Properties

Label 1680.2.bl.c.127.5
Level $1680$
Weight $2$
Character 1680.127
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(127,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.426337261060096.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.5
Root \(1.19252 - 0.760198i\) of defining polynomial
Character \(\chi\) \(=\) 1680.127
Dual form 1680.2.bl.c.463.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{3} +(0.432320 + 2.19388i) q^{5} +(-0.707107 + 0.707107i) q^{7} +1.00000i q^{9} -2.82843i q^{11} +(-1.76156 + 1.76156i) q^{13} +(-1.24561 + 1.85700i) q^{15} +(0.896916 + 0.896916i) q^{17} +1.07700 q^{19} -1.00000 q^{21} +(3.29404 + 3.29404i) q^{23} +(-4.62620 + 1.89692i) q^{25} +(-0.707107 + 0.707107i) q^{27} +7.25240i q^{29} +3.52258i q^{31} +(2.00000 - 2.00000i) q^{33} +(-1.85700 - 1.24561i) q^{35} +(1.00000 + 1.00000i) q^{37} -2.49122 q^{39} -9.64015 q^{41} +(4.05121 + 4.05121i) q^{43} +(-2.19388 + 0.432320i) q^{45} +(-1.22279 + 1.22279i) q^{47} -1.00000i q^{49} +1.26843i q^{51} +(-1.49084 + 1.49084i) q^{53} +(6.20522 - 1.22279i) q^{55} +(0.761557 + 0.761557i) q^{57} -10.2564 q^{59} -8.98168 q^{61} +(-0.707107 - 0.707107i) q^{63} +(-4.62620 - 3.10308i) q^{65} +(1.22279 - 1.22279i) q^{67} +4.65847i q^{69} -14.3077i q^{71} +(-3.01395 + 3.01395i) q^{73} +(-4.61254 - 1.92989i) q^{75} +(2.00000 + 2.00000i) q^{77} +10.2564 q^{79} -1.00000 q^{81} +(-3.37680 - 3.37680i) q^{83} +(-1.57997 + 2.35548i) q^{85} +(-5.12822 + 5.12822i) q^{87} +1.40608i q^{89} -2.49122i q^{91} +(-2.49084 + 2.49084i) q^{93} +(0.465611 + 2.36282i) q^{95} +(-1.49084 - 1.49084i) q^{97} +2.82843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{13} - 4 q^{17} - 12 q^{21} - 20 q^{25} + 24 q^{33} + 12 q^{37} + 16 q^{41} + 4 q^{45} + 28 q^{53} - 16 q^{57} - 16 q^{61} - 20 q^{65} + 60 q^{73} + 24 q^{77} - 12 q^{81} - 84 q^{85} + 16 q^{93}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) 0.432320 + 2.19388i 0.193340 + 0.981132i
\(6\) 0 0
\(7\) −0.707107 + 0.707107i −0.267261 + 0.267261i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.82843i 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 0 0
\(13\) −1.76156 + 1.76156i −0.488568 + 0.488568i −0.907854 0.419286i \(-0.862280\pi\)
0.419286 + 0.907854i \(0.362280\pi\)
\(14\) 0 0
\(15\) −1.24561 + 1.85700i −0.321615 + 0.479476i
\(16\) 0 0
\(17\) 0.896916 + 0.896916i 0.217534 + 0.217534i 0.807459 0.589924i \(-0.200842\pi\)
−0.589924 + 0.807459i \(0.700842\pi\)
\(18\) 0 0
\(19\) 1.07700 0.247082 0.123541 0.992339i \(-0.460575\pi\)
0.123541 + 0.992339i \(0.460575\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 3.29404 + 3.29404i 0.686854 + 0.686854i 0.961535 0.274681i \(-0.0885722\pi\)
−0.274681 + 0.961535i \(0.588572\pi\)
\(24\) 0 0
\(25\) −4.62620 + 1.89692i −0.925240 + 0.379383i
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 7.25240i 1.34674i 0.739307 + 0.673368i \(0.235153\pi\)
−0.739307 + 0.673368i \(0.764847\pi\)
\(30\) 0 0
\(31\) 3.52258i 0.632674i 0.948647 + 0.316337i \(0.102453\pi\)
−0.948647 + 0.316337i \(0.897547\pi\)
\(32\) 0 0
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 0 0
\(35\) −1.85700 1.24561i −0.313891 0.210546i
\(36\) 0 0
\(37\) 1.00000 + 1.00000i 0.164399 + 0.164399i 0.784512 0.620113i \(-0.212913\pi\)
−0.620113 + 0.784512i \(0.712913\pi\)
\(38\) 0 0
\(39\) −2.49122 −0.398914
\(40\) 0 0
\(41\) −9.64015 −1.50554 −0.752769 0.658284i \(-0.771282\pi\)
−0.752769 + 0.658284i \(0.771282\pi\)
\(42\) 0 0
\(43\) 4.05121 + 4.05121i 0.617804 + 0.617804i 0.944968 0.327163i \(-0.106093\pi\)
−0.327163 + 0.944968i \(0.606093\pi\)
\(44\) 0 0
\(45\) −2.19388 + 0.432320i −0.327044 + 0.0644465i
\(46\) 0 0
\(47\) −1.22279 + 1.22279i −0.178362 + 0.178362i −0.790641 0.612280i \(-0.790253\pi\)
0.612280 + 0.790641i \(0.290253\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 1.26843i 0.177616i
\(52\) 0 0
\(53\) −1.49084 + 1.49084i −0.204782 + 0.204782i −0.802045 0.597263i \(-0.796255\pi\)
0.597263 + 0.802045i \(0.296255\pi\)
\(54\) 0 0
\(55\) 6.20522 1.22279i 0.836712 0.164881i
\(56\) 0 0
\(57\) 0.761557 + 0.761557i 0.100871 + 0.100871i
\(58\) 0 0
\(59\) −10.2564 −1.33527 −0.667637 0.744487i \(-0.732694\pi\)
−0.667637 + 0.744487i \(0.732694\pi\)
\(60\) 0 0
\(61\) −8.98168 −1.14999 −0.574993 0.818158i \(-0.694995\pi\)
−0.574993 + 0.818158i \(0.694995\pi\)
\(62\) 0 0
\(63\) −0.707107 0.707107i −0.0890871 0.0890871i
\(64\) 0 0
\(65\) −4.62620 3.10308i −0.573809 0.384890i
\(66\) 0 0
\(67\) 1.22279 1.22279i 0.149387 0.149387i −0.628457 0.777844i \(-0.716313\pi\)
0.777844 + 0.628457i \(0.216313\pi\)
\(68\) 0 0
\(69\) 4.65847i 0.560814i
\(70\) 0 0
\(71\) 14.3077i 1.69801i −0.528388 0.849003i \(-0.677203\pi\)
0.528388 0.849003i \(-0.322797\pi\)
\(72\) 0 0
\(73\) −3.01395 + 3.01395i −0.352757 + 0.352757i −0.861134 0.508378i \(-0.830245\pi\)
0.508378 + 0.861134i \(0.330245\pi\)
\(74\) 0 0
\(75\) −4.61254 1.92989i −0.532610 0.222845i
\(76\) 0 0
\(77\) 2.00000 + 2.00000i 0.227921 + 0.227921i
\(78\) 0 0
\(79\) 10.2564 1.15394 0.576970 0.816766i \(-0.304235\pi\)
0.576970 + 0.816766i \(0.304235\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −3.37680 3.37680i −0.370651 0.370651i 0.497063 0.867714i \(-0.334412\pi\)
−0.867714 + 0.497063i \(0.834412\pi\)
\(84\) 0 0
\(85\) −1.57997 + 2.35548i −0.171372 + 0.255488i
\(86\) 0 0
\(87\) −5.12822 + 5.12822i −0.549803 + 0.549803i
\(88\) 0 0
\(89\) 1.40608i 0.149044i 0.997219 + 0.0745219i \(0.0237431\pi\)
−0.997219 + 0.0745219i \(0.976257\pi\)
\(90\) 0 0
\(91\) 2.49122i 0.261151i
\(92\) 0 0
\(93\) −2.49084 + 2.49084i −0.258288 + 0.258288i
\(94\) 0 0
\(95\) 0.465611 + 2.36282i 0.0477707 + 0.242420i
\(96\) 0 0
\(97\) −1.49084 1.49084i −0.151372 0.151372i 0.627359 0.778730i \(-0.284136\pi\)
−0.778730 + 0.627359i \(0.784136\pi\)
\(98\) 0 0
\(99\) 2.82843 0.284268
\(100\) 0 0
\(101\) −3.61224 −0.359432 −0.179716 0.983719i \(-0.557518\pi\)
−0.179716 + 0.983719i \(0.557518\pi\)
\(102\) 0 0
\(103\) −1.45986 1.45986i −0.143844 0.143844i 0.631518 0.775362i \(-0.282432\pi\)
−0.775362 + 0.631518i \(0.782432\pi\)
\(104\) 0 0
\(105\) −0.432320 2.19388i −0.0421902 0.214101i
\(106\) 0 0
\(107\) 2.36282 2.36282i 0.228422 0.228422i −0.583611 0.812033i \(-0.698361\pi\)
0.812033 + 0.583611i \(0.198361\pi\)
\(108\) 0 0
\(109\) 12.2986i 1.17799i 0.808135 + 0.588997i \(0.200477\pi\)
−0.808135 + 0.588997i \(0.799523\pi\)
\(110\) 0 0
\(111\) 1.41421i 0.134231i
\(112\) 0 0
\(113\) 2.23844 2.23844i 0.210575 0.210575i −0.593937 0.804512i \(-0.702427\pi\)
0.804512 + 0.593937i \(0.202427\pi\)
\(114\) 0 0
\(115\) −5.80264 + 8.65080i −0.541099 + 0.806691i
\(116\) 0 0
\(117\) −1.76156 1.76156i −0.162856 0.162856i
\(118\) 0 0
\(119\) −1.26843 −0.116277
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) −6.81662 6.81662i −0.614634 0.614634i
\(124\) 0 0
\(125\) −6.16160 9.32924i −0.551110 0.834432i
\(126\) 0 0
\(127\) 9.58202 9.58202i 0.850267 0.850267i −0.139899 0.990166i \(-0.544678\pi\)
0.990166 + 0.139899i \(0.0446778\pi\)
\(128\) 0 0
\(129\) 5.72928i 0.504435i
\(130\) 0 0
\(131\) 4.59958i 0.401867i 0.979605 + 0.200934i \(0.0643976\pi\)
−0.979605 + 0.200934i \(0.935602\pi\)
\(132\) 0 0
\(133\) −0.761557 + 0.761557i −0.0660354 + 0.0660354i
\(134\) 0 0
\(135\) −1.85700 1.24561i −0.159825 0.107205i
\(136\) 0 0
\(137\) −1.28467 1.28467i −0.109757 0.109757i 0.650096 0.759852i \(-0.274729\pi\)
−0.759852 + 0.650096i \(0.774729\pi\)
\(138\) 0 0
\(139\) 16.9903 1.44110 0.720549 0.693404i \(-0.243890\pi\)
0.720549 + 0.693404i \(0.243890\pi\)
\(140\) 0 0
\(141\) −1.72928 −0.145632
\(142\) 0 0
\(143\) 4.98244 + 4.98244i 0.416652 + 0.416652i
\(144\) 0 0
\(145\) −15.9109 + 3.13536i −1.32133 + 0.260377i
\(146\) 0 0
\(147\) 0.707107 0.707107i 0.0583212 0.0583212i
\(148\) 0 0
\(149\) 17.0462i 1.39648i 0.715863 + 0.698241i \(0.246033\pi\)
−0.715863 + 0.698241i \(0.753967\pi\)
\(150\) 0 0
\(151\) 17.7757i 1.44657i −0.690550 0.723284i \(-0.742632\pi\)
0.690550 0.723284i \(-0.257368\pi\)
\(152\) 0 0
\(153\) −0.896916 + 0.896916i −0.0725114 + 0.0725114i
\(154\) 0 0
\(155\) −7.72811 + 1.52288i −0.620736 + 0.122321i
\(156\) 0 0
\(157\) 15.0140 + 15.0140i 1.19824 + 1.19824i 0.974692 + 0.223552i \(0.0717652\pi\)
0.223552 + 0.974692i \(0.428235\pi\)
\(158\) 0 0
\(159\) −2.10836 −0.167204
\(160\) 0 0
\(161\) −4.65847 −0.367139
\(162\) 0 0
\(163\) 12.7933 + 12.7933i 1.00205 + 1.00205i 0.999998 + 0.00205064i \(0.000652741\pi\)
0.00205064 + 0.999998i \(0.499347\pi\)
\(164\) 0 0
\(165\) 5.25240 + 3.52311i 0.408898 + 0.274274i
\(166\) 0 0
\(167\) −2.53686 + 2.53686i −0.196308 + 0.196308i −0.798415 0.602107i \(-0.794328\pi\)
0.602107 + 0.798415i \(0.294328\pi\)
\(168\) 0 0
\(169\) 6.79383i 0.522603i
\(170\) 0 0
\(171\) 1.07700i 0.0823606i
\(172\) 0 0
\(173\) 7.10308 7.10308i 0.540037 0.540037i −0.383502 0.923540i \(-0.625282\pi\)
0.923540 + 0.383502i \(0.125282\pi\)
\(174\) 0 0
\(175\) 1.92989 4.61254i 0.145886 0.348675i
\(176\) 0 0
\(177\) −7.25240 7.25240i −0.545123 0.545123i
\(178\) 0 0
\(179\) −9.41650 −0.703823 −0.351911 0.936033i \(-0.614468\pi\)
−0.351911 + 0.936033i \(0.614468\pi\)
\(180\) 0 0
\(181\) 14.2341 1.05801 0.529005 0.848619i \(-0.322565\pi\)
0.529005 + 0.848619i \(0.322565\pi\)
\(182\) 0 0
\(183\) −6.35101 6.35101i −0.469480 0.469480i
\(184\) 0 0
\(185\) −1.76156 + 2.62620i −0.129512 + 0.193082i
\(186\) 0 0
\(187\) 2.53686 2.53686i 0.185514 0.185514i
\(188\) 0 0
\(189\) 1.00000i 0.0727393i
\(190\) 0 0
\(191\) 15.2389i 1.10265i 0.834292 + 0.551323i \(0.185877\pi\)
−0.834292 + 0.551323i \(0.814123\pi\)
\(192\) 0 0
\(193\) 15.7755 15.7755i 1.13555 1.13555i 0.146307 0.989239i \(-0.453261\pi\)
0.989239 0.146307i \(-0.0467387\pi\)
\(194\) 0 0
\(195\) −1.07700 5.46543i −0.0771259 0.391387i
\(196\) 0 0
\(197\) 18.5371 + 18.5371i 1.32071 + 1.32071i 0.913200 + 0.407511i \(0.133603\pi\)
0.407511 + 0.913200i \(0.366397\pi\)
\(198\) 0 0
\(199\) 22.3556 1.58475 0.792373 0.610037i \(-0.208846\pi\)
0.792373 + 0.610037i \(0.208846\pi\)
\(200\) 0 0
\(201\) 1.72928 0.121974
\(202\) 0 0
\(203\) −5.12822 5.12822i −0.359930 0.359930i
\(204\) 0 0
\(205\) −4.16763 21.1493i −0.291080 1.47713i
\(206\) 0 0
\(207\) −3.29404 + 3.29404i −0.228951 + 0.228951i
\(208\) 0 0
\(209\) 3.04623i 0.210712i
\(210\) 0 0
\(211\) 5.65685i 0.389434i −0.980859 0.194717i \(-0.937621\pi\)
0.980859 0.194717i \(-0.0623788\pi\)
\(212\) 0 0
\(213\) 10.1170 10.1170i 0.693208 0.693208i
\(214\) 0 0
\(215\) −7.13645 + 10.6393i −0.486702 + 0.725594i
\(216\) 0 0
\(217\) −2.49084 2.49084i −0.169089 0.169089i
\(218\) 0 0
\(219\) −4.26237 −0.288025
\(220\) 0 0
\(221\) −3.15994 −0.212560
\(222\) 0 0
\(223\) −9.94514 9.94514i −0.665976 0.665976i 0.290806 0.956782i \(-0.406077\pi\)
−0.956782 + 0.290806i \(0.906077\pi\)
\(224\) 0 0
\(225\) −1.89692 4.62620i −0.126461 0.308413i
\(226\) 0 0
\(227\) −14.8560 + 14.8560i −0.986029 + 0.986029i −0.999904 0.0138751i \(-0.995583\pi\)
0.0138751 + 0.999904i \(0.495583\pi\)
\(228\) 0 0
\(229\) 4.20617i 0.277951i 0.990296 + 0.138976i \(0.0443810\pi\)
−0.990296 + 0.138976i \(0.955619\pi\)
\(230\) 0 0
\(231\) 2.82843i 0.186097i
\(232\) 0 0
\(233\) −5.55539 + 5.55539i −0.363946 + 0.363946i −0.865263 0.501318i \(-0.832849\pi\)
0.501318 + 0.865263i \(0.332849\pi\)
\(234\) 0 0
\(235\) −3.21128 2.15401i −0.209481 0.140512i
\(236\) 0 0
\(237\) 7.25240 + 7.25240i 0.471094 + 0.471094i
\(238\) 0 0
\(239\) −3.92516 −0.253898 −0.126949 0.991909i \(-0.540518\pi\)
−0.126949 + 0.991909i \(0.540518\pi\)
\(240\) 0 0
\(241\) −19.2524 −1.24016 −0.620078 0.784540i \(-0.712899\pi\)
−0.620078 + 0.784540i \(0.712899\pi\)
\(242\) 0 0
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) 2.19388 0.432320i 0.140162 0.0276199i
\(246\) 0 0
\(247\) −1.89721 + 1.89721i −0.120716 + 0.120716i
\(248\) 0 0
\(249\) 4.77551i 0.302636i
\(250\) 0 0
\(251\) 22.6669i 1.43072i −0.698756 0.715360i \(-0.746263\pi\)
0.698756 0.715360i \(-0.253737\pi\)
\(252\) 0 0
\(253\) 9.31695 9.31695i 0.585751 0.585751i
\(254\) 0 0
\(255\) −2.78278 + 0.548369i −0.174265 + 0.0343402i
\(256\) 0 0
\(257\) −5.28467 5.28467i −0.329649 0.329649i 0.522804 0.852453i \(-0.324886\pi\)
−0.852453 + 0.522804i \(0.824886\pi\)
\(258\) 0 0
\(259\) −1.41421 −0.0878750
\(260\) 0 0
\(261\) −7.25240 −0.448912
\(262\) 0 0
\(263\) 5.19124 + 5.19124i 0.320106 + 0.320106i 0.848808 0.528702i \(-0.177321\pi\)
−0.528702 + 0.848808i \(0.677321\pi\)
\(264\) 0 0
\(265\) −3.91524 2.62620i −0.240511 0.161326i
\(266\) 0 0
\(267\) −0.994247 + 0.994247i −0.0608469 + 0.0608469i
\(268\) 0 0
\(269\) 11.9754i 0.730154i −0.930977 0.365077i \(-0.881043\pi\)
0.930977 0.365077i \(-0.118957\pi\)
\(270\) 0 0
\(271\) 19.9100i 1.20945i 0.796435 + 0.604724i \(0.206716\pi\)
−0.796435 + 0.604724i \(0.793284\pi\)
\(272\) 0 0
\(273\) 1.76156 1.76156i 0.106614 0.106614i
\(274\) 0 0
\(275\) 5.36529 + 13.0849i 0.323539 + 0.789047i
\(276\) 0 0
\(277\) 14.2524 + 14.2524i 0.856343 + 0.856343i 0.990905 0.134562i \(-0.0429627\pi\)
−0.134562 + 0.990905i \(0.542963\pi\)
\(278\) 0 0
\(279\) −3.52258 −0.210891
\(280\) 0 0
\(281\) 3.25240 0.194022 0.0970108 0.995283i \(-0.469072\pi\)
0.0970108 + 0.995283i \(0.469072\pi\)
\(282\) 0 0
\(283\) 21.2983 + 21.2983i 1.26605 + 1.26605i 0.948110 + 0.317944i \(0.102992\pi\)
0.317944 + 0.948110i \(0.397008\pi\)
\(284\) 0 0
\(285\) −1.34153 + 2.00000i −0.0794652 + 0.118470i
\(286\) 0 0
\(287\) 6.81662 6.81662i 0.402372 0.402372i
\(288\) 0 0
\(289\) 15.3911i 0.905358i
\(290\) 0 0
\(291\) 2.10836i 0.123595i
\(292\) 0 0
\(293\) 15.0785 15.0785i 0.880896 0.880896i −0.112730 0.993626i \(-0.535960\pi\)
0.993626 + 0.112730i \(0.0359595\pi\)
\(294\) 0 0
\(295\) −4.43407 22.5014i −0.258161 1.31008i
\(296\) 0 0
\(297\) 2.00000 + 2.00000i 0.116052 + 0.116052i
\(298\) 0 0
\(299\) −11.6053 −0.671150
\(300\) 0 0
\(301\) −5.72928 −0.330230
\(302\) 0 0
\(303\) −2.55424 2.55424i −0.146737 0.146737i
\(304\) 0 0
\(305\) −3.88296 19.7047i −0.222338 1.12829i
\(306\) 0 0
\(307\) 7.81086 7.81086i 0.445790 0.445790i −0.448163 0.893952i \(-0.647921\pi\)
0.893952 + 0.448163i \(0.147921\pi\)
\(308\) 0 0
\(309\) 2.06455i 0.117448i
\(310\) 0 0
\(311\) 23.7636i 1.34751i 0.738954 + 0.673756i \(0.235320\pi\)
−0.738954 + 0.673756i \(0.764680\pi\)
\(312\) 0 0
\(313\) 14.2384 14.2384i 0.804804 0.804804i −0.179038 0.983842i \(-0.557298\pi\)
0.983842 + 0.179038i \(0.0572984\pi\)
\(314\) 0 0
\(315\) 1.24561 1.85700i 0.0701821 0.104630i
\(316\) 0 0
\(317\) 11.7616 + 11.7616i 0.660595 + 0.660595i 0.955520 0.294925i \(-0.0952948\pi\)
−0.294925 + 0.955520i \(0.595295\pi\)
\(318\) 0 0
\(319\) 20.5129 1.14850
\(320\) 0 0
\(321\) 3.34153 0.186506
\(322\) 0 0
\(323\) 0.965983 + 0.965983i 0.0537487 + 0.0537487i
\(324\) 0 0
\(325\) 4.80779 11.4908i 0.266688 0.637397i
\(326\) 0 0
\(327\) −8.69644 + 8.69644i −0.480914 + 0.480914i
\(328\) 0 0
\(329\) 1.72928i 0.0953384i
\(330\) 0 0
\(331\) 11.6447i 0.640053i 0.947409 + 0.320026i \(0.103692\pi\)
−0.947409 + 0.320026i \(0.896308\pi\)
\(332\) 0 0
\(333\) −1.00000 + 1.00000i −0.0547997 + 0.0547997i
\(334\) 0 0
\(335\) 3.21128 + 2.15401i 0.175451 + 0.117686i
\(336\) 0 0
\(337\) −13.8401 13.8401i −0.753916 0.753916i 0.221292 0.975208i \(-0.428973\pi\)
−0.975208 + 0.221292i \(0.928973\pi\)
\(338\) 0 0
\(339\) 3.16564 0.171934
\(340\) 0 0
\(341\) 9.96336 0.539546
\(342\) 0 0
\(343\) 0.707107 + 0.707107i 0.0381802 + 0.0381802i
\(344\) 0 0
\(345\) −10.2201 + 2.01395i −0.550233 + 0.108428i
\(346\) 0 0
\(347\) 8.56804 8.56804i 0.459956 0.459956i −0.438685 0.898641i \(-0.644555\pi\)
0.898641 + 0.438685i \(0.144555\pi\)
\(348\) 0 0
\(349\) 7.43066i 0.397754i 0.980024 + 0.198877i \(0.0637294\pi\)
−0.980024 + 0.198877i \(0.936271\pi\)
\(350\) 0 0
\(351\) 2.49122i 0.132971i
\(352\) 0 0
\(353\) 22.0602 22.0602i 1.17415 1.17415i 0.192933 0.981212i \(-0.438200\pi\)
0.981212 0.192933i \(-0.0618000\pi\)
\(354\) 0 0
\(355\) 31.3892 6.18549i 1.66597 0.328292i
\(356\) 0 0
\(357\) −0.896916 0.896916i −0.0474698 0.0474698i
\(358\) 0 0
\(359\) −22.2446 −1.17402 −0.587012 0.809579i \(-0.699696\pi\)
−0.587012 + 0.809579i \(0.699696\pi\)
\(360\) 0 0
\(361\) −17.8401 −0.938951
\(362\) 0 0
\(363\) 2.12132 + 2.12132i 0.111340 + 0.111340i
\(364\) 0 0
\(365\) −7.91524 5.30925i −0.414303 0.277899i
\(366\) 0 0
\(367\) −19.4359 + 19.4359i −1.01454 + 1.01454i −0.0146515 + 0.999893i \(0.504664\pi\)
−0.999893 + 0.0146515i \(0.995336\pi\)
\(368\) 0 0
\(369\) 9.64015i 0.501846i
\(370\) 0 0
\(371\) 2.10836i 0.109461i
\(372\) 0 0
\(373\) 25.8034 25.8034i 1.33605 1.33605i 0.436201 0.899849i \(-0.356324\pi\)
0.899849 0.436201i \(-0.143676\pi\)
\(374\) 0 0
\(375\) 2.23986 10.9537i 0.115666 0.565645i
\(376\) 0 0
\(377\) −12.7755 12.7755i −0.657972 0.657972i
\(378\) 0 0
\(379\) 23.2500 1.19427 0.597136 0.802140i \(-0.296305\pi\)
0.597136 + 0.802140i \(0.296305\pi\)
\(380\) 0 0
\(381\) 13.5510 0.694240
\(382\) 0 0
\(383\) 1.31408 + 1.31408i 0.0671461 + 0.0671461i 0.739882 0.672736i \(-0.234881\pi\)
−0.672736 + 0.739882i \(0.734881\pi\)
\(384\) 0 0
\(385\) −3.52311 + 5.25240i −0.179555 + 0.267687i
\(386\) 0 0
\(387\) −4.05121 + 4.05121i −0.205935 + 0.205935i
\(388\) 0 0
\(389\) 10.7755i 0.546340i −0.961966 0.273170i \(-0.911928\pi\)
0.961966 0.273170i \(-0.0880722\pi\)
\(390\) 0 0
\(391\) 5.90895i 0.298829i
\(392\) 0 0
\(393\) −3.25240 + 3.25240i −0.164062 + 0.164062i
\(394\) 0 0
\(395\) 4.43407 + 22.5014i 0.223102 + 1.13217i
\(396\) 0 0
\(397\) −0.173892 0.173892i −0.00872739 0.00872739i 0.702730 0.711457i \(-0.251964\pi\)
−0.711457 + 0.702730i \(0.751964\pi\)
\(398\) 0 0
\(399\) −1.07700 −0.0539177
\(400\) 0 0
\(401\) 11.7293 0.585732 0.292866 0.956153i \(-0.405391\pi\)
0.292866 + 0.956153i \(0.405391\pi\)
\(402\) 0 0
\(403\) −6.20522 6.20522i −0.309104 0.309104i
\(404\) 0 0
\(405\) −0.432320 2.19388i −0.0214822 0.109015i
\(406\) 0 0
\(407\) 2.82843 2.82843i 0.140200 0.140200i
\(408\) 0 0
\(409\) 18.9046i 0.934773i 0.884053 + 0.467386i \(0.154804\pi\)
−0.884053 + 0.467386i \(0.845196\pi\)
\(410\) 0 0
\(411\) 1.81680i 0.0896161i
\(412\) 0 0
\(413\) 7.25240 7.25240i 0.356867 0.356867i
\(414\) 0 0
\(415\) 5.94842 8.86813i 0.291996 0.435320i
\(416\) 0 0
\(417\) 12.0140 + 12.0140i 0.588326 + 0.588326i
\(418\) 0 0
\(419\) −25.8387 −1.26230 −0.631151 0.775660i \(-0.717417\pi\)
−0.631151 + 0.775660i \(0.717417\pi\)
\(420\) 0 0
\(421\) 21.2158 1.03399 0.516996 0.855988i \(-0.327050\pi\)
0.516996 + 0.855988i \(0.327050\pi\)
\(422\) 0 0
\(423\) −1.22279 1.22279i −0.0594539 0.0594539i
\(424\) 0 0
\(425\) −5.85069 2.44794i −0.283800 0.118742i
\(426\) 0 0
\(427\) 6.35101 6.35101i 0.307347 0.307347i
\(428\) 0 0
\(429\) 7.04623i 0.340195i
\(430\) 0 0
\(431\) 40.4774i 1.94973i −0.222804 0.974863i \(-0.571521\pi\)
0.222804 0.974863i \(-0.428479\pi\)
\(432\) 0 0
\(433\) 18.9494 18.9494i 0.910650 0.910650i −0.0856731 0.996323i \(-0.527304\pi\)
0.996323 + 0.0856731i \(0.0273041\pi\)
\(434\) 0 0
\(435\) −13.4677 9.03365i −0.645728 0.433130i
\(436\) 0 0
\(437\) 3.54769 + 3.54769i 0.169709 + 0.169709i
\(438\) 0 0
\(439\) −14.5447 −0.694182 −0.347091 0.937832i \(-0.612830\pi\)
−0.347091 + 0.937832i \(0.612830\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −15.1561 15.1561i −0.720089 0.720089i 0.248534 0.968623i \(-0.420051\pi\)
−0.968623 + 0.248534i \(0.920051\pi\)
\(444\) 0 0
\(445\) −3.08476 + 0.607876i −0.146232 + 0.0288161i
\(446\) 0 0
\(447\) −12.0535 + 12.0535i −0.570111 + 0.570111i
\(448\) 0 0
\(449\) 18.9538i 0.894484i 0.894413 + 0.447242i \(0.147594\pi\)
−0.894413 + 0.447242i \(0.852406\pi\)
\(450\) 0 0
\(451\) 27.2665i 1.28393i
\(452\) 0 0
\(453\) 12.5693 12.5693i 0.590559 0.590559i
\(454\) 0 0
\(455\) 5.46543 1.07700i 0.256223 0.0504907i
\(456\) 0 0
\(457\) 8.18785 + 8.18785i 0.383011 + 0.383011i 0.872186 0.489175i \(-0.162702\pi\)
−0.489175 + 0.872186i \(0.662702\pi\)
\(458\) 0 0
\(459\) −1.26843 −0.0592053
\(460\) 0 0
\(461\) −18.1170 −0.843795 −0.421897 0.906644i \(-0.638636\pi\)
−0.421897 + 0.906644i \(0.638636\pi\)
\(462\) 0 0
\(463\) −14.1816 14.1816i −0.659075 0.659075i 0.296086 0.955161i \(-0.404318\pi\)
−0.955161 + 0.296086i \(0.904318\pi\)
\(464\) 0 0
\(465\) −6.54144 4.38776i −0.303352 0.203477i
\(466\) 0 0
\(467\) 24.0157 24.0157i 1.11131 1.11131i 0.118342 0.992973i \(-0.462242\pi\)
0.992973 0.118342i \(-0.0377579\pi\)
\(468\) 0 0
\(469\) 1.72928i 0.0798508i
\(470\) 0 0
\(471\) 21.2329i 0.978362i
\(472\) 0 0
\(473\) 11.4586 11.4586i 0.526865 0.526865i
\(474\) 0 0
\(475\) −4.98244 + 2.04299i −0.228610 + 0.0937387i
\(476\) 0 0
\(477\) −1.49084 1.49084i −0.0682608 0.0682608i
\(478\) 0 0
\(479\) 12.8846 0.588712 0.294356 0.955696i \(-0.404895\pi\)
0.294356 + 0.955696i \(0.404895\pi\)
\(480\) 0 0
\(481\) −3.52311 −0.160640
\(482\) 0 0
\(483\) −3.29404 3.29404i −0.149884 0.149884i
\(484\) 0 0
\(485\) 2.62620 3.91524i 0.119250 0.177782i
\(486\) 0 0
\(487\) 18.9072 18.9072i 0.856769 0.856769i −0.134187 0.990956i \(-0.542842\pi\)
0.990956 + 0.134187i \(0.0428424\pi\)
\(488\) 0 0
\(489\) 18.0925i 0.818169i
\(490\) 0 0
\(491\) 33.1407i 1.49562i −0.663915 0.747808i \(-0.731106\pi\)
0.663915 0.747808i \(-0.268894\pi\)
\(492\) 0 0
\(493\) −6.50479 + 6.50479i −0.292961 + 0.292961i
\(494\) 0 0
\(495\) 1.22279 + 6.20522i 0.0549602 + 0.278904i
\(496\) 0 0
\(497\) 10.1170 + 10.1170i 0.453811 + 0.453811i
\(498\) 0 0
\(499\) −28.9069 −1.29405 −0.647025 0.762469i \(-0.723987\pi\)
−0.647025 + 0.762469i \(0.723987\pi\)
\(500\) 0 0
\(501\) −3.58767 −0.160285
\(502\) 0 0
\(503\) −8.35923 8.35923i −0.372720 0.372720i 0.495747 0.868467i \(-0.334894\pi\)
−0.868467 + 0.495747i \(0.834894\pi\)
\(504\) 0 0
\(505\) −1.56165 7.92482i −0.0694924 0.352650i
\(506\) 0 0
\(507\) −4.80397 + 4.80397i −0.213352 + 0.213352i
\(508\) 0 0
\(509\) 23.3694i 1.03583i 0.855432 + 0.517916i \(0.173292\pi\)
−0.855432 + 0.517916i \(0.826708\pi\)
\(510\) 0 0
\(511\) 4.26237i 0.188556i
\(512\) 0 0
\(513\) −0.761557 + 0.761557i −0.0336236 + 0.0336236i
\(514\) 0 0
\(515\) 2.57162 3.83388i 0.113319 0.168941i
\(516\) 0 0
\(517\) 3.45856 + 3.45856i 0.152107 + 0.152107i
\(518\) 0 0
\(519\) 10.0453 0.440939
\(520\) 0 0
\(521\) 0.566016 0.0247976 0.0123988 0.999923i \(-0.496053\pi\)
0.0123988 + 0.999923i \(0.496053\pi\)
\(522\) 0 0
\(523\) 10.6590 + 10.6590i 0.466087 + 0.466087i 0.900644 0.434558i \(-0.143095\pi\)
−0.434558 + 0.900644i \(0.643095\pi\)
\(524\) 0 0
\(525\) 4.62620 1.89692i 0.201904 0.0827882i
\(526\) 0 0
\(527\) −3.15946 + 3.15946i −0.137628 + 0.137628i
\(528\) 0 0
\(529\) 1.29862i 0.0564620i
\(530\) 0 0
\(531\) 10.2564i 0.445091i
\(532\) 0 0
\(533\) 16.9817 16.9817i 0.735558 0.735558i
\(534\) 0 0
\(535\) 6.20522 + 4.16224i 0.268275 + 0.179949i
\(536\) 0 0
\(537\) −6.65847 6.65847i −0.287334 0.287334i
\(538\) 0 0
\(539\) −2.82843 −0.121829
\(540\) 0 0
\(541\) 2.80342 0.120528 0.0602642 0.998182i \(-0.480806\pi\)
0.0602642 + 0.998182i \(0.480806\pi\)
\(542\) 0 0
\(543\) 10.0650 + 10.0650i 0.431931 + 0.431931i
\(544\) 0 0
\(545\) −26.9817 + 5.31695i −1.15577 + 0.227753i
\(546\) 0 0
\(547\) −15.7478 + 15.7478i −0.673326 + 0.673326i −0.958481 0.285155i \(-0.907955\pi\)
0.285155 + 0.958481i \(0.407955\pi\)
\(548\) 0 0
\(549\) 8.98168i 0.383329i
\(550\) 0 0
\(551\) 7.81086i 0.332754i
\(552\) 0 0
\(553\) −7.25240 + 7.25240i −0.308403 + 0.308403i
\(554\) 0 0
\(555\) −3.10261 + 0.611393i −0.131699 + 0.0259522i
\(556\) 0 0
\(557\) 17.5554 + 17.5554i 0.743846 + 0.743846i 0.973316 0.229470i \(-0.0736993\pi\)
−0.229470 + 0.973316i \(0.573699\pi\)
\(558\) 0 0
\(559\) −14.2729 −0.603679
\(560\) 0 0
\(561\) 3.58767 0.151471
\(562\) 0 0
\(563\) 29.6378 + 29.6378i 1.24908 + 1.24908i 0.956125 + 0.292960i \(0.0946404\pi\)
0.292960 + 0.956125i \(0.405360\pi\)
\(564\) 0 0
\(565\) 5.87859 + 3.94315i 0.247314 + 0.165889i
\(566\) 0 0
\(567\) 0.707107 0.707107i 0.0296957 0.0296957i
\(568\) 0 0
\(569\) 2.36318i 0.0990695i 0.998772 + 0.0495347i \(0.0157739\pi\)
−0.998772 + 0.0495347i \(0.984226\pi\)
\(570\) 0 0
\(571\) 3.21128i 0.134388i 0.997740 + 0.0671940i \(0.0214046\pi\)
−0.997740 + 0.0671940i \(0.978595\pi\)
\(572\) 0 0
\(573\) −10.7755 + 10.7755i −0.450153 + 0.450153i
\(574\) 0 0
\(575\) −21.4874 8.99036i −0.896086 0.374924i
\(576\) 0 0
\(577\) −6.53707 6.53707i −0.272142 0.272142i 0.557820 0.829962i \(-0.311638\pi\)
−0.829962 + 0.557820i \(0.811638\pi\)
\(578\) 0 0
\(579\) 22.3099 0.927170
\(580\) 0 0
\(581\) 4.77551 0.198122
\(582\) 0 0
\(583\) 4.21673 + 4.21673i 0.174639 + 0.174639i
\(584\) 0 0
\(585\) 3.10308 4.62620i 0.128297 0.191270i
\(586\) 0 0
\(587\) 22.8842 22.8842i 0.944533 0.944533i −0.0540076 0.998541i \(-0.517200\pi\)
0.998541 + 0.0540076i \(0.0171995\pi\)
\(588\) 0 0
\(589\) 3.79383i 0.156322i
\(590\) 0 0
\(591\) 26.2154i 1.07836i
\(592\) 0 0
\(593\) 14.1493 14.1493i 0.581043 0.581043i −0.354147 0.935190i \(-0.615229\pi\)
0.935190 + 0.354147i \(0.115229\pi\)
\(594\) 0 0
\(595\) −0.548369 2.78278i −0.0224809 0.114083i
\(596\) 0 0
\(597\) 15.8078 + 15.8078i 0.646970 + 0.646970i
\(598\) 0 0
\(599\) −17.3534 −0.709041 −0.354521 0.935048i \(-0.615356\pi\)
−0.354521 + 0.935048i \(0.615356\pi\)
\(600\) 0 0
\(601\) 20.1570 0.822222 0.411111 0.911585i \(-0.365141\pi\)
0.411111 + 0.911585i \(0.365141\pi\)
\(602\) 0 0
\(603\) 1.22279 + 1.22279i 0.0497957 + 0.0497957i
\(604\) 0 0
\(605\) 1.29696 + 6.58163i 0.0527290 + 0.267581i
\(606\) 0 0
\(607\) −0.785440 + 0.785440i −0.0318800 + 0.0318800i −0.722867 0.690987i \(-0.757176\pi\)
0.690987 + 0.722867i \(0.257176\pi\)
\(608\) 0 0
\(609\) 7.25240i 0.293882i
\(610\) 0 0
\(611\) 4.30802i 0.174284i
\(612\) 0 0
\(613\) −32.0741 + 32.0741i −1.29546 + 1.29546i −0.364104 + 0.931358i \(0.618625\pi\)
−0.931358 + 0.364104i \(0.881375\pi\)
\(614\) 0 0
\(615\) 12.0079 17.9018i 0.484204 0.721870i
\(616\) 0 0
\(617\) −15.6970 15.6970i −0.631938 0.631938i 0.316616 0.948554i \(-0.397453\pi\)
−0.948554 + 0.316616i \(0.897453\pi\)
\(618\) 0 0
\(619\) 5.05399 0.203137 0.101569 0.994829i \(-0.467614\pi\)
0.101569 + 0.994829i \(0.467614\pi\)
\(620\) 0 0
\(621\) −4.65847 −0.186938
\(622\) 0 0
\(623\) −0.994247 0.994247i −0.0398337 0.0398337i
\(624\) 0 0
\(625\) 17.8034 17.5510i 0.712137 0.702041i
\(626\) 0 0
\(627\) 2.15401 2.15401i 0.0860228 0.0860228i
\(628\) 0 0
\(629\) 1.79383i 0.0715248i
\(630\) 0 0
\(631\) 48.8366i 1.94415i −0.234660 0.972077i \(-0.575398\pi\)
0.234660 0.972077i \(-0.424602\pi\)
\(632\) 0 0
\(633\) 4.00000 4.00000i 0.158986 0.158986i
\(634\) 0 0
\(635\) 25.1643 + 16.8793i 0.998614 + 0.669834i
\(636\) 0 0
\(637\) 1.76156 + 1.76156i 0.0697954 + 0.0697954i
\(638\) 0 0
\(639\) 14.3077 0.566002
\(640\) 0 0
\(641\) −4.74760 −0.187519 −0.0937595 0.995595i \(-0.529888\pi\)
−0.0937595 + 0.995595i \(0.529888\pi\)
\(642\) 0 0
\(643\) −32.8839 32.8839i −1.29681 1.29681i −0.930487 0.366326i \(-0.880615\pi\)
−0.366326 0.930487i \(-0.619385\pi\)
\(644\) 0 0
\(645\) −12.5693 + 2.47689i −0.494917 + 0.0975273i
\(646\) 0 0
\(647\) 10.3477 10.3477i 0.406811 0.406811i −0.473814 0.880625i \(-0.657123\pi\)
0.880625 + 0.473814i \(0.157123\pi\)
\(648\) 0 0
\(649\) 29.0096i 1.13873i
\(650\) 0 0
\(651\) 3.52258i 0.138061i
\(652\) 0 0
\(653\) −26.5004 + 26.5004i −1.03704 + 1.03704i −0.0377547 + 0.999287i \(0.512021\pi\)
−0.999287 + 0.0377547i \(0.987979\pi\)
\(654\) 0 0
\(655\) −10.0909 + 1.98849i −0.394285 + 0.0776969i
\(656\) 0 0
\(657\) −3.01395 3.01395i −0.117586 0.117586i
\(658\) 0 0
\(659\) 4.09068 0.159350 0.0796751 0.996821i \(-0.474612\pi\)
0.0796751 + 0.996821i \(0.474612\pi\)
\(660\) 0 0
\(661\) −23.4865 −0.913518 −0.456759 0.889591i \(-0.650990\pi\)
−0.456759 + 0.889591i \(0.650990\pi\)
\(662\) 0 0
\(663\) −2.23441 2.23441i −0.0867775 0.0867775i
\(664\) 0 0
\(665\) −2.00000 1.34153i −0.0775567 0.0520222i
\(666\) 0 0
\(667\) −23.8897 + 23.8897i −0.925012 + 0.925012i
\(668\) 0 0
\(669\) 14.0646i 0.543767i
\(670\) 0 0
\(671\) 25.4040i 0.980711i
\(672\) 0 0
\(673\) 20.4586 20.4586i 0.788620 0.788620i −0.192648 0.981268i \(-0.561708\pi\)
0.981268 + 0.192648i \(0.0617076\pi\)
\(674\) 0 0
\(675\) 1.92989 4.61254i 0.0742816 0.177537i
\(676\) 0 0
\(677\) 5.60788 + 5.60788i 0.215528 + 0.215528i 0.806611 0.591083i \(-0.201299\pi\)
−0.591083 + 0.806611i \(0.701299\pi\)
\(678\) 0 0
\(679\) 2.10836 0.0809116
\(680\) 0 0
\(681\) −21.0096 −0.805089
\(682\) 0 0
\(683\) −25.2865 25.2865i −0.967561 0.967561i 0.0319290 0.999490i \(-0.489835\pi\)
−0.999490 + 0.0319290i \(0.989835\pi\)
\(684\) 0 0
\(685\) 2.26302 3.37380i 0.0864656 0.128906i
\(686\) 0 0
\(687\) −2.97421 + 2.97421i −0.113473 + 0.113473i
\(688\) 0 0
\(689\) 5.25240i 0.200100i
\(690\) 0 0
\(691\) 31.0411i 1.18086i 0.807089 + 0.590430i \(0.201042\pi\)
−0.807089 + 0.590430i \(0.798958\pi\)
\(692\) 0 0
\(693\) −2.00000 + 2.00000i −0.0759737 + 0.0759737i
\(694\) 0 0
\(695\) 7.34525 + 37.2746i 0.278621 + 1.41391i
\(696\) 0 0
\(697\) −8.64641 8.64641i −0.327506 0.327506i
\(698\) 0 0
\(699\) −7.85651 −0.297160
\(700\) 0 0
\(701\) −20.2620 −0.765284 −0.382642 0.923897i \(-0.624986\pi\)
−0.382642 + 0.923897i \(0.624986\pi\)
\(702\) 0 0
\(703\) 1.07700 + 1.07700i 0.0406200 + 0.0406200i
\(704\) 0 0
\(705\) −0.747604 3.79383i −0.0281564 0.142884i
\(706\) 0 0
\(707\) 2.55424 2.55424i 0.0960622 0.0960622i
\(708\) 0 0
\(709\) 14.6339i 0.549587i −0.961503 0.274794i \(-0.911390\pi\)
0.961503 0.274794i \(-0.0886096\pi\)
\(710\) 0 0
\(711\) 10.2564i 0.384646i
\(712\) 0 0
\(713\) −11.6035 + 11.6035i −0.434555 + 0.434555i
\(714\) 0 0
\(715\) −8.77685 + 13.0849i −0.328235 + 0.489346i
\(716\) 0 0
\(717\) −2.77551 2.77551i −0.103653 0.103653i
\(718\) 0 0
\(719\) −26.6439 −0.993649 −0.496824 0.867851i \(-0.665501\pi\)
−0.496824 + 0.867851i \(0.665501\pi\)
\(720\) 0 0
\(721\) 2.06455 0.0768879
\(722\) 0 0
\(723\) −13.6135 13.6135i −0.506292 0.506292i
\(724\) 0 0
\(725\) −13.7572 33.5510i −0.510929 1.24605i
\(726\) 0 0
\(727\) 23.6329 23.6329i 0.876494 0.876494i −0.116676 0.993170i \(-0.537224\pi\)
0.993170 + 0.116676i \(0.0372238\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 7.26720i 0.268787i
\(732\) 0 0
\(733\) −29.3405 + 29.3405i −1.08372 + 1.08372i −0.0875559 + 0.996160i \(0.527906\pi\)
−0.996160 + 0.0875559i \(0.972094\pi\)
\(734\) 0 0
\(735\) 1.85700 + 1.24561i 0.0684966 + 0.0459450i
\(736\) 0 0
\(737\) −3.45856 3.45856i −0.127398 0.127398i
\(738\) 0 0
\(739\) 13.4283 0.493966 0.246983 0.969020i \(-0.420561\pi\)
0.246983 + 0.969020i \(0.420561\pi\)
\(740\) 0 0
\(741\) −2.68305 −0.0985644
\(742\) 0 0
\(743\) 10.2650 + 10.2650i 0.376585 + 0.376585i 0.869869 0.493283i \(-0.164203\pi\)
−0.493283 + 0.869869i \(0.664203\pi\)
\(744\) 0 0
\(745\) −37.3973 + 7.36943i −1.37013 + 0.269995i
\(746\) 0 0
\(747\) 3.37680 3.37680i 0.123550 0.123550i
\(748\) 0 0
\(749\) 3.34153i 0.122097i
\(750\) 0 0
\(751\) 20.1818i 0.736446i 0.929738 + 0.368223i \(0.120034\pi\)
−0.929738 + 0.368223i \(0.879966\pi\)
\(752\) 0 0
\(753\) 16.0279 16.0279i 0.584089 0.584089i
\(754\) 0 0
\(755\) 38.9978 7.68481i 1.41927 0.279679i
\(756\) 0 0
\(757\) −0.793833 0.793833i −0.0288523 0.0288523i 0.692533 0.721386i \(-0.256495\pi\)
−0.721386 + 0.692533i \(0.756495\pi\)
\(758\) 0 0
\(759\) 13.1762 0.478264
\(760\) 0 0
\(761\) 35.9754 1.30411 0.652054 0.758173i \(-0.273908\pi\)
0.652054 + 0.758173i \(0.273908\pi\)
\(762\) 0 0
\(763\) −8.69644 8.69644i −0.314832 0.314832i
\(764\) 0 0
\(765\) −2.35548 1.57997i −0.0851626 0.0571239i
\(766\) 0 0
\(767\) 18.0673 18.0673i 0.652372 0.652372i
\(768\) 0 0
\(769\) 4.98168i 0.179644i 0.995958 + 0.0898220i \(0.0286298\pi\)
−0.995958 + 0.0898220i \(0.971370\pi\)
\(770\) 0 0
\(771\) 7.47365i 0.269157i
\(772\) 0 0
\(773\) −20.5092 + 20.5092i −0.737663 + 0.737663i −0.972125 0.234462i \(-0.924667\pi\)
0.234462 + 0.972125i \(0.424667\pi\)
\(774\) 0 0
\(775\) −6.68204 16.2961i −0.240026 0.585375i
\(776\) 0 0
\(777\) −1.00000 1.00000i −0.0358748 0.0358748i
\(778\) 0 0
\(779\) −10.3825 −0.371991
\(780\) 0 0
\(781\) −40.4681 −1.44806
\(782\) 0 0
\(783\) −5.12822 5.12822i −0.183268 0.183268i
\(784\) 0 0
\(785\) −26.4479 + 39.4296i −0.943967 + 1.40730i
\(786\) 0 0
\(787\) −25.5150 + 25.5150i −0.909513 + 0.909513i −0.996233 0.0867197i \(-0.972362\pi\)
0.0867197 + 0.996233i \(0.472362\pi\)
\(788\) 0 0
\(789\) 7.34153i 0.261365i
\(790\) 0 0
\(791\) 3.16564i 0.112557i
\(792\) 0 0
\(793\) 15.8217 15.8217i 0.561846 0.561846i
\(794\) 0 0
\(795\) −0.911489 4.62549i −0.0323272 0.164049i
\(796\) 0 0
\(797\) 11.9431 + 11.9431i 0.423048 + 0.423048i 0.886252 0.463204i \(-0.153300\pi\)
−0.463204 + 0.886252i \(0.653300\pi\)
\(798\) 0 0
\(799\) −2.19347 −0.0775996
\(800\) 0 0
\(801\) −1.40608 −0.0496813
\(802\) 0 0
\(803\) 8.52475 + 8.52475i 0.300832 + 0.300832i
\(804\) 0 0
\(805\) −2.01395 10.2201i −0.0709825 0.360212i
\(806\) 0 0
\(807\) 8.46790 8.46790i 0.298084 0.298084i
\(808\) 0 0
\(809\) 35.4865i 1.24764i 0.781569 + 0.623819i \(0.214420\pi\)
−0.781569 + 0.623819i \(0.785580\pi\)
\(810\) 0 0
\(811\) 37.6857i 1.32333i 0.749802 + 0.661663i \(0.230149\pi\)
−0.749802 + 0.661663i \(0.769851\pi\)
\(812\) 0 0
\(813\) −14.0785 + 14.0785i −0.493755 + 0.493755i
\(814\) 0 0
\(815\) −22.5361 + 33.5977i −0.789406 + 1.17688i
\(816\) 0 0
\(817\) 4.36318 + 4.36318i 0.152648 + 0.152648i
\(818\) 0 0
\(819\) 2.49122 0.0870502
\(820\) 0 0
\(821\) −50.5327 −1.76360 −0.881802 0.471620i \(-0.843669\pi\)
−0.881802 + 0.471620i \(0.843669\pi\)
\(822\) 0 0
\(823\) −18.4502 18.4502i −0.643132 0.643132i 0.308192 0.951324i \(-0.400276\pi\)
−0.951324 + 0.308192i \(0.900276\pi\)
\(824\) 0 0
\(825\) −5.45856 + 13.0462i −0.190043 + 0.454211i
\(826\) 0 0
\(827\) 31.1436 31.1436i 1.08297 1.08297i 0.0867392 0.996231i \(-0.472355\pi\)
0.996231 0.0867392i \(-0.0276447\pi\)
\(828\) 0 0
\(829\) 34.4190i 1.19542i 0.801712 + 0.597710i \(0.203923\pi\)
−0.801712 + 0.597710i \(0.796077\pi\)
\(830\) 0 0
\(831\) 20.1559i 0.699202i
\(832\) 0 0
\(833\) 0.896916 0.896916i 0.0310763 0.0310763i
\(834\) 0 0
\(835\) −6.66230 4.46883i −0.230559 0.154650i
\(836\) 0 0
\(837\) −2.49084 2.49084i −0.0860960 0.0860960i
\(838\) 0 0
\(839\) −22.6274 −0.781185 −0.390593 0.920564i \(-0.627730\pi\)
−0.390593 + 0.920564i \(0.627730\pi\)
\(840\) 0 0
\(841\) −23.5972 −0.813698
\(842\) 0 0
\(843\) 2.29979 + 2.29979i 0.0792090 + 0.0792090i
\(844\) 0 0
\(845\) −14.9048 + 2.93711i −0.512742 + 0.101040i
\(846\) 0 0
\(847\) −2.12132 + 2.12132i −0.0728894 + 0.0728894i
\(848\) 0 0
\(849\) 30.1204i 1.03373i
\(850\) 0 0
\(851\) 6.58808i 0.225836i
\(852\) 0 0
\(853\) 18.0881 18.0881i 0.619324 0.619324i −0.326034 0.945358i \(-0.605712\pi\)
0.945358 + 0.326034i \(0.105712\pi\)
\(854\) 0 0
\(855\) −2.36282 + 0.465611i −0.0808066 + 0.0159236i
\(856\) 0 0
\(857\) −14.1739 14.1739i −0.484171 0.484171i 0.422290 0.906461i \(-0.361226\pi\)
−0.906461 + 0.422290i \(0.861226\pi\)
\(858\) 0 0
\(859\) 4.61932 0.157609 0.0788045 0.996890i \(-0.474890\pi\)
0.0788045 + 0.996890i \(0.474890\pi\)
\(860\) 0 0
\(861\) 9.64015 0.328535
\(862\) 0 0
\(863\) 17.2188 + 17.2188i 0.586136 + 0.586136i 0.936583 0.350447i \(-0.113970\pi\)
−0.350447 + 0.936583i \(0.613970\pi\)
\(864\) 0 0
\(865\) 18.6541 + 12.5125i 0.634259 + 0.425437i
\(866\) 0 0
\(867\) 10.8831 10.8831i 0.369611 0.369611i
\(868\) 0 0
\(869\) 29.0096i 0.984083i
\(870\) 0 0
\(871\) 4.30802i 0.145972i
\(872\) 0 0
\(873\) 1.49084 1.49084i 0.0504573 0.0504573i
\(874\) 0 0
\(875\) 10.9537 + 2.23986i 0.370302 + 0.0757209i
\(876\) 0 0
\(877\) 10.9721 + 10.9721i 0.370501 + 0.370501i 0.867660 0.497158i \(-0.165623\pi\)
−0.497158 + 0.867660i \(0.665623\pi\)
\(878\) 0 0
\(879\) 21.3242 0.719248
\(880\) 0 0
\(881\) 1.81841 0.0612639 0.0306319 0.999531i \(-0.490248\pi\)
0.0306319 + 0.999531i \(0.490248\pi\)
\(882\) 0 0
\(883\) 17.2621 + 17.2621i 0.580917 + 0.580917i 0.935155 0.354238i \(-0.115260\pi\)
−0.354238 + 0.935155i \(0.615260\pi\)
\(884\) 0 0
\(885\) 12.7755 19.0462i 0.429444 0.640232i
\(886\) 0 0
\(887\) −22.8324 + 22.8324i −0.766637 + 0.766637i −0.977513 0.210876i \(-0.932368\pi\)
0.210876 + 0.977513i \(0.432368\pi\)
\(888\) 0 0
\(889\) 13.5510i 0.454487i
\(890\) 0 0
\(891\) 2.82843i 0.0947559i
\(892\) 0 0
\(893\) −1.31695 + 1.31695i −0.0440699 + 0.0440699i
\(894\) 0 0
\(895\) −4.07095 20.6587i −0.136077 0.690543i
\(896\) 0 0
\(897\) −8.20617 8.20617i −0.273996 0.273996i
\(898\) 0 0
\(899\) −25.5471 −0.852045
\(900\) 0 0
\(901\) −2.67432 −0.0890944
\(902\) 0 0
\(903\) −4.05121 4.05121i −0.134816 0.134816i
\(904\) 0 0
\(905\) 6.15368 + 31.2278i 0.204555 + 1.03805i
\(906\) 0 0
\(907\) −28.6153 + 28.6153i −0.950156 + 0.950156i −0.998815 0.0486599i \(-0.984505\pi\)
0.0486599 + 0.998815i \(0.484505\pi\)
\(908\) 0 0
\(909\) 3.61224i 0.119811i
\(910\) 0 0
\(911\) 49.9457i 1.65478i −0.561631 0.827388i \(-0.689826\pi\)
0.561631 0.827388i \(-0.310174\pi\)
\(912\) 0 0
\(913\) −9.55102 + 9.55102i −0.316093 + 0.316093i
\(914\) 0 0
\(915\) 11.1877 16.6790i 0.369853 0.551391i
\(916\) 0 0
\(917\) −3.25240 3.25240i −0.107404 0.107404i
\(918\) 0 0
\(919\) 9.96487 0.328711 0.164355 0.986401i \(-0.447446\pi\)
0.164355 + 0.986401i \(0.447446\pi\)
\(920\) 0 0
\(921\) 11.0462 0.363986
\(922\) 0 0
\(923\) 25.2037 + 25.2037i 0.829591 + 0.829591i
\(924\) 0 0
\(925\) −6.52311 2.72928i −0.214479 0.0897382i
\(926\) 0 0
\(927\) 1.45986 1.45986i 0.0479480 0.0479480i
\(928\) 0 0
\(929\) 13.5756i 0.445401i −0.974887 0.222701i \(-0.928513\pi\)
0.974887 0.222701i \(-0.0714872\pi\)
\(930\) 0 0
\(931\) 1.07700i 0.0352974i
\(932\) 0 0
\(933\) −16.8034 + 16.8034i −0.550119 + 0.550119i
\(934\) 0 0
\(935\) 6.66230 + 4.46883i 0.217881 + 0.146146i
\(936\) 0 0
\(937\) 16.7711 + 16.7711i 0.547889 + 0.547889i 0.925830 0.377941i \(-0.123368\pi\)
−0.377941 + 0.925830i \(0.623368\pi\)
\(938\) 0 0
\(939\) 20.1362 0.657120
\(940\) 0 0
\(941\) 0.800090 0.0260822 0.0130411 0.999915i \(-0.495849\pi\)
0.0130411 + 0.999915i \(0.495849\pi\)
\(942\) 0 0
\(943\) −31.7550 31.7550i −1.03409 1.03409i
\(944\) 0 0
\(945\) 2.19388 0.432320i 0.0713668 0.0140634i
\(946\) 0 0
\(947\) 4.26002 4.26002i 0.138432 0.138432i −0.634495 0.772927i \(-0.718792\pi\)
0.772927 + 0.634495i \(0.218792\pi\)
\(948\) 0 0
\(949\) 10.6185i 0.344691i
\(950\) 0 0
\(951\) 16.6334i 0.539373i
\(952\) 0 0
\(953\) −9.04186 + 9.04186i −0.292895 + 0.292895i −0.838223 0.545328i \(-0.816405\pi\)
0.545328 + 0.838223i \(0.316405\pi\)
\(954\) 0 0
\(955\) −33.4322 + 6.58808i −1.08184 + 0.213185i
\(956\) 0 0
\(957\) 14.5048 + 14.5048i 0.468873 + 0.468873i
\(958\) 0 0
\(959\) 1.81680 0.0586675
\(960\) 0 0
\(961\) 18.5914 0.599724
\(962\) 0 0
\(963\) 2.36282 + 2.36282i 0.0761407 + 0.0761407i
\(964\) 0 0
\(965\) 41.4296 + 27.7895i 1.33367 + 0.894574i
\(966\) 0 0
\(967\) −30.0207 + 30.0207i −0.965400 + 0.965400i −0.999421 0.0340216i \(-0.989169\pi\)
0.0340216 + 0.999421i \(0.489169\pi\)
\(968\) 0 0
\(969\) 1.36611i 0.0438857i
\(970\) 0 0
\(971\) 2.69767i 0.0865724i 0.999063 + 0.0432862i \(0.0137827\pi\)
−0.999063 + 0.0432862i \(0.986217\pi\)
\(972\) 0 0
\(973\) −12.0140 + 12.0140i −0.385150 + 0.385150i
\(974\) 0 0
\(975\) 11.5249 4.72563i 0.369091 0.151341i
\(976\) 0 0
\(977\) 3.15557 + 3.15557i 0.100956 + 0.100956i 0.755781 0.654825i \(-0.227258\pi\)
−0.654825 + 0.755781i \(0.727258\pi\)
\(978\) 0 0
\(979\) 3.97699 0.127105
\(980\) 0 0
\(981\) −12.2986 −0.392665
\(982\) 0 0
\(983\) 42.3746 + 42.3746i 1.35154 + 1.35154i 0.883941 + 0.467598i \(0.154881\pi\)
0.467598 + 0.883941i \(0.345119\pi\)
\(984\) 0 0
\(985\) −32.6541 + 48.6820i −1.04045 + 1.55114i
\(986\) 0 0
\(987\) 1.22279 1.22279i 0.0389217 0.0389217i
\(988\) 0 0
\(989\) 26.6897i 0.848683i
\(990\) 0 0
\(991\) 12.4104i 0.394231i −0.980380 0.197115i \(-0.936843\pi\)
0.980380 0.197115i \(-0.0631574\pi\)
\(992\) 0 0
\(993\) −8.23407 + 8.23407i −0.261300 + 0.261300i
\(994\) 0 0
\(995\) 9.66478 + 49.0454i 0.306394 + 1.55484i
\(996\) 0 0
\(997\) 10.5737 + 10.5737i 0.334873 + 0.334873i 0.854434 0.519561i \(-0.173904\pi\)
−0.519561 + 0.854434i \(0.673904\pi\)
\(998\) 0 0
\(999\) −1.41421 −0.0447437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.bl.c.127.5 yes 12
4.3 odd 2 inner 1680.2.bl.c.127.2 12
5.3 odd 4 inner 1680.2.bl.c.463.2 yes 12
20.3 even 4 inner 1680.2.bl.c.463.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.bl.c.127.2 12 4.3 odd 2 inner
1680.2.bl.c.127.5 yes 12 1.1 even 1 trivial
1680.2.bl.c.463.2 yes 12 5.3 odd 4 inner
1680.2.bl.c.463.5 yes 12 20.3 even 4 inner