Properties

Label 1680.2.cz.f.433.7
Level $1680$
Weight $2$
Character 1680.433
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(97,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.cz (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.7
Character \(\chi\) \(=\) 1680.433
Dual form 1680.2.cz.f.97.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{3} +(-0.503511 - 2.17864i) q^{5} +(-0.918874 - 2.48106i) q^{7} -1.00000i q^{9} +5.08039 q^{11} +(3.79668 - 3.79668i) q^{13} +(-1.89657 - 1.18450i) q^{15} +(-2.83651 - 2.83651i) q^{17} -3.66311 q^{19} +(-2.40412 - 1.10463i) q^{21} +(0.591502 + 0.591502i) q^{23} +(-4.49295 + 2.19394i) q^{25} +(-0.707107 - 0.707107i) q^{27} -1.05509i q^{29} +8.77757i q^{31} +(3.59238 - 3.59238i) q^{33} +(-4.94268 + 3.25114i) q^{35} +(4.95648 - 4.95648i) q^{37} -5.36932i q^{39} +2.91664i q^{41} +(6.86314 + 6.86314i) q^{43} +(-2.17864 + 0.503511i) q^{45} +(1.97475 + 1.97475i) q^{47} +(-5.31134 + 4.55957i) q^{49} -4.01144 q^{51} +(-5.54555 - 5.54555i) q^{53} +(-2.55803 - 11.0684i) q^{55} +(-2.59021 + 2.59021i) q^{57} -1.49914 q^{59} -12.3856i q^{61} +(-2.48106 + 0.918874i) q^{63} +(-10.1833 - 6.35993i) q^{65} +(-4.30496 + 4.30496i) q^{67} +0.836510 q^{69} -9.87966 q^{71} +(7.02795 - 7.02795i) q^{73} +(-1.62565 + 4.72835i) q^{75} +(-4.66824 - 12.6048i) q^{77} -11.9511i q^{79} -1.00000 q^{81} +(-5.33465 + 5.33465i) q^{83} +(-4.75153 + 7.60796i) q^{85} +(-0.746061 - 0.746061i) q^{87} +1.75715 q^{89} +(-12.9085 - 5.93113i) q^{91} +(6.20668 + 6.20668i) q^{93} +(1.84442 + 7.98061i) q^{95} +(-3.26203 - 3.26203i) q^{97} -5.08039i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{7} + 8 q^{11} + 16 q^{13} - 4 q^{15} + 20 q^{17} - 8 q^{19} - 24 q^{23} - 4 q^{25} + 4 q^{37} + 16 q^{43} - 4 q^{45} + 24 q^{47} + 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 24 q^{65}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 0 0
\(5\) −0.503511 2.17864i −0.225177 0.974318i
\(6\) 0 0
\(7\) −0.918874 2.48106i −0.347302 0.937753i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 5.08039 1.53180 0.765898 0.642962i \(-0.222295\pi\)
0.765898 + 0.642962i \(0.222295\pi\)
\(12\) 0 0
\(13\) 3.79668 3.79668i 1.05301 1.05301i 0.0544954 0.998514i \(-0.482645\pi\)
0.998514 0.0544954i \(-0.0173550\pi\)
\(14\) 0 0
\(15\) −1.89657 1.18450i −0.489692 0.305835i
\(16\) 0 0
\(17\) −2.83651 2.83651i −0.687956 0.687956i 0.273824 0.961780i \(-0.411711\pi\)
−0.961780 + 0.273824i \(0.911711\pi\)
\(18\) 0 0
\(19\) −3.66311 −0.840376 −0.420188 0.907437i \(-0.638036\pi\)
−0.420188 + 0.907437i \(0.638036\pi\)
\(20\) 0 0
\(21\) −2.40412 1.10463i −0.524622 0.241051i
\(22\) 0 0
\(23\) 0.591502 + 0.591502i 0.123337 + 0.123337i 0.766081 0.642744i \(-0.222204\pi\)
−0.642744 + 0.766081i \(0.722204\pi\)
\(24\) 0 0
\(25\) −4.49295 + 2.19394i −0.898591 + 0.438788i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 1.05509i 0.195925i −0.995190 0.0979627i \(-0.968767\pi\)
0.995190 0.0979627i \(-0.0312326\pi\)
\(30\) 0 0
\(31\) 8.77757i 1.57650i 0.615357 + 0.788249i \(0.289012\pi\)
−0.615357 + 0.788249i \(0.710988\pi\)
\(32\) 0 0
\(33\) 3.59238 3.59238i 0.625353 0.625353i
\(34\) 0 0
\(35\) −4.94268 + 3.25114i −0.835465 + 0.549543i
\(36\) 0 0
\(37\) 4.95648 4.95648i 0.814840 0.814840i −0.170515 0.985355i \(-0.554543\pi\)
0.985355 + 0.170515i \(0.0545432\pi\)
\(38\) 0 0
\(39\) 5.36932i 0.859779i
\(40\) 0 0
\(41\) 2.91664i 0.455502i 0.973719 + 0.227751i \(0.0731372\pi\)
−0.973719 + 0.227751i \(0.926863\pi\)
\(42\) 0 0
\(43\) 6.86314 + 6.86314i 1.04662 + 1.04662i 0.998859 + 0.0477606i \(0.0152085\pi\)
0.0477606 + 0.998859i \(0.484792\pi\)
\(44\) 0 0
\(45\) −2.17864 + 0.503511i −0.324773 + 0.0750590i
\(46\) 0 0
\(47\) 1.97475 + 1.97475i 0.288047 + 0.288047i 0.836307 0.548261i \(-0.184710\pi\)
−0.548261 + 0.836307i \(0.684710\pi\)
\(48\) 0 0
\(49\) −5.31134 + 4.55957i −0.758763 + 0.651367i
\(50\) 0 0
\(51\) −4.01144 −0.561713
\(52\) 0 0
\(53\) −5.54555 5.54555i −0.761740 0.761740i 0.214897 0.976637i \(-0.431058\pi\)
−0.976637 + 0.214897i \(0.931058\pi\)
\(54\) 0 0
\(55\) −2.55803 11.0684i −0.344925 1.49246i
\(56\) 0 0
\(57\) −2.59021 + 2.59021i −0.343082 + 0.343082i
\(58\) 0 0
\(59\) −1.49914 −0.195172 −0.0975859 0.995227i \(-0.531112\pi\)
−0.0975859 + 0.995227i \(0.531112\pi\)
\(60\) 0 0
\(61\) 12.3856i 1.58581i −0.609345 0.792905i \(-0.708568\pi\)
0.609345 0.792905i \(-0.291432\pi\)
\(62\) 0 0
\(63\) −2.48106 + 0.918874i −0.312584 + 0.115767i
\(64\) 0 0
\(65\) −10.1833 6.35993i −1.26308 0.788852i
\(66\) 0 0
\(67\) −4.30496 + 4.30496i −0.525935 + 0.525935i −0.919358 0.393423i \(-0.871291\pi\)
0.393423 + 0.919358i \(0.371291\pi\)
\(68\) 0 0
\(69\) 0.836510 0.100704
\(70\) 0 0
\(71\) −9.87966 −1.17250 −0.586250 0.810130i \(-0.699396\pi\)
−0.586250 + 0.810130i \(0.699396\pi\)
\(72\) 0 0
\(73\) 7.02795 7.02795i 0.822560 0.822560i −0.163915 0.986474i \(-0.552412\pi\)
0.986474 + 0.163915i \(0.0524123\pi\)
\(74\) 0 0
\(75\) −1.62565 + 4.72835i −0.187714 + 0.545983i
\(76\) 0 0
\(77\) −4.66824 12.6048i −0.531996 1.43645i
\(78\) 0 0
\(79\) 11.9511i 1.34460i −0.740279 0.672300i \(-0.765306\pi\)
0.740279 0.672300i \(-0.234694\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −5.33465 + 5.33465i −0.585554 + 0.585554i −0.936424 0.350870i \(-0.885886\pi\)
0.350870 + 0.936424i \(0.385886\pi\)
\(84\) 0 0
\(85\) −4.75153 + 7.60796i −0.515376 + 0.825199i
\(86\) 0 0
\(87\) −0.746061 0.746061i −0.0799862 0.0799862i
\(88\) 0 0
\(89\) 1.75715 0.186258 0.0931290 0.995654i \(-0.470313\pi\)
0.0931290 + 0.995654i \(0.470313\pi\)
\(90\) 0 0
\(91\) −12.9085 5.93113i −1.35318 0.621751i
\(92\) 0 0
\(93\) 6.20668 + 6.20668i 0.643603 + 0.643603i
\(94\) 0 0
\(95\) 1.84442 + 7.98061i 0.189233 + 0.818793i
\(96\) 0 0
\(97\) −3.26203 3.26203i −0.331209 0.331209i 0.521836 0.853046i \(-0.325247\pi\)
−0.853046 + 0.521836i \(0.825247\pi\)
\(98\) 0 0
\(99\) 5.08039i 0.510599i
\(100\) 0 0
\(101\) 5.83234i 0.580339i 0.956975 + 0.290170i \(0.0937117\pi\)
−0.956975 + 0.290170i \(0.906288\pi\)
\(102\) 0 0
\(103\) 10.8302 10.8302i 1.06713 1.06713i 0.0695538 0.997578i \(-0.477842\pi\)
0.997578 0.0695538i \(-0.0221576\pi\)
\(104\) 0 0
\(105\) −1.19610 + 5.79391i −0.116727 + 0.565427i
\(106\) 0 0
\(107\) −7.42709 + 7.42709i −0.718003 + 0.718003i −0.968196 0.250193i \(-0.919506\pi\)
0.250193 + 0.968196i \(0.419506\pi\)
\(108\) 0 0
\(109\) 19.8285i 1.89922i 0.313428 + 0.949612i \(0.398523\pi\)
−0.313428 + 0.949612i \(0.601477\pi\)
\(110\) 0 0
\(111\) 7.00952i 0.665314i
\(112\) 0 0
\(113\) −8.77932 8.77932i −0.825889 0.825889i 0.161056 0.986945i \(-0.448510\pi\)
−0.986945 + 0.161056i \(0.948510\pi\)
\(114\) 0 0
\(115\) 0.990842 1.58650i 0.0923965 0.147942i
\(116\) 0 0
\(117\) −3.79668 3.79668i −0.351003 0.351003i
\(118\) 0 0
\(119\) −4.43117 + 9.64397i −0.406204 + 0.884061i
\(120\) 0 0
\(121\) 14.8104 1.34640
\(122\) 0 0
\(123\) 2.06237 + 2.06237i 0.185958 + 0.185958i
\(124\) 0 0
\(125\) 7.04206 + 8.68386i 0.629861 + 0.776708i
\(126\) 0 0
\(127\) 10.2392 10.2392i 0.908584 0.908584i −0.0875740 0.996158i \(-0.527911\pi\)
0.996158 + 0.0875740i \(0.0279114\pi\)
\(128\) 0 0
\(129\) 9.70595 0.854561
\(130\) 0 0
\(131\) 7.00093i 0.611674i −0.952084 0.305837i \(-0.901064\pi\)
0.952084 0.305837i \(-0.0989363\pi\)
\(132\) 0 0
\(133\) 3.36594 + 9.08841i 0.291864 + 0.788065i
\(134\) 0 0
\(135\) −1.18450 + 1.89657i −0.101945 + 0.163231i
\(136\) 0 0
\(137\) −7.58950 + 7.58950i −0.648414 + 0.648414i −0.952610 0.304195i \(-0.901612\pi\)
0.304195 + 0.952610i \(0.401612\pi\)
\(138\) 0 0
\(139\) −2.97723 −0.252525 −0.126262 0.991997i \(-0.540298\pi\)
−0.126262 + 0.991997i \(0.540298\pi\)
\(140\) 0 0
\(141\) 2.79272 0.235189
\(142\) 0 0
\(143\) 19.2886 19.2886i 1.61300 1.61300i
\(144\) 0 0
\(145\) −2.29866 + 0.531250i −0.190894 + 0.0441179i
\(146\) 0 0
\(147\) −0.531583 + 6.97979i −0.0438442 + 0.575683i
\(148\) 0 0
\(149\) 0.823646i 0.0674757i 0.999431 + 0.0337379i \(0.0107411\pi\)
−0.999431 + 0.0337379i \(0.989259\pi\)
\(150\) 0 0
\(151\) 14.0056 1.13976 0.569878 0.821729i \(-0.306990\pi\)
0.569878 + 0.821729i \(0.306990\pi\)
\(152\) 0 0
\(153\) −2.83651 + 2.83651i −0.229319 + 0.229319i
\(154\) 0 0
\(155\) 19.1232 4.41960i 1.53601 0.354991i
\(156\) 0 0
\(157\) 5.47815 + 5.47815i 0.437204 + 0.437204i 0.891070 0.453866i \(-0.149956\pi\)
−0.453866 + 0.891070i \(0.649956\pi\)
\(158\) 0 0
\(159\) −7.84259 −0.621958
\(160\) 0 0
\(161\) 0.924037 2.01107i 0.0728243 0.158494i
\(162\) 0 0
\(163\) 7.94626 + 7.94626i 0.622399 + 0.622399i 0.946144 0.323745i \(-0.104942\pi\)
−0.323745 + 0.946144i \(0.604942\pi\)
\(164\) 0 0
\(165\) −9.63531 6.01770i −0.750108 0.468477i
\(166\) 0 0
\(167\) 3.60896 + 3.60896i 0.279270 + 0.279270i 0.832817 0.553548i \(-0.186726\pi\)
−0.553548 + 0.832817i \(0.686726\pi\)
\(168\) 0 0
\(169\) 15.8296i 1.21766i
\(170\) 0 0
\(171\) 3.66311i 0.280125i
\(172\) 0 0
\(173\) −13.8617 + 13.8617i −1.05389 + 1.05389i −0.0554234 + 0.998463i \(0.517651\pi\)
−0.998463 + 0.0554234i \(0.982349\pi\)
\(174\) 0 0
\(175\) 9.57176 + 9.13134i 0.723557 + 0.690264i
\(176\) 0 0
\(177\) −1.06005 + 1.06005i −0.0796786 + 0.0796786i
\(178\) 0 0
\(179\) 5.59676i 0.418321i −0.977881 0.209161i \(-0.932927\pi\)
0.977881 0.209161i \(-0.0670732\pi\)
\(180\) 0 0
\(181\) 5.12872i 0.381215i 0.981666 + 0.190607i \(0.0610458\pi\)
−0.981666 + 0.190607i \(0.938954\pi\)
\(182\) 0 0
\(183\) −8.75792 8.75792i −0.647404 0.647404i
\(184\) 0 0
\(185\) −13.2940 8.30274i −0.977396 0.610430i
\(186\) 0 0
\(187\) −14.4106 14.4106i −1.05381 1.05381i
\(188\) 0 0
\(189\) −1.10463 + 2.40412i −0.0803503 + 0.174874i
\(190\) 0 0
\(191\) −20.7696 −1.50283 −0.751417 0.659828i \(-0.770629\pi\)
−0.751417 + 0.659828i \(0.770629\pi\)
\(192\) 0 0
\(193\) 8.70770 + 8.70770i 0.626794 + 0.626794i 0.947260 0.320466i \(-0.103840\pi\)
−0.320466 + 0.947260i \(0.603840\pi\)
\(194\) 0 0
\(195\) −11.6978 + 2.70351i −0.837698 + 0.193602i
\(196\) 0 0
\(197\) 16.5465 16.5465i 1.17889 1.17889i 0.198866 0.980027i \(-0.436274\pi\)
0.980027 0.198866i \(-0.0637258\pi\)
\(198\) 0 0
\(199\) 18.7309 1.32780 0.663898 0.747823i \(-0.268901\pi\)
0.663898 + 0.747823i \(0.268901\pi\)
\(200\) 0 0
\(201\) 6.08814i 0.429424i
\(202\) 0 0
\(203\) −2.61774 + 0.969495i −0.183730 + 0.0680452i
\(204\) 0 0
\(205\) 6.35430 1.46856i 0.443804 0.102569i
\(206\) 0 0
\(207\) 0.591502 0.591502i 0.0411122 0.0411122i
\(208\) 0 0
\(209\) −18.6100 −1.28728
\(210\) 0 0
\(211\) 3.46472 0.238521 0.119261 0.992863i \(-0.461948\pi\)
0.119261 + 0.992863i \(0.461948\pi\)
\(212\) 0 0
\(213\) −6.98598 + 6.98598i −0.478671 + 0.478671i
\(214\) 0 0
\(215\) 11.4967 18.4080i 0.784065 1.25541i
\(216\) 0 0
\(217\) 21.7777 8.06548i 1.47837 0.547521i
\(218\) 0 0
\(219\) 9.93903i 0.671617i
\(220\) 0 0
\(221\) −21.5387 −1.44885
\(222\) 0 0
\(223\) −4.32013 + 4.32013i −0.289298 + 0.289298i −0.836802 0.547505i \(-0.815578\pi\)
0.547505 + 0.836802i \(0.315578\pi\)
\(224\) 0 0
\(225\) 2.19394 + 4.49295i 0.146263 + 0.299530i
\(226\) 0 0
\(227\) −5.66818 5.66818i −0.376211 0.376211i 0.493522 0.869733i \(-0.335709\pi\)
−0.869733 + 0.493522i \(0.835709\pi\)
\(228\) 0 0
\(229\) 12.7174 0.840391 0.420196 0.907434i \(-0.361961\pi\)
0.420196 + 0.907434i \(0.361961\pi\)
\(230\) 0 0
\(231\) −12.2139 5.61197i −0.803613 0.369241i
\(232\) 0 0
\(233\) 6.79433 + 6.79433i 0.445111 + 0.445111i 0.893726 0.448614i \(-0.148082\pi\)
−0.448614 + 0.893726i \(0.648082\pi\)
\(234\) 0 0
\(235\) 3.30796 5.29658i 0.215788 0.345511i
\(236\) 0 0
\(237\) −8.45068 8.45068i −0.548931 0.548931i
\(238\) 0 0
\(239\) 28.2489i 1.82727i −0.406538 0.913634i \(-0.633264\pi\)
0.406538 0.913634i \(-0.366736\pi\)
\(240\) 0 0
\(241\) 6.78799i 0.437253i 0.975809 + 0.218626i \(0.0701576\pi\)
−0.975809 + 0.218626i \(0.929842\pi\)
\(242\) 0 0
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 12.6080 + 9.27571i 0.805494 + 0.592603i
\(246\) 0 0
\(247\) −13.9077 + 13.9077i −0.884923 + 0.884923i
\(248\) 0 0
\(249\) 7.54433i 0.478103i
\(250\) 0 0
\(251\) 18.7505i 1.18352i 0.806113 + 0.591762i \(0.201568\pi\)
−0.806113 + 0.591762i \(0.798432\pi\)
\(252\) 0 0
\(253\) 3.00506 + 3.00506i 0.188927 + 0.188927i
\(254\) 0 0
\(255\) 2.01980 + 8.73948i 0.126485 + 0.547287i
\(256\) 0 0
\(257\) 5.38224 + 5.38224i 0.335735 + 0.335735i 0.854759 0.519024i \(-0.173705\pi\)
−0.519024 + 0.854759i \(0.673705\pi\)
\(258\) 0 0
\(259\) −16.8517 7.74295i −1.04711 0.481124i
\(260\) 0 0
\(261\) −1.05509 −0.0653084
\(262\) 0 0
\(263\) 8.81499 + 8.81499i 0.543555 + 0.543555i 0.924569 0.381014i \(-0.124425\pi\)
−0.381014 + 0.924569i \(0.624425\pi\)
\(264\) 0 0
\(265\) −9.28951 + 14.8740i −0.570650 + 0.913703i
\(266\) 0 0
\(267\) 1.24250 1.24250i 0.0760395 0.0760395i
\(268\) 0 0
\(269\) 21.3194 1.29987 0.649934 0.759991i \(-0.274797\pi\)
0.649934 + 0.759991i \(0.274797\pi\)
\(270\) 0 0
\(271\) 12.9351i 0.785753i 0.919591 + 0.392877i \(0.128520\pi\)
−0.919591 + 0.392877i \(0.871480\pi\)
\(272\) 0 0
\(273\) −13.3216 + 4.93373i −0.806260 + 0.298603i
\(274\) 0 0
\(275\) −22.8260 + 11.1461i −1.37646 + 0.672134i
\(276\) 0 0
\(277\) −15.1831 + 15.1831i −0.912266 + 0.912266i −0.996450 0.0841838i \(-0.973172\pi\)
0.0841838 + 0.996450i \(0.473172\pi\)
\(278\) 0 0
\(279\) 8.77757 0.525499
\(280\) 0 0
\(281\) 20.8186 1.24193 0.620967 0.783836i \(-0.286740\pi\)
0.620967 + 0.783836i \(0.286740\pi\)
\(282\) 0 0
\(283\) −5.35026 + 5.35026i −0.318040 + 0.318040i −0.848014 0.529974i \(-0.822202\pi\)
0.529974 + 0.848014i \(0.322202\pi\)
\(284\) 0 0
\(285\) 6.94734 + 4.33894i 0.411525 + 0.257017i
\(286\) 0 0
\(287\) 7.23636 2.68002i 0.427149 0.158197i
\(288\) 0 0
\(289\) 0.908384i 0.0534343i
\(290\) 0 0
\(291\) −4.61321 −0.270431
\(292\) 0 0
\(293\) 18.0617 18.0617i 1.05517 1.05517i 0.0567868 0.998386i \(-0.481914\pi\)
0.998386 0.0567868i \(-0.0180855\pi\)
\(294\) 0 0
\(295\) 0.754836 + 3.26610i 0.0439482 + 0.190159i
\(296\) 0 0
\(297\) −3.59238 3.59238i −0.208451 0.208451i
\(298\) 0 0
\(299\) 4.49149 0.259749
\(300\) 0 0
\(301\) 10.7215 23.3342i 0.617978 1.34496i
\(302\) 0 0
\(303\) 4.12409 + 4.12409i 0.236923 + 0.236923i
\(304\) 0 0
\(305\) −26.9837 + 6.23627i −1.54508 + 0.357088i
\(306\) 0 0
\(307\) 9.25219 + 9.25219i 0.528051 + 0.528051i 0.919991 0.391940i \(-0.128196\pi\)
−0.391940 + 0.919991i \(0.628196\pi\)
\(308\) 0 0
\(309\) 15.3162i 0.871310i
\(310\) 0 0
\(311\) 20.0604i 1.13752i 0.822503 + 0.568761i \(0.192577\pi\)
−0.822503 + 0.568761i \(0.807423\pi\)
\(312\) 0 0
\(313\) 14.6085 14.6085i 0.825719 0.825719i −0.161202 0.986921i \(-0.551537\pi\)
0.986921 + 0.161202i \(0.0515371\pi\)
\(314\) 0 0
\(315\) 3.25114 + 4.94268i 0.183181 + 0.278488i
\(316\) 0 0
\(317\) 22.5736 22.5736i 1.26786 1.26786i 0.320666 0.947192i \(-0.396093\pi\)
0.947192 0.320666i \(-0.103907\pi\)
\(318\) 0 0
\(319\) 5.36027i 0.300118i
\(320\) 0 0
\(321\) 10.5035i 0.586247i
\(322\) 0 0
\(323\) 10.3905 + 10.3905i 0.578141 + 0.578141i
\(324\) 0 0
\(325\) −8.72861 + 25.3880i −0.484176 + 1.40827i
\(326\) 0 0
\(327\) 14.0209 + 14.0209i 0.775355 + 0.775355i
\(328\) 0 0
\(329\) 3.08493 6.71402i 0.170078 0.370156i
\(330\) 0 0
\(331\) 25.6086 1.40758 0.703788 0.710410i \(-0.251490\pi\)
0.703788 + 0.710410i \(0.251490\pi\)
\(332\) 0 0
\(333\) −4.95648 4.95648i −0.271613 0.271613i
\(334\) 0 0
\(335\) 11.5466 + 7.21137i 0.630856 + 0.393999i
\(336\) 0 0
\(337\) 20.4201 20.4201i 1.11236 1.11236i 0.119524 0.992831i \(-0.461863\pi\)
0.992831 0.119524i \(-0.0381369\pi\)
\(338\) 0 0
\(339\) −12.4158 −0.674335
\(340\) 0 0
\(341\) 44.5935i 2.41487i
\(342\) 0 0
\(343\) 16.1930 + 8.98810i 0.874341 + 0.485312i
\(344\) 0 0
\(345\) −0.421192 1.82245i −0.0226762 0.0981177i
\(346\) 0 0
\(347\) 4.09932 4.09932i 0.220063 0.220063i −0.588462 0.808525i \(-0.700266\pi\)
0.808525 + 0.588462i \(0.200266\pi\)
\(348\) 0 0
\(349\) −12.1807 −0.652020 −0.326010 0.945366i \(-0.605704\pi\)
−0.326010 + 0.945366i \(0.605704\pi\)
\(350\) 0 0
\(351\) −5.36932 −0.286593
\(352\) 0 0
\(353\) −2.45858 + 2.45858i −0.130857 + 0.130857i −0.769502 0.638645i \(-0.779495\pi\)
0.638645 + 0.769502i \(0.279495\pi\)
\(354\) 0 0
\(355\) 4.97452 + 21.5242i 0.264020 + 1.14239i
\(356\) 0 0
\(357\) 3.68600 + 9.95262i 0.195084 + 0.526749i
\(358\) 0 0
\(359\) 14.6393i 0.772634i −0.922366 0.386317i \(-0.873747\pi\)
0.922366 0.386317i \(-0.126253\pi\)
\(360\) 0 0
\(361\) −5.58161 −0.293769
\(362\) 0 0
\(363\) 10.4725 10.4725i 0.549665 0.549665i
\(364\) 0 0
\(365\) −18.8500 11.7727i −0.986656 0.616213i
\(366\) 0 0
\(367\) −12.2264 12.2264i −0.638215 0.638215i 0.311900 0.950115i \(-0.399035\pi\)
−0.950115 + 0.311900i \(0.899035\pi\)
\(368\) 0 0
\(369\) 2.91664 0.151834
\(370\) 0 0
\(371\) −8.66319 + 18.8545i −0.449770 + 0.978878i
\(372\) 0 0
\(373\) 14.8689 + 14.8689i 0.769880 + 0.769880i 0.978085 0.208205i \(-0.0667621\pi\)
−0.208205 + 0.978085i \(0.566762\pi\)
\(374\) 0 0
\(375\) 11.1199 + 1.16093i 0.574229 + 0.0599499i
\(376\) 0 0
\(377\) −4.00584 4.00584i −0.206311 0.206311i
\(378\) 0 0
\(379\) 26.4447i 1.35837i −0.733967 0.679185i \(-0.762333\pi\)
0.733967 0.679185i \(-0.237667\pi\)
\(380\) 0 0
\(381\) 14.4804i 0.741856i
\(382\) 0 0
\(383\) 6.67462 6.67462i 0.341057 0.341057i −0.515707 0.856765i \(-0.672471\pi\)
0.856765 + 0.515707i \(0.172471\pi\)
\(384\) 0 0
\(385\) −25.1108 + 16.5171i −1.27976 + 0.841788i
\(386\) 0 0
\(387\) 6.86314 6.86314i 0.348873 0.348873i
\(388\) 0 0
\(389\) 11.5269i 0.584436i −0.956352 0.292218i \(-0.905607\pi\)
0.956352 0.292218i \(-0.0943933\pi\)
\(390\) 0 0
\(391\) 3.35561i 0.169700i
\(392\) 0 0
\(393\) −4.95041 4.95041i −0.249715 0.249715i
\(394\) 0 0
\(395\) −26.0371 + 6.01750i −1.31007 + 0.302773i
\(396\) 0 0
\(397\) −5.96065 5.96065i −0.299156 0.299156i 0.541527 0.840683i \(-0.317846\pi\)
−0.840683 + 0.541527i \(0.817846\pi\)
\(398\) 0 0
\(399\) 8.80655 + 4.04640i 0.440879 + 0.202573i
\(400\) 0 0
\(401\) −13.9884 −0.698549 −0.349275 0.937020i \(-0.613572\pi\)
−0.349275 + 0.937020i \(0.613572\pi\)
\(402\) 0 0
\(403\) 33.3256 + 33.3256i 1.66007 + 1.66007i
\(404\) 0 0
\(405\) 0.503511 + 2.17864i 0.0250197 + 0.108258i
\(406\) 0 0
\(407\) 25.1809 25.1809i 1.24817 1.24817i
\(408\) 0 0
\(409\) 12.3032 0.608355 0.304177 0.952615i \(-0.401618\pi\)
0.304177 + 0.952615i \(0.401618\pi\)
\(410\) 0 0
\(411\) 10.7332i 0.529428i
\(412\) 0 0
\(413\) 1.37752 + 3.71947i 0.0677835 + 0.183023i
\(414\) 0 0
\(415\) 14.3083 + 8.93623i 0.702369 + 0.438662i
\(416\) 0 0
\(417\) −2.10522 + 2.10522i −0.103093 + 0.103093i
\(418\) 0 0
\(419\) −37.8137 −1.84732 −0.923660 0.383213i \(-0.874818\pi\)
−0.923660 + 0.383213i \(0.874818\pi\)
\(420\) 0 0
\(421\) −25.0323 −1.22000 −0.610001 0.792401i \(-0.708831\pi\)
−0.610001 + 0.792401i \(0.708831\pi\)
\(422\) 0 0
\(423\) 1.97475 1.97475i 0.0960156 0.0960156i
\(424\) 0 0
\(425\) 18.9675 + 6.52118i 0.920057 + 0.316324i
\(426\) 0 0
\(427\) −30.7294 + 11.3808i −1.48710 + 0.550755i
\(428\) 0 0
\(429\) 27.2782i 1.31701i
\(430\) 0 0
\(431\) −8.96315 −0.431740 −0.215870 0.976422i \(-0.569259\pi\)
−0.215870 + 0.976422i \(0.569259\pi\)
\(432\) 0 0
\(433\) 10.3418 10.3418i 0.496994 0.496994i −0.413507 0.910501i \(-0.635696\pi\)
0.910501 + 0.413507i \(0.135696\pi\)
\(434\) 0 0
\(435\) −1.24975 + 2.00105i −0.0599209 + 0.0959430i
\(436\) 0 0
\(437\) −2.16674 2.16674i −0.103649 0.103649i
\(438\) 0 0
\(439\) 18.1867 0.868004 0.434002 0.900912i \(-0.357101\pi\)
0.434002 + 0.900912i \(0.357101\pi\)
\(440\) 0 0
\(441\) 4.55957 + 5.31134i 0.217122 + 0.252921i
\(442\) 0 0
\(443\) −11.5143 11.5143i −0.547059 0.547059i 0.378530 0.925589i \(-0.376430\pi\)
−0.925589 + 0.378530i \(0.876430\pi\)
\(444\) 0 0
\(445\) −0.884747 3.82821i −0.0419410 0.181474i
\(446\) 0 0
\(447\) 0.582406 + 0.582406i 0.0275468 + 0.0275468i
\(448\) 0 0
\(449\) 27.6618i 1.30544i 0.757598 + 0.652721i \(0.226373\pi\)
−0.757598 + 0.652721i \(0.773627\pi\)
\(450\) 0 0
\(451\) 14.8177i 0.697736i
\(452\) 0 0
\(453\) 9.90343 9.90343i 0.465304 0.465304i
\(454\) 0 0
\(455\) −6.42224 + 31.1093i −0.301079 + 1.45843i
\(456\) 0 0
\(457\) 15.6299 15.6299i 0.731135 0.731135i −0.239710 0.970845i \(-0.577052\pi\)
0.970845 + 0.239710i \(0.0770523\pi\)
\(458\) 0 0
\(459\) 4.01144i 0.187238i
\(460\) 0 0
\(461\) 31.1692i 1.45170i −0.687855 0.725848i \(-0.741448\pi\)
0.687855 0.725848i \(-0.258552\pi\)
\(462\) 0 0
\(463\) 11.6018 + 11.6018i 0.539181 + 0.539181i 0.923288 0.384108i \(-0.125491\pi\)
−0.384108 + 0.923288i \(0.625491\pi\)
\(464\) 0 0
\(465\) 10.3970 16.6473i 0.482149 0.771998i
\(466\) 0 0
\(467\) 21.0876 + 21.0876i 0.975817 + 0.975817i 0.999714 0.0238976i \(-0.00760757\pi\)
−0.0238976 + 0.999714i \(0.507608\pi\)
\(468\) 0 0
\(469\) 14.6366 + 6.72516i 0.675855 + 0.310539i
\(470\) 0 0
\(471\) 7.74727 0.356975
\(472\) 0 0
\(473\) 34.8675 + 34.8675i 1.60321 + 1.60321i
\(474\) 0 0
\(475\) 16.4582 8.03665i 0.755154 0.368747i
\(476\) 0 0
\(477\) −5.54555 + 5.54555i −0.253913 + 0.253913i
\(478\) 0 0
\(479\) −33.9667 −1.55198 −0.775989 0.630746i \(-0.782749\pi\)
−0.775989 + 0.630746i \(0.782749\pi\)
\(480\) 0 0
\(481\) 37.6363i 1.71607i
\(482\) 0 0
\(483\) −0.768647 2.07543i −0.0349747 0.0944355i
\(484\) 0 0
\(485\) −5.46433 + 8.74927i −0.248122 + 0.397284i
\(486\) 0 0
\(487\) 5.25831 5.25831i 0.238277 0.238277i −0.577860 0.816136i \(-0.696112\pi\)
0.816136 + 0.577860i \(0.196112\pi\)
\(488\) 0 0
\(489\) 11.2377 0.508187
\(490\) 0 0
\(491\) 13.1492 0.593416 0.296708 0.954968i \(-0.404111\pi\)
0.296708 + 0.954968i \(0.404111\pi\)
\(492\) 0 0
\(493\) −2.99278 + 2.99278i −0.134788 + 0.134788i
\(494\) 0 0
\(495\) −11.0684 + 2.55803i −0.497485 + 0.114975i
\(496\) 0 0
\(497\) 9.07817 + 24.5121i 0.407211 + 1.09952i
\(498\) 0 0
\(499\) 7.15984i 0.320519i 0.987075 + 0.160259i \(0.0512330\pi\)
−0.987075 + 0.160259i \(0.948767\pi\)
\(500\) 0 0
\(501\) 5.10384 0.228023
\(502\) 0 0
\(503\) −14.6373 + 14.6373i −0.652646 + 0.652646i −0.953629 0.300983i \(-0.902685\pi\)
0.300983 + 0.953629i \(0.402685\pi\)
\(504\) 0 0
\(505\) 12.7066 2.93665i 0.565435 0.130679i
\(506\) 0 0
\(507\) −11.1932 11.1932i −0.497107 0.497107i
\(508\) 0 0
\(509\) −37.3089 −1.65369 −0.826844 0.562432i \(-0.809866\pi\)
−0.826844 + 0.562432i \(0.809866\pi\)
\(510\) 0 0
\(511\) −23.8946 10.9790i −1.05703 0.485682i
\(512\) 0 0
\(513\) 2.59021 + 2.59021i 0.114361 + 0.114361i
\(514\) 0 0
\(515\) −29.0483 18.1420i −1.28002 0.799432i
\(516\) 0 0
\(517\) 10.0325 + 10.0325i 0.441229 + 0.441229i
\(518\) 0 0
\(519\) 19.6034i 0.860495i
\(520\) 0 0
\(521\) 21.3380i 0.934835i 0.884037 + 0.467418i \(0.154816\pi\)
−0.884037 + 0.467418i \(0.845184\pi\)
\(522\) 0 0
\(523\) −29.0131 + 29.0131i −1.26865 + 1.26865i −0.321869 + 0.946784i \(0.604311\pi\)
−0.946784 + 0.321869i \(0.895689\pi\)
\(524\) 0 0
\(525\) 13.2251 0.311425i 0.577190 0.0135917i
\(526\) 0 0
\(527\) 24.8977 24.8977i 1.08456 1.08456i
\(528\) 0 0
\(529\) 22.3003i 0.969576i
\(530\) 0 0
\(531\) 1.49914i 0.0650573i
\(532\) 0 0
\(533\) 11.0735 + 11.0735i 0.479648 + 0.479648i
\(534\) 0 0
\(535\) 19.9206 + 12.4413i 0.861242 + 0.537886i
\(536\) 0 0
\(537\) −3.95751 3.95751i −0.170779 0.170779i
\(538\) 0 0
\(539\) −26.9837 + 23.1644i −1.16227 + 0.997761i
\(540\) 0 0
\(541\) −8.65845 −0.372256 −0.186128 0.982526i \(-0.559594\pi\)
−0.186128 + 0.982526i \(0.559594\pi\)
\(542\) 0 0
\(543\) 3.62655 + 3.62655i 0.155630 + 0.155630i
\(544\) 0 0
\(545\) 43.1991 9.98386i 1.85045 0.427662i
\(546\) 0 0
\(547\) 14.4212 14.4212i 0.616607 0.616607i −0.328053 0.944659i \(-0.606392\pi\)
0.944659 + 0.328053i \(0.106392\pi\)
\(548\) 0 0
\(549\) −12.3856 −0.528603
\(550\) 0 0
\(551\) 3.86491i 0.164651i
\(552\) 0 0
\(553\) −29.6513 + 10.9815i −1.26090 + 0.466982i
\(554\) 0 0
\(555\) −15.2712 + 3.52937i −0.648227 + 0.149813i
\(556\) 0 0
\(557\) −27.5065 + 27.5065i −1.16549 + 1.16549i −0.182234 + 0.983255i \(0.558333\pi\)
−0.983255 + 0.182234i \(0.941667\pi\)
\(558\) 0 0
\(559\) 52.1143 2.20420
\(560\) 0 0
\(561\) −20.3797 −0.860430
\(562\) 0 0
\(563\) 21.2610 21.2610i 0.896045 0.896045i −0.0990389 0.995084i \(-0.531577\pi\)
0.995084 + 0.0990389i \(0.0315768\pi\)
\(564\) 0 0
\(565\) −14.7065 + 23.5475i −0.618707 + 0.990649i
\(566\) 0 0
\(567\) 0.918874 + 2.48106i 0.0385891 + 0.104195i
\(568\) 0 0
\(569\) 10.3990i 0.435951i −0.975954 0.217975i \(-0.930055\pi\)
0.975954 0.217975i \(-0.0699452\pi\)
\(570\) 0 0
\(571\) 3.29077 0.137714 0.0688572 0.997627i \(-0.478065\pi\)
0.0688572 + 0.997627i \(0.478065\pi\)
\(572\) 0 0
\(573\) −14.6863 + 14.6863i −0.613529 + 0.613529i
\(574\) 0 0
\(575\) −3.95531 1.35987i −0.164948 0.0567105i
\(576\) 0 0
\(577\) −2.14044 2.14044i −0.0891077 0.0891077i 0.661148 0.750256i \(-0.270070\pi\)
−0.750256 + 0.661148i \(0.770070\pi\)
\(578\) 0 0
\(579\) 12.3145 0.511775
\(580\) 0 0
\(581\) 18.1375 + 8.33373i 0.752469 + 0.345741i
\(582\) 0 0
\(583\) −28.1736 28.1736i −1.16683 1.16683i
\(584\) 0 0
\(585\) −6.35993 + 10.1833i −0.262951 + 0.421026i
\(586\) 0 0
\(587\) 30.3080 + 30.3080i 1.25095 + 1.25095i 0.955296 + 0.295650i \(0.0955363\pi\)
0.295650 + 0.955296i \(0.404464\pi\)
\(588\) 0 0
\(589\) 32.1532i 1.32485i
\(590\) 0 0
\(591\) 23.4003i 0.962562i
\(592\) 0 0
\(593\) 17.1981 17.1981i 0.706240 0.706240i −0.259503 0.965742i \(-0.583559\pi\)
0.965742 + 0.259503i \(0.0835587\pi\)
\(594\) 0 0
\(595\) 23.2419 + 4.79808i 0.952824 + 0.196702i
\(596\) 0 0
\(597\) 13.2447 13.2447i 0.542071 0.542071i
\(598\) 0 0
\(599\) 11.8799i 0.485398i 0.970102 + 0.242699i \(0.0780327\pi\)
−0.970102 + 0.242699i \(0.921967\pi\)
\(600\) 0 0
\(601\) 22.3993i 0.913688i 0.889547 + 0.456844i \(0.151020\pi\)
−0.889547 + 0.456844i \(0.848980\pi\)
\(602\) 0 0
\(603\) 4.30496 + 4.30496i 0.175312 + 0.175312i
\(604\) 0 0
\(605\) −7.45720 32.2665i −0.303178 1.31182i
\(606\) 0 0
\(607\) −8.64290 8.64290i −0.350805 0.350805i 0.509604 0.860409i \(-0.329792\pi\)
−0.860409 + 0.509604i \(0.829792\pi\)
\(608\) 0 0
\(609\) −1.16549 + 2.53656i −0.0472280 + 0.102787i
\(610\) 0 0
\(611\) 14.9950 0.606632
\(612\) 0 0
\(613\) −9.65057 9.65057i −0.389783 0.389783i 0.484827 0.874610i \(-0.338882\pi\)
−0.874610 + 0.484827i \(0.838882\pi\)
\(614\) 0 0
\(615\) 3.45474 5.53160i 0.139309 0.223056i
\(616\) 0 0
\(617\) 7.44264 7.44264i 0.299629 0.299629i −0.541239 0.840869i \(-0.682045\pi\)
0.840869 + 0.541239i \(0.182045\pi\)
\(618\) 0 0
\(619\) −8.47487 −0.340634 −0.170317 0.985389i \(-0.554479\pi\)
−0.170317 + 0.985389i \(0.554479\pi\)
\(620\) 0 0
\(621\) 0.836510i 0.0335680i
\(622\) 0 0
\(623\) −1.61460 4.35961i −0.0646877 0.174664i
\(624\) 0 0
\(625\) 15.3733 19.7145i 0.614930 0.788582i
\(626\) 0 0
\(627\) −13.1593 + 13.1593i −0.525531 + 0.525531i
\(628\) 0 0
\(629\) −28.1182 −1.12115
\(630\) 0 0
\(631\) 9.06900 0.361031 0.180516 0.983572i \(-0.442223\pi\)
0.180516 + 0.983572i \(0.442223\pi\)
\(632\) 0 0
\(633\) 2.44993 2.44993i 0.0973758 0.0973758i
\(634\) 0 0
\(635\) −27.4632 17.1520i −1.08984 0.680657i
\(636\) 0 0
\(637\) −2.85424 + 37.4767i −0.113089 + 1.48488i
\(638\) 0 0
\(639\) 9.87966i 0.390833i
\(640\) 0 0
\(641\) 9.82777 0.388174 0.194087 0.980984i \(-0.437826\pi\)
0.194087 + 0.980984i \(0.437826\pi\)
\(642\) 0 0
\(643\) −15.5098 + 15.5098i −0.611648 + 0.611648i −0.943375 0.331727i \(-0.892369\pi\)
0.331727 + 0.943375i \(0.392369\pi\)
\(644\) 0 0
\(645\) −4.88705 21.1458i −0.192428 0.832614i
\(646\) 0 0
\(647\) 9.72240 + 9.72240i 0.382227 + 0.382227i 0.871904 0.489677i \(-0.162885\pi\)
−0.489677 + 0.871904i \(0.662885\pi\)
\(648\) 0 0
\(649\) −7.61624 −0.298963
\(650\) 0 0
\(651\) 9.69600 21.1023i 0.380016 0.827065i
\(652\) 0 0
\(653\) 4.17455 + 4.17455i 0.163363 + 0.163363i 0.784055 0.620692i \(-0.213148\pi\)
−0.620692 + 0.784055i \(0.713148\pi\)
\(654\) 0 0
\(655\) −15.2525 + 3.52505i −0.595965 + 0.137735i
\(656\) 0 0
\(657\) −7.02795 7.02795i −0.274187 0.274187i
\(658\) 0 0
\(659\) 8.93891i 0.348210i 0.984727 + 0.174105i \(0.0557033\pi\)
−0.984727 + 0.174105i \(0.944297\pi\)
\(660\) 0 0
\(661\) 18.8737i 0.734103i −0.930201 0.367052i \(-0.880367\pi\)
0.930201 0.367052i \(-0.119633\pi\)
\(662\) 0 0
\(663\) −15.2301 + 15.2301i −0.591489 + 0.591489i
\(664\) 0 0
\(665\) 18.1056 11.9093i 0.702105 0.461822i
\(666\) 0 0
\(667\) 0.624088 0.624088i 0.0241648 0.0241648i
\(668\) 0 0
\(669\) 6.10959i 0.236210i
\(670\) 0 0
\(671\) 62.9236i 2.42914i
\(672\) 0 0
\(673\) 7.82024 + 7.82024i 0.301448 + 0.301448i 0.841580 0.540132i \(-0.181626\pi\)
−0.540132 + 0.841580i \(0.681626\pi\)
\(674\) 0 0
\(675\) 4.72835 + 1.62565i 0.181994 + 0.0625712i
\(676\) 0 0
\(677\) −0.751759 0.751759i −0.0288925 0.0288925i 0.692513 0.721405i \(-0.256504\pi\)
−0.721405 + 0.692513i \(0.756504\pi\)
\(678\) 0 0
\(679\) −5.09591 + 11.0907i −0.195563 + 0.425622i
\(680\) 0 0
\(681\) −8.01602 −0.307175
\(682\) 0 0
\(683\) 8.20512 + 8.20512i 0.313960 + 0.313960i 0.846442 0.532482i \(-0.178740\pi\)
−0.532482 + 0.846442i \(0.678740\pi\)
\(684\) 0 0
\(685\) 20.3562 + 12.7134i 0.777770 + 0.485754i
\(686\) 0 0
\(687\) 8.99258 8.99258i 0.343088 0.343088i
\(688\) 0 0
\(689\) −42.1093 −1.60424
\(690\) 0 0
\(691\) 10.5920i 0.402939i −0.979495 0.201469i \(-0.935428\pi\)
0.979495 0.201469i \(-0.0645717\pi\)
\(692\) 0 0
\(693\) −12.6048 + 4.66824i −0.478816 + 0.177332i
\(694\) 0 0
\(695\) 1.49907 + 6.48631i 0.0568628 + 0.246040i
\(696\) 0 0
\(697\) 8.27308 8.27308i 0.313365 0.313365i
\(698\) 0 0
\(699\) 9.60864 0.363432
\(700\) 0 0
\(701\) 31.8176 1.20173 0.600867 0.799349i \(-0.294822\pi\)
0.600867 + 0.799349i \(0.294822\pi\)
\(702\) 0 0
\(703\) −18.1561 + 18.1561i −0.684772 + 0.684772i
\(704\) 0 0
\(705\) −1.40616 6.08433i −0.0529592 0.229149i
\(706\) 0 0
\(707\) 14.4704 5.35919i 0.544215 0.201553i
\(708\) 0 0
\(709\) 42.1965i 1.58472i 0.610053 + 0.792361i \(0.291148\pi\)
−0.610053 + 0.792361i \(0.708852\pi\)
\(710\) 0 0
\(711\) −11.9511 −0.448200
\(712\) 0 0
\(713\) −5.19195 + 5.19195i −0.194440 + 0.194440i
\(714\) 0 0
\(715\) −51.7350 32.3109i −1.93478 1.20836i
\(716\) 0 0
\(717\) −19.9750 19.9750i −0.745979 0.745979i
\(718\) 0 0
\(719\) −1.40331 −0.0523347 −0.0261673 0.999658i \(-0.508330\pi\)
−0.0261673 + 0.999658i \(0.508330\pi\)
\(720\) 0 0
\(721\) −36.8220 16.9188i −1.37132 0.630090i
\(722\) 0 0
\(723\) 4.79983 + 4.79983i 0.178508 + 0.178508i
\(724\) 0 0
\(725\) 2.31480 + 4.74047i 0.0859697 + 0.176057i
\(726\) 0 0
\(727\) −35.1101 35.1101i −1.30216 1.30216i −0.926933 0.375227i \(-0.877565\pi\)
−0.375227 0.926933i \(-0.622435\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 38.9348i 1.44006i
\(732\) 0 0
\(733\) 27.0142 27.0142i 0.997794 0.997794i −0.00220403 0.999998i \(-0.500702\pi\)
0.999998 + 0.00220403i \(0.000701565\pi\)
\(734\) 0 0
\(735\) 15.4741 2.35627i 0.570771 0.0869124i
\(736\) 0 0
\(737\) −21.8709 + 21.8709i −0.805625 + 0.805625i
\(738\) 0 0
\(739\) 23.2327i 0.854629i 0.904103 + 0.427315i \(0.140540\pi\)
−0.904103 + 0.427315i \(0.859460\pi\)
\(740\) 0 0
\(741\) 19.6684i 0.722537i
\(742\) 0 0
\(743\) −29.5948 29.5948i −1.08573 1.08573i −0.995963 0.0897655i \(-0.971388\pi\)
−0.0897655 0.995963i \(-0.528612\pi\)
\(744\) 0 0
\(745\) 1.79443 0.414715i 0.0657428 0.0151940i
\(746\) 0 0
\(747\) 5.33465 + 5.33465i 0.195185 + 0.195185i
\(748\) 0 0
\(749\) 25.2516 + 11.6025i 0.922674 + 0.423946i
\(750\) 0 0
\(751\) −38.7569 −1.41426 −0.707129 0.707084i \(-0.750010\pi\)
−0.707129 + 0.707084i \(0.750010\pi\)
\(752\) 0 0
\(753\) 13.2586 + 13.2586i 0.483172 + 0.483172i
\(754\) 0 0
\(755\) −7.05196 30.5131i −0.256647 1.11049i
\(756\) 0 0
\(757\) 6.96551 6.96551i 0.253166 0.253166i −0.569101 0.822267i \(-0.692709\pi\)
0.822267 + 0.569101i \(0.192709\pi\)
\(758\) 0 0
\(759\) 4.24980 0.154258
\(760\) 0 0
\(761\) 50.6708i 1.83681i 0.395637 + 0.918407i \(0.370524\pi\)
−0.395637 + 0.918407i \(0.629476\pi\)
\(762\) 0 0
\(763\) 49.1957 18.2199i 1.78100 0.659604i
\(764\) 0 0
\(765\) 7.60796 + 4.75153i 0.275066 + 0.171792i
\(766\) 0 0
\(767\) −5.69177 + 5.69177i −0.205518 + 0.205518i
\(768\) 0 0
\(769\) −46.6219 −1.68123 −0.840615 0.541633i \(-0.817806\pi\)
−0.840615 + 0.541633i \(0.817806\pi\)
\(770\) 0 0
\(771\) 7.61164 0.274126
\(772\) 0 0
\(773\) 1.27891 1.27891i 0.0459993 0.0459993i −0.683733 0.729732i \(-0.739645\pi\)
0.729732 + 0.683733i \(0.239645\pi\)
\(774\) 0 0
\(775\) −19.2575 39.4372i −0.691748 1.41663i
\(776\) 0 0
\(777\) −17.3911 + 6.44087i −0.623900 + 0.231065i
\(778\) 0 0
\(779\) 10.6840i 0.382793i
\(780\) 0 0
\(781\) −50.1926 −1.79603
\(782\) 0 0
\(783\) −0.746061 + 0.746061i −0.0266621 + 0.0266621i
\(784\) 0 0
\(785\) 9.17661 14.6932i 0.327527 0.524424i
\(786\) 0 0
\(787\) −2.35551 2.35551i −0.0839648 0.0839648i 0.663877 0.747842i \(-0.268910\pi\)
−0.747842 + 0.663877i \(0.768910\pi\)
\(788\) 0 0
\(789\) 12.4663 0.443811
\(790\) 0 0
\(791\) −13.7149 + 29.8491i −0.487647 + 1.06131i
\(792\) 0 0
\(793\) −47.0240 47.0240i −1.66987 1.66987i
\(794\) 0 0
\(795\) 3.94883 + 17.0862i 0.140051 + 0.605985i
\(796\) 0 0
\(797\) −9.61236 9.61236i −0.340487 0.340487i 0.516063 0.856551i \(-0.327397\pi\)
−0.856551 + 0.516063i \(0.827397\pi\)
\(798\) 0 0
\(799\) 11.2028i 0.396327i
\(800\) 0 0
\(801\) 1.75715i 0.0620860i
\(802\) 0 0
\(803\) 35.7048 35.7048i 1.25999 1.25999i
\(804\) 0 0
\(805\) −4.84666 1.00055i −0.170822 0.0352647i
\(806\) 0 0
\(807\) 15.0751 15.0751i 0.530669 0.530669i
\(808\) 0 0
\(809\) 44.2735i 1.55657i 0.627909 + 0.778287i \(0.283911\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(810\) 0 0
\(811\) 11.3215i 0.397552i −0.980045 0.198776i \(-0.936303\pi\)
0.980045 0.198776i \(-0.0636966\pi\)
\(812\) 0 0
\(813\) 9.14652 + 9.14652i 0.320782 + 0.320782i
\(814\) 0 0
\(815\) 13.3110 21.3131i 0.466265 0.746565i
\(816\) 0 0
\(817\) −25.1405 25.1405i −0.879553 0.879553i
\(818\) 0 0
\(819\) −5.93113 + 12.9085i −0.207250 + 0.451058i
\(820\) 0 0
\(821\) 1.84371 0.0643458 0.0321729 0.999482i \(-0.489757\pi\)
0.0321729 + 0.999482i \(0.489757\pi\)
\(822\) 0 0
\(823\) −30.7730 30.7730i −1.07268 1.07268i −0.997143 0.0755344i \(-0.975934\pi\)
−0.0755344 0.997143i \(-0.524066\pi\)
\(824\) 0 0
\(825\) −8.25893 + 24.0219i −0.287539 + 0.836334i
\(826\) 0 0
\(827\) −27.0430 + 27.0430i −0.940376 + 0.940376i −0.998320 0.0579435i \(-0.981546\pi\)
0.0579435 + 0.998320i \(0.481546\pi\)
\(828\) 0 0
\(829\) 5.40143 0.187599 0.0937997 0.995591i \(-0.470099\pi\)
0.0937997 + 0.995591i \(0.470099\pi\)
\(830\) 0 0
\(831\) 21.4722i 0.744862i
\(832\) 0 0
\(833\) 27.9990 + 2.13241i 0.970107 + 0.0738837i
\(834\) 0 0
\(835\) 6.04548 9.67978i 0.209212 0.334983i
\(836\) 0 0
\(837\) 6.20668 6.20668i 0.214534 0.214534i
\(838\) 0 0
\(839\) −26.0436 −0.899125 −0.449562 0.893249i \(-0.648420\pi\)
−0.449562 + 0.893249i \(0.648420\pi\)
\(840\) 0 0
\(841\) 27.8868 0.961613
\(842\) 0 0
\(843\) 14.7210 14.7210i 0.507018 0.507018i
\(844\) 0 0
\(845\) −34.4869 + 7.97036i −1.18639 + 0.274189i
\(846\) 0 0
\(847\) −13.6089 36.7455i −0.467607 1.26259i
\(848\) 0 0
\(849\) 7.56642i 0.259679i
\(850\) 0 0
\(851\) 5.86353 0.200999
\(852\) 0 0
\(853\) 3.78906 3.78906i 0.129735 0.129735i −0.639258 0.768993i \(-0.720758\pi\)
0.768993 + 0.639258i \(0.220758\pi\)
\(854\) 0 0
\(855\) 7.98061 1.84442i 0.272931 0.0630778i
\(856\) 0 0
\(857\) 36.7692 + 36.7692i 1.25601 + 1.25601i 0.952980 + 0.303032i \(0.0979990\pi\)
0.303032 + 0.952980i \(0.402001\pi\)
\(858\) 0 0
\(859\) 33.1556 1.13125 0.565626 0.824662i \(-0.308634\pi\)
0.565626 + 0.824662i \(0.308634\pi\)
\(860\) 0 0
\(861\) 3.22182 7.01194i 0.109799 0.238966i
\(862\) 0 0
\(863\) 1.68139 + 1.68139i 0.0572350 + 0.0572350i 0.735145 0.677910i \(-0.237114\pi\)
−0.677910 + 0.735145i \(0.737114\pi\)
\(864\) 0 0
\(865\) 37.1792 + 23.2202i 1.26413 + 0.789509i
\(866\) 0 0
\(867\) −0.642324 0.642324i −0.0218145 0.0218145i
\(868\) 0 0
\(869\) 60.7161i 2.05965i
\(870\) 0 0
\(871\) 32.6891i 1.10763i
\(872\) 0 0
\(873\) −3.26203 + 3.26203i −0.110403 + 0.110403i
\(874\) 0 0
\(875\) 15.0744 25.4512i 0.509609 0.860406i
\(876\) 0 0
\(877\) −2.69980 + 2.69980i −0.0911658 + 0.0911658i −0.751219 0.660053i \(-0.770534\pi\)
0.660053 + 0.751219i \(0.270534\pi\)
\(878\) 0 0
\(879\) 25.5430i 0.861545i
\(880\) 0 0
\(881\) 44.2080i 1.48940i −0.667397 0.744702i \(-0.732592\pi\)
0.667397 0.744702i \(-0.267408\pi\)
\(882\) 0 0
\(883\) −13.9894 13.9894i −0.470781 0.470781i 0.431386 0.902167i \(-0.358025\pi\)
−0.902167 + 0.431386i \(0.858025\pi\)
\(884\) 0 0
\(885\) 2.84323 + 1.77573i 0.0955740 + 0.0596905i
\(886\) 0 0
\(887\) −25.3656 25.3656i −0.851693 0.851693i 0.138649 0.990342i \(-0.455724\pi\)
−0.990342 + 0.138649i \(0.955724\pi\)
\(888\) 0 0
\(889\) −34.8127 15.9956i −1.16758 0.536475i
\(890\) 0 0
\(891\) −5.08039 −0.170200
\(892\) 0 0
\(893\) −7.23373 7.23373i −0.242067 0.242067i
\(894\) 0 0
\(895\) −12.1933 + 2.81803i −0.407578 + 0.0941964i
\(896\) 0 0
\(897\) 3.17596 3.17596i 0.106042 0.106042i
\(898\) 0 0
\(899\) 9.26113 0.308876
\(900\) 0 0
\(901\) 31.4600i 1.04809i
\(902\) 0 0
\(903\) −8.91855 24.0811i −0.296791 0.801368i
\(904\) 0 0
\(905\) 11.1736 2.58237i 0.371425 0.0858409i
\(906\) 0 0
\(907\) −19.2797 + 19.2797i −0.640170 + 0.640170i −0.950597 0.310427i \(-0.899528\pi\)
0.310427 + 0.950597i \(0.399528\pi\)
\(908\) 0 0
\(909\) 5.83234 0.193446
\(910\) 0 0
\(911\) 40.8927 1.35484 0.677418 0.735598i \(-0.263099\pi\)
0.677418 + 0.735598i \(0.263099\pi\)
\(912\) 0 0
\(913\) −27.1021 + 27.1021i −0.896949 + 0.896949i
\(914\) 0 0
\(915\) −14.6707 + 23.4901i −0.484997 + 0.776558i
\(916\) 0 0
\(917\) −17.3698 + 6.43298i −0.573600 + 0.212436i
\(918\) 0 0
\(919\) 21.9749i 0.724886i 0.932006 + 0.362443i \(0.118057\pi\)
−0.932006 + 0.362443i \(0.881943\pi\)
\(920\) 0 0
\(921\) 13.0846 0.431152
\(922\) 0 0
\(923\) −37.5099 + 37.5099i −1.23465 + 1.23465i
\(924\) 0 0
\(925\) −11.3950 + 33.1434i −0.374665 + 1.08975i
\(926\) 0 0
\(927\) −10.8302 10.8302i −0.355711 0.355711i
\(928\) 0 0
\(929\) −22.1143 −0.725546 −0.362773 0.931878i \(-0.618170\pi\)
−0.362773 + 0.931878i \(0.618170\pi\)
\(930\) 0 0
\(931\) 19.4560 16.7022i 0.637646 0.547393i
\(932\) 0 0
\(933\) 14.1849 + 14.1849i 0.464391 + 0.464391i
\(934\) 0 0
\(935\) −24.1396 + 38.6514i −0.789450 + 1.26404i
\(936\) 0 0
\(937\) 10.7013 + 10.7013i 0.349595 + 0.349595i 0.859959 0.510364i \(-0.170489\pi\)
−0.510364 + 0.859959i \(0.670489\pi\)
\(938\) 0 0
\(939\) 20.6595i 0.674197i
\(940\) 0 0
\(941\) 12.6198i 0.411394i −0.978616 0.205697i \(-0.934054\pi\)
0.978616 0.205697i \(-0.0659461\pi\)
\(942\) 0 0
\(943\) −1.72520 + 1.72520i −0.0561801 + 0.0561801i
\(944\) 0 0
\(945\) 5.79391 + 1.19610i 0.188476 + 0.0389091i
\(946\) 0 0
\(947\) 8.86560 8.86560i 0.288093 0.288093i −0.548233 0.836326i \(-0.684699\pi\)
0.836326 + 0.548233i \(0.184699\pi\)
\(948\) 0 0
\(949\) 53.3658i 1.73233i
\(950\) 0 0
\(951\) 31.9239i 1.03520i
\(952\) 0 0
\(953\) −33.3776 33.3776i −1.08121 1.08121i −0.996397 0.0848083i \(-0.972972\pi\)
−0.0848083 0.996397i \(-0.527028\pi\)
\(954\) 0 0
\(955\) 10.4577 + 45.2494i 0.338404 + 1.46424i
\(956\) 0 0
\(957\) −3.79028 3.79028i −0.122522 0.122522i
\(958\) 0 0
\(959\) 25.8038 + 11.8562i 0.833248 + 0.382857i
\(960\) 0 0
\(961\) −46.0457 −1.48535
\(962\) 0 0
\(963\) 7.42709 + 7.42709i 0.239334 + 0.239334i
\(964\) 0 0
\(965\) 14.5865 23.3554i 0.469557 0.751836i
\(966\) 0 0
\(967\) 9.46838 9.46838i 0.304483 0.304483i −0.538282 0.842765i \(-0.680926\pi\)
0.842765 + 0.538282i \(0.180926\pi\)
\(968\) 0 0
\(969\) 14.6943 0.472050
\(970\) 0 0
\(971\) 10.3533i 0.332254i −0.986104 0.166127i \(-0.946874\pi\)
0.986104 0.166127i \(-0.0531261\pi\)
\(972\) 0 0
\(973\) 2.73570 + 7.38668i 0.0877024 + 0.236806i
\(974\) 0 0
\(975\) 11.7800 + 24.1241i 0.377261 + 0.772589i
\(976\) 0 0
\(977\) 41.5769 41.5769i 1.33016 1.33016i 0.424945 0.905219i \(-0.360293\pi\)
0.905219 0.424945i \(-0.139707\pi\)
\(978\) 0 0
\(979\) 8.92703 0.285309
\(980\) 0 0
\(981\) 19.8285 0.633075
\(982\) 0 0
\(983\) 23.4334 23.4334i 0.747409 0.747409i −0.226583 0.973992i \(-0.572755\pi\)
0.973992 + 0.226583i \(0.0727555\pi\)
\(984\) 0 0
\(985\) −44.3804 27.7176i −1.41408 0.883157i
\(986\) 0 0
\(987\) −2.56616 6.92890i −0.0816816 0.220549i
\(988\) 0 0
\(989\) 8.11912i 0.258173i
\(990\) 0 0
\(991\) −1.89662 −0.0602482 −0.0301241 0.999546i \(-0.509590\pi\)
−0.0301241 + 0.999546i \(0.509590\pi\)
\(992\) 0 0
\(993\) 18.1080 18.1080i 0.574641 0.574641i
\(994\) 0 0
\(995\) −9.43121 40.8079i −0.298989 1.29370i
\(996\) 0 0
\(997\) 33.5228 + 33.5228i 1.06168 + 1.06168i 0.997968 + 0.0637106i \(0.0202935\pi\)
0.0637106 + 0.997968i \(0.479707\pi\)
\(998\) 0 0
\(999\) −7.00952 −0.221771
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.cz.f.433.7 24
4.3 odd 2 840.2.bt.a.433.4 yes 24
5.2 odd 4 1680.2.cz.e.97.6 24
7.6 odd 2 1680.2.cz.e.433.6 24
20.7 even 4 840.2.bt.b.97.9 yes 24
28.27 even 2 840.2.bt.b.433.9 yes 24
35.27 even 4 inner 1680.2.cz.f.97.7 24
140.27 odd 4 840.2.bt.a.97.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.4 24 140.27 odd 4
840.2.bt.a.433.4 yes 24 4.3 odd 2
840.2.bt.b.97.9 yes 24 20.7 even 4
840.2.bt.b.433.9 yes 24 28.27 even 2
1680.2.cz.e.97.6 24 5.2 odd 4
1680.2.cz.e.433.6 24 7.6 odd 2
1680.2.cz.f.97.7 24 35.27 even 4 inner
1680.2.cz.f.433.7 24 1.1 even 1 trivial