 0.361031 0.180516 0.983572i \(-0.442223\pi\)
0.180516 + 0.983572i \(0.442223\pi\)
\(632\) 0 0
\(633\) −2.44993 + 2.44993i −0.0973758 + 0.0973758i
\(634\) 0 0
\(635\) 27.4632 + 17.1520i 1.08984 + 0.680657i
\(636\) 0 0
\(637\) −37.4767 + 2.85424i −1.48488 + 0.113089i
\(638\) 0 0
\(639\) 9.87966i 0.390833i
\(640\) 0 0
\(641\) 9.82777 0.388174 0.194087 0.980984i \(-0.437826\pi\)
0.194087 + 0.980984i \(0.437826\pi\)
\(642\) 0 0
\(643\) 15.5098 15.5098i 0.611648 0.611648i −0.331727 0.943375i \(-0.607631\pi\)
0.943375 + 0.331727i \(0.107631\pi\)
\(644\) 0 0
\(645\) −4.88705 21.1458i −0.192428 0.832614i
\(646\) 0 0
\(647\) −9.72240 9.72240i −0.382227 0.382227i 0.489677 0.871904i \(-0.337115\pi\)
−0.871904 + 0.489677i \(0.837115\pi\)
\(648\) 0 0
\(649\) 7.61624 0.298963
\(650\) 0 0
\(651\) 9.69600 + 21.1023i 0.380016 + 0.827065i
\(652\) 0 0
\(653\) 4.17455 + 4.17455i 0.163363 + 0.163363i 0.784055 0.620692i \(-0.213148\pi\)
−0.620692 + 0.784055i \(0.713148\pi\)
\(654\) 0 0
\(655\) −15.2525 + 3.52505i −0.595965 + 0.137735i
\(656\) 0 0
\(657\) 7.02795 + 7.02795i 0.274187 + 0.274187i
\(658\) 0 0
\(659\) 8.93891i 0.348210i 0.984727 + 0.174105i \(0.0557033\pi\)
−0.984727 + 0.174105i \(0.944297\pi\)
\(660\) 0 0
\(661\) 18.8737i 0.734103i 0.930201 + 0.367052i \(0.119633\pi\)
−0.930201 + 0.367052i \(0.880367\pi\)
\(662\) 0 0
\(663\) 15.2301 15.2301i 0.591489 0.591489i
\(664\) 0 0
\(665\) −2.75706 + 21.4952i −0.106914 + 0.833547i
\(666\) 0 0
\(667\) 0.624088 0.624088i 0.0241648 0.0241648i
\(668\) 0 0
\(669\) 6.10959i 0.236210i
\(670\) 0 0
\(671\) 62.9236i 2.42914i
\(672\) 0 0
\(673\) 7.82024 + 7.82024i 0.301448 + 0.301448i 0.841580 0.540132i \(-0.181626\pi\)
−0.540132 + 0.841580i \(0.681626\pi\)
\(674\) 0 0
\(675\) −4.72835 1.62565i −0.181994 0.0625712i
\(676\) 0 0
\(677\) 0.751759 + 0.751759i 0.0288925 + 0.0288925i 0.721405 0.692513i \(-0.243496\pi\)
−0.692513 + 0.721405i \(0.743496\pi\)
\(678\) 0 0
\(679\) 5.09591 + 11.0907i 0.195563 + 0.425622i
\(680\) 0 0
\(681\) −8.01602 −0.307175
\(682\) 0 0
\(683\) 8.20512 + 8.20512i 0.313960 + 0.313960i 0.846442 0.532482i \(-0.178740\pi\)
−0.532482 + 0.846442i \(0.678740\pi\)
\(684\) 0 0
\(685\) −20.3562 12.7134i −0.777770 0.485754i
\(686\) 0 0
\(687\) 8.99258 8.99258i 0.343088 0.343088i
\(688\) 0 0
\(689\) 42.1093 1.60424
\(690\) 0 0
\(691\) 10.5920i 0.402939i 0.979495 + 0.201469i \(0.0645717\pi\)
−0.979495 + 0.201469i \(0.935428\pi\)
\(692\) 0 0
\(693\) 4.66824 12.6048i 0.177332 0.478816i
\(694\) 0 0
\(695\) 1.49907 + 6.48631i 0.0568628 + 0.246040i
\(696\) 0 0
\(697\) 8.27308 8.27308i 0.313365 0.313365i
\(698\) 0 0
\(699\) −9.60864 −0.363432
\(700\) 0 0
\(701\) 31.8176 1.20173 0.600867 0.799349i \(-0.294822\pi\)
0.600867 + 0.799349i \(0.294822\pi\)
\(702\) 0 0
\(703\) 18.1561 18.1561i 0.684772 0.684772i
\(704\) 0 0
\(705\) 1.40616 + 6.08433i 0.0529592 + 0.229149i
\(706\) 0 0
\(707\) 5.35919 14.4704i 0.201553 0.544215i
\(708\) 0 0
\(709\) 42.1965i 1.58472i 0.610053 + 0.792361i \(0.291148\pi\)
−0.610053 + 0.792361i \(0.708852\pi\)
\(710\) 0 0
\(711\) −11.9511 −0.448200
\(712\) 0 0
\(713\) 5.19195 5.19195i 0.194440 0.194440i
\(714\) 0 0
\(715\) −51.7350 32.3109i −1.93478 1.20836i
\(716\) 0 0
\(717\) 19.9750 + 19.9750i 0.745979 + 0.745979i
\(718\) 0 0
\(719\) 1.40331 0.0523347 0.0261673 0.999658i \(-0.491670\pi\)
0.0261673 + 0.999658i \(0.491670\pi\)
\(720\) 0 0
\(721\) −36.8220 + 16.9188i −1.37132 + 0.630090i
\(722\) 0 0
\(723\) 4.79983 + 4.79983i 0.178508 + 0.178508i
\(724\) 0 0
\(725\) 2.31480 + 4.74047i 0.0859697 + 0.176057i
\(726\) 0 0
\(727\) 35.1101 + 35.1101i 1.30216 + 1.30216i 0.926933 + 0.375227i \(0.122435\pi\)
0.375227 + 0.926933i \(0.377565\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 38.9348i 1.44006i
\(732\) 0 0
\(733\) −27.0142 + 27.0142i −0.997794 + 0.997794i −0.999998 0.00220403i \(-0.999298\pi\)
0.00220403 + 0.999998i \(0.499298\pi\)
\(734\) 0 0
\(735\) −4.67253 14.9388i −0.172349 0.551026i
\(736\) 0 0
\(737\) −21.8709 + 21.8709i −0.805625 + 0.805625i
\(738\) 0 0
\(739\) 23.2327i 0.854629i 0.904103 + 0.427315i \(0.140540\pi\)
−0.904103 + 0.427315i \(0.859460\pi\)
\(740\) 0 0
\(741\) 19.6684i 0.722537i
\(742\) 0 0
\(743\) −29.5948 29.5948i −1.08573 1.08573i −0.995963 0.0897655i \(-0.971388\pi\)
−0.0897655 0.995963i \(-0.528612\pi\)
\(744\) 0 0
\(745\) −1.79443 + 0.414715i −0.0657428 + 0.0151940i
\(746\) 0 0
\(747\) −5.33465 5.33465i −0.195185 0.195185i
\(748\) 0 0
\(749\) −25.2516 + 11.6025i −0.922674 + 0.423946i
\(750\) 0 0
\(751\) −38.7569 −1.41426 −0.707129 0.707084i \(-0.750010\pi\)
−0.707129 + 0.707084i \(0.750010\pi\)
\(752\) 0 0
\(753\) 13.2586 + 13.2586i 0.483172 + 0.483172i
\(754\) 0 0
\(755\) 7.05196 + 30.5131i 0.256647 + 1.11049i
\(756\) 0 0
\(757\) 6.96551 6.96551i 0.253166 0.253166i −0.569101 0.822267i \(-0.692709\pi\)
0.822267 + 0.569101i \(0.192709\pi\)
\(758\) 0 0
\(759\) −4.24980 −0.154258
\(760\) 0 0
\(761\) 50.6708i 1.83681i −0.395637 0.918407i \(-0.629476\pi\)
0.395637 0.918407i \(-0.370524\pi\)
\(762\) 0 0
\(763\) −18.2199 + 49.1957i −0.659604 + 1.78100i
\(764\) 0 0
\(765\) 7.60796 + 4.75153i 0.275066 + 0.171792i
\(766\) 0 0
\(767\) −5.69177 + 5.69177i −0.205518 + 0.205518i
\(768\) 0 0
\(769\) 46.6219 1.68123 0.840615 0.541633i \(-0.182194\pi\)
0.840615 + 0.541633i \(0.182194\pi\)
\(770\) 0 0
\(771\) 7.61164 0.274126
\(772\) 0 0
\(773\) −1.27891 + 1.27891i −0.0459993 + 0.0459993i −0.729732 0.683733i \(-0.760355\pi\)
0.683733 + 0.729732i \(0.260355\pi\)
\(774\) 0 0
\(775\) 19.2575 + 39.4372i 0.691748 + 1.41663i
\(776\) 0 0
\(777\) −6.44087 + 17.3911i −0.231065 + 0.623900i
\(778\) 0 0
\(779\) 10.6840i 0.382793i
\(780\) 0 0
\(781\) −50.1926 −1.79603
\(782\) 0 0
\(783\) 0.746061 0.746061i 0.0266621 0.0266621i
\(784\) 0 0
\(785\) 9.17661 14.6932i 0.327527 0.524424i
\(786\) 0 0
\(787\) 2.35551 + 2.35551i 0.0839648 + 0.0839648i 0.747842 0.663877i \(-0.231090\pi\)
−0.663877 + 0.747842i \(0.731090\pi\)
\(788\) 0 0
\(789\) −12.4663 −0.443811
\(790\) 0 0
\(791\) −13.7149 29.8491i −0.487647 1.06131i
\(792\) 0 0
\(793\) −47.0240 47.0240i −1.66987 1.66987i
\(794\) 0 0
\(795\) 3.94883 + 17.0862i 0.140051 + 0.605985i
\(796\) 0 0
\(797\) 9.61236 + 9.61236i 0.340487 + 0.340487i 0.856551 0.516063i \(-0.172603\pi\)
−0.516063 + 0.856551i \(0.672603\pi\)
\(798\) 0 0
\(799\) 11.2028i 0.396327i
\(800\) 0 0
\(801\) 1.75715i 0.0620860i
\(802\) 0 0
\(803\) −35.7048 + 35.7048i −1.25999 + 1.25999i
\(804\) 0 0
\(805\) −3.91613 + 3.02574i −0.138026 + 0.106643i
\(806\) 0 0
\(807\) 15.0751 15.0751i 0.530669 0.530669i
\(808\) 0 0
\(809\) 44.2735i 1.55657i 0.627909 + 0.778287i \(0.283911\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(810\) 0 0
\(811\) 11.3215i 0.397552i 0.980045 + 0.198776i \(0.0636966\pi\)
−0.980045 + 0.198776i \(0.936303\pi\)
\(812\) 0 0
\(813\) 9.14652 + 9.14652i 0.320782 + 0.320782i
\(814\) 0 0
\(815\) −13.3110 + 21.3131i −0.466265 + 0.746565i
\(816\) 0 0
\(817\) 25.1405 + 25.1405i 0.879553 + 0.879553i
\(818\) 0 0
\(819\) 5.93113 + 12.9085i 0.207250 + 0.451058i
\(820\) 0 0
\(821\) 1.84371 0.0643458 0.0321729 0.999482i \(-0.489757\pi\)
0.0321729 + 0.999482i \(0.489757\pi\)
\(822\) 0 0
\(823\) −30.7730 30.7730i −1.07268 1.07268i −0.997143 0.0755344i \(-0.975934\pi\)
−0.0755344 0.997143i \(-0.524066\pi\)
\(824\) 0 0
\(825\) 8.25893 24.0219i 0.287539 0.836334i
\(826\) 0 0
\(827\) −27.0430 + 27.0430i −0.940376 + 0.940376i −0.998320 0.0579435i \(-0.981546\pi\)
0.0579435 + 0.998320i \(0.481546\pi\)
\(828\) 0 0
\(829\) −5.40143 −0.187599 −0.0937997 0.995591i \(-0.529901\pi\)
−0.0937997 + 0.995591i \(0.529901\pi\)
\(830\) 0 0
\(831\) 21.4722i 0.744862i
\(832\) 0 0
\(833\) 2.13241 + 27.9990i 0.0738837 + 0.970107i
\(834\) 0 0
\(835\) 6.04548 9.67978i 0.209212 0.334983i
\(836\) 0 0
\(837\) 6.20668 6.20668i 0.214534 0.214534i
\(838\) 0 0
\(839\) 26.0436 0.899125 0.449562 0.893249i \(-0.351580\pi\)
0.449562 + 0.893249i \(0.351580\pi\)
\(840\) 0 0
\(841\) 27.8868 0.961613
\(842\) 0 0
\(843\) −14.7210 + 14.7210i −0.507018 + 0.507018i
\(844\) 0 0
\(845\) 34.4869 7.97036i 1.18639 0.274189i
\(846\) 0 0
\(847\) 36.7455 + 13.6089i 1.26259 + 0.467607i
\(848\) 0 0
\(849\) 7.56642i 0.259679i
\(850\) 0 0
\(851\) 5.86353 0.200999
\(852\) 0 0
\(853\) −3.78906 + 3.78906i −0.129735 + 0.129735i −0.768993 0.639258i \(-0.779242\pi\)
0.639258 + 0.768993i \(0.279242\pi\)
\(854\) 0 0
\(855\) 7.98061 1.84442i 0.272931 0.0630778i
\(856\) 0 0
\(857\) −36.7692 36.7692i −1.25601 1.25601i −0.952980 0.303032i \(-0.902001\pi\)
−0.303032 0.952980i \(-0.597999\pi\)
\(858\) 0 0
\(859\) −33.1556 −1.13125 −0.565626 0.824662i \(-0.691366\pi\)
−0.565626 + 0.824662i \(0.691366\pi\)
\(860\) 0 0
\(861\) 3.22182 + 7.01194i 0.109799 + 0.238966i
\(862\) 0 0
\(863\) 1.68139 + 1.68139i 0.0572350 + 0.0572350i 0.735145 0.677910i \(-0.237114\pi\)
−0.677910 + 0.735145i \(0.737114\pi\)
\(864\) 0 0
\(865\) 37.1792 + 23.2202i 1.26413 + 0.789509i
\(866\) 0 0
\(867\) 0.642324 + 0.642324i 0.0218145 + 0.0218145i
\(868\) 0 0
\(869\) 60.7161i 2.05965i
\(870\) 0 0
\(871\) 32.6891i 1.10763i
\(872\) 0 0
\(873\) 3.26203 3.26203i 0.110403 0.110403i
\(874\) 0 0
\(875\) −9.49242 28.0160i −0.320902 0.947112i
\(876\) 0 0
\(877\) −2.69980 + 2.69980i −0.0911658 + 0.0911658i −0.751219 0.660053i \(-0.770534\pi\)
0.660053 + 0.751219i \(0.270534\pi\)
\(878\) 0 0
\(879\) 25.5430i 0.861545i
\(880\) 0 0
\(881\) 44.2080i 1.48940i 0.667397 + 0.744702i \(0.267408\pi\)
−0.667397 + 0.744702i \(0.732592\pi\)
\(882\) 0 0
\(883\) −13.9894 13.9894i −0.470781 0.470781i 0.431386 0.902167i \(-0.358025\pi\)
−0.902167 + 0.431386i \(0.858025\pi\)
\(884\) 0 0
\(885\) −2.84323 1.77573i −0.0955740 0.0596905i
\(886\) 0 0
\(887\) 25.3656 + 25.3656i 0.851693 + 0.851693i 0.990342 0.138649i \(-0.0442760\pi\)
−0.138649 + 0.990342i \(0.544276\pi\)
\(888\) 0 0
\(889\) 34.8127 15.9956i 1.16758 0.536475i
\(890\) 0 0
\(891\) −5.08039 −0.170200
\(892\) 0 0
\(893\) −7.23373 7.23373i −0.242067 0.242067i
\(894\) 0 0
\(895\) 12.1933 2.81803i 0.407578 0.0941964i
\(896\) 0 0
\(897\) 3.17596 3.17596i 0.106042 0.106042i
\(898\) 0 0
\(899\) −9.26113 −0.308876
\(900\) 0 0
\(901\) 31.4600i 1.04809i
\(902\) 0 0
\(903\) −24.0811 8.91855i −0.801368 0.296791i
\(904\) 0 0
\(905\) 11.1736 2.58237i 0.371425 0.0858409i
\(906\) 0 0
\(907\) −19.2797 + 19.2797i −0.640170 + 0.640170i −0.950597 0.310427i \(-0.899528\pi\)
0.310427 + 0.950597i \(0.399528\pi\)
\(908\) 0 0
\(909\) −5.83234 −0.193446
\(910\) 0 0
\(911\) 40.8927 1.35484 0.677418 0.735598i \(-0.263099\pi\)
0.677418 + 0.735598i \(0.263099\pi\)
\(912\) 0 0
\(913\) 27.1021 27.1021i 0.896949 0.896949i
\(914\) 0 0
\(915\) 14.6707 23.4901i 0.484997 0.776558i
\(916\) 0 0
\(917\) −6.43298 + 17.3698i −0.212436 + 0.573600i
\(918\) 0 0
\(919\) 21.9749i 0.724886i 0.932006 + 0.362443i \(0.118057\pi\)
−0.932006 + 0.362443i \(0.881943\pi\)
\(920\) 0 0
\(921\) 13.0846 0.431152
\(922\) 0 0
\(923\) 37.5099 37.5099i 1.23465 1.23465i
\(924\) 0 0
\(925\) −11.3950 + 33.1434i −0.374665 + 1.08975i
\(926\) 0 0
\(927\) 10.8302 + 10.8302i 0.355711 + 0.355711i
\(928\) 0 0
\(929\) 22.1143 0.725546 0.362773 0.931878i \(-0.381830\pi\)
0.362773 + 0.931878i \(0.381830\pi\)
\(930\) 0 0
\(931\) 19.4560 + 16.7022i 0.637646 + 0.547393i
\(932\) 0 0
\(933\) 14.1849 + 14.1849i 0.464391 + 0.464391i
\(934\) 0 0
\(935\) −24.1396 + 38.6514i −0.789450 + 1.26404i
\(936\) 0 0
\(937\) −10.7013 10.7013i −0.349595 0.349595i 0.510364 0.859959i \(-0.329511\pi\)
−0.859959 + 0.510364i \(0.829511\pi\)
\(938\) 0 0
\(939\) 20.6595i 0.674197i
\(940\) 0 0
\(941\) 12.6198i 0.411394i 0.978616 + 0.205697i \(0.0659461\pi\)
−0.978616 + 0.205697i \(0.934054\pi\)
\(942\) 0 0
\(943\) 1.72520 1.72520i 0.0561801 0.0561801i
\(944\) 0 0
\(945\) −4.68151 + 3.61710i −0.152290 + 0.117664i
\(946\) 0 0
\(947\) 8.86560 8.86560i 0.288093 0.288093i −0.548233 0.836326i \(-0.684699\pi\)
0.836326 + 0.548233i \(0.184699\pi\)
\(948\) 0 0
\(949\) 53.3658i 1.73233i
\(950\) 0 0
\(951\) 31.9239i 1.03520i
\(952\) 0 0
\(953\) −33.3776 33.3776i −1.08121 1.08121i −0.996397 0.0848083i \(-0.972972\pi\)
−0.0848083 0.996397i \(-0.527028\pi\)
\(954\) 0 0
\(955\) −10.4577 45.2494i −0.338404 1.46424i
\(956\) 0 0
\(957\) 3.79028 + 3.79028i 0.122522 + 0.122522i
\(958\) 0 0
\(959\) −25.8038 + 11.8562i −0.833248 + 0.382857i
\(960\) 0 0
\(961\) −46.0457 −1.48535
\(962\) 0 0
\(963\) 7.42709 + 7.42709i 0.239334 + 0.239334i
\(964\) 0 0
\(965\) −14.5865 + 23.3554i −0.469557 + 0.751836i
\(966\) 0 0
\(967\) 9.46838 9.46838i 0.304483 0.304483i −0.538282 0.842765i \(-0.680926\pi\)
0.842765 + 0.538282i \(0.180926\pi\)
\(968\) 0 0
\(969\) −14.6943 −0.472050
\(970\) 0 0
\(971\) 10.3533i 0.332254i 0.986104 + 0.166127i \(0.0531261\pi\)
−0.986104 + 0.166127i \(0.946874\pi\)
\(972\) 0 0
\(973\) 7.38668 + 2.73570i 0.236806 + 0.0877024i
\(974\) 0 0
\(975\) 11.7800 + 24.1241i 0.377261 + 0.772589i
\(976\) 0 0
\(977\) 41.5769 41.5769i 1.33016 1.33016i 0.424945 0.905219i \(-0.360293\pi\)
0.905219 0.424945i \(-0.139707\pi\)
\(978\) 0 0
\(979\) −8.92703 −0.285309
\(980\) 0 0
\(981\) 19.8285 0.633075
\(982\) 0 0
\(983\) −23.4334 + 23.4334i −0.747409 + 0.747409i −0.973992 0.226583i \(-0.927245\pi\)
0.226583 + 0.973992i \(0.427245\pi\)
\(984\) 0 0
\(985\) 44.3804 + 27.7176i 1.41408 + 0.883157i
\(986\) 0 0
\(987\) 6.92890 + 2.56616i 0.220549 + 0.0816816i
\(988\) 0 0
\(989\) 8.11912i 0.258173i
\(990\) 0 0
\(991\) −1.89662 −0.0602482 −0.0301241 0.999546i \(-0.509590\pi\)
−0.0301241 + 0.999546i \(0.509590\pi\)
\(992\) 0 0
\(993\) −18.1080 + 18.1080i −0.574641 + 0.574641i
\(994\) 0 0
\(995\) −9.43121 40.8079i −0.298989 1.29370i
\(996\) 0 0
\(997\) −33.5228 33.5228i −1.06168 1.06168i −0.997968 0.0637106i \(-0.979707\pi\)
−0.0637106 0.997968i \(-0.520293\pi\)
\(998\) 0 0
\(999\) 7.00952 0.221771
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.cz.e.433.6 24
4.3 odd 2 840.2.bt.b.433.9 yes 24
5.2 odd 4 1680.2.cz.f.97.7 24
7.6 odd 2 1680.2.cz.f.433.7 24
20.7 even 4 840.2.bt.a.97.4 24
28.27 even 2 840.2.bt.a.433.4 yes 24
35.27 even 4 inner 1680.2.cz.e.97.6 24
140.27 odd 4 840.2.bt.b.97.9 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.4 24 20.7 even 4
840.2.bt.a.433.4 yes 24 28.27 even 2
840.2.bt.b.97.9 yes 24 140.27 odd 4
840.2.bt.b.433.9 yes 24 4.3 odd 2
1680.2.cz.e.97.6 24 35.27 even 4 inner
1680.2.cz.e.433.6 24 1.1 even 1 trivial
1680.2.cz.f.97.7 24 5.2 odd 4
1680.2.cz.f.433.7 24 7.6 odd 2