Properties

Label 1680.2.bl.c.127.3
Level $1680$
Weight $2$
Character 1680.127
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(127,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.426337261060096.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.3
Root \(1.41127 - 0.0912546i\) of defining polynomial
Character \(\chi\) \(=\) 1680.127
Dual form 1680.2.bl.c.463.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(1.32001 - 1.80487i) q^{5} +(0.707107 - 0.707107i) q^{7} +1.00000i q^{9} +2.82843i q^{11} +(3.12489 - 3.12489i) q^{13} +(-2.20963 + 0.342849i) q^{15} +(-5.76491 - 5.76491i) q^{17} +5.83347 q^{19} -1.00000 q^{21} +(4.87182 + 4.87182i) q^{23} +(-1.51514 - 4.76491i) q^{25} +(0.707107 - 0.707107i) q^{27} +1.03028i q^{29} -1.63365i q^{31} +(2.00000 - 2.00000i) q^{33} +(-0.342849 - 2.20963i) q^{35} +(1.00000 + 1.00000i) q^{37} -4.41926 q^{39} +4.57947 q^{41} +(-6.56198 - 6.56198i) q^{43} +(1.80487 + 1.32001i) q^{45} +(3.73356 - 3.73356i) q^{47} -1.00000i q^{49} +8.15281i q^{51} +(-0.155162 + 0.155162i) q^{53} +(5.10495 + 3.73356i) q^{55} +(-4.12489 - 4.12489i) q^{57} +1.45703 q^{59} -6.31032 q^{61} +(0.707107 + 0.707107i) q^{63} +(-1.51514 - 9.76491i) q^{65} +(-3.73356 + 3.73356i) q^{67} -6.88979i q^{69} +8.01901i q^{71} +(8.09461 - 8.09461i) q^{73} +(-2.29793 + 4.44066i) q^{75} +(2.00000 + 2.00000i) q^{77} -1.45703 q^{79} -1.00000 q^{81} +(-7.93338 - 7.93338i) q^{83} +(-18.0147 + 2.79518i) q^{85} +(0.728515 - 0.728515i) q^{87} -3.92007i q^{89} -4.41926i q^{91} +(-1.15516 + 1.15516i) q^{93} +(7.70025 - 10.5287i) q^{95} +(-0.155162 - 0.155162i) q^{97} -2.82843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{13} - 4 q^{17} - 12 q^{21} - 20 q^{25} + 24 q^{33} + 12 q^{37} + 16 q^{41} + 4 q^{45} + 28 q^{53} - 16 q^{57} - 16 q^{61} - 20 q^{65} + 60 q^{73} + 24 q^{77} - 12 q^{81} - 84 q^{85} + 16 q^{93}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) 1.32001 1.80487i 0.590327 0.807164i
\(6\) 0 0
\(7\) 0.707107 0.707107i 0.267261 0.267261i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.82843i 0.852803i 0.904534 + 0.426401i \(0.140219\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) 3.12489 3.12489i 0.866687 0.866687i −0.125417 0.992104i \(-0.540027\pi\)
0.992104 + 0.125417i \(0.0400268\pi\)
\(14\) 0 0
\(15\) −2.20963 + 0.342849i −0.570523 + 0.0885233i
\(16\) 0 0
\(17\) −5.76491 5.76491i −1.39820 1.39820i −0.805221 0.592975i \(-0.797953\pi\)
−0.592975 0.805221i \(-0.702047\pi\)
\(18\) 0 0
\(19\) 5.83347 1.33829 0.669145 0.743132i \(-0.266661\pi\)
0.669145 + 0.743132i \(0.266661\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 4.87182 + 4.87182i 1.01584 + 1.01584i 0.999872 + 0.0159723i \(0.00508436\pi\)
0.0159723 + 0.999872i \(0.494916\pi\)
\(24\) 0 0
\(25\) −1.51514 4.76491i −0.303028 0.952982i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 1.03028i 0.191317i 0.995414 + 0.0956587i \(0.0304958\pi\)
−0.995414 + 0.0956587i \(0.969504\pi\)
\(30\) 0 0
\(31\) 1.63365i 0.293411i −0.989180 0.146706i \(-0.953133\pi\)
0.989180 0.146706i \(-0.0468670\pi\)
\(32\) 0 0
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 0 0
\(35\) −0.342849 2.20963i −0.0579521 0.373495i
\(36\) 0 0
\(37\) 1.00000 + 1.00000i 0.164399 + 0.164399i 0.784512 0.620113i \(-0.212913\pi\)
−0.620113 + 0.784512i \(0.712913\pi\)
\(38\) 0 0
\(39\) −4.41926 −0.707647
\(40\) 0 0
\(41\) 4.57947 0.715193 0.357597 0.933876i \(-0.383596\pi\)
0.357597 + 0.933876i \(0.383596\pi\)
\(42\) 0 0
\(43\) −6.56198 6.56198i −1.00069 1.00069i −1.00000 0.000693437i \(-0.999779\pi\)
−0.000693437 1.00000i \(-0.500221\pi\)
\(44\) 0 0
\(45\) 1.80487 + 1.32001i 0.269055 + 0.196776i
\(46\) 0 0
\(47\) 3.73356 3.73356i 0.544595 0.544595i −0.380277 0.924873i \(-0.624171\pi\)
0.924873 + 0.380277i \(0.124171\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 8.15281i 1.14162i
\(52\) 0 0
\(53\) −0.155162 + 0.155162i −0.0213131 + 0.0213131i −0.717683 0.696370i \(-0.754797\pi\)
0.696370 + 0.717683i \(0.254797\pi\)
\(54\) 0 0
\(55\) 5.10495 + 3.73356i 0.688352 + 0.503433i
\(56\) 0 0
\(57\) −4.12489 4.12489i −0.546354 0.546354i
\(58\) 0 0
\(59\) 1.45703 0.189689 0.0948446 0.995492i \(-0.469765\pi\)
0.0948446 + 0.995492i \(0.469765\pi\)
\(60\) 0 0
\(61\) −6.31032 −0.807954 −0.403977 0.914769i \(-0.632372\pi\)
−0.403977 + 0.914769i \(0.632372\pi\)
\(62\) 0 0
\(63\) 0.707107 + 0.707107i 0.0890871 + 0.0890871i
\(64\) 0 0
\(65\) −1.51514 9.76491i −0.187930 1.21119i
\(66\) 0 0
\(67\) −3.73356 + 3.73356i −0.456127 + 0.456127i −0.897382 0.441255i \(-0.854533\pi\)
0.441255 + 0.897382i \(0.354533\pi\)
\(68\) 0 0
\(69\) 6.88979i 0.829434i
\(70\) 0 0
\(71\) 8.01901i 0.951682i 0.879531 + 0.475841i \(0.157856\pi\)
−0.879531 + 0.475841i \(0.842144\pi\)
\(72\) 0 0
\(73\) 8.09461 8.09461i 0.947402 0.947402i −0.0512819 0.998684i \(-0.516331\pi\)
0.998684 + 0.0512819i \(0.0163307\pi\)
\(74\) 0 0
\(75\) −2.29793 + 4.44066i −0.265343 + 0.512764i
\(76\) 0 0
\(77\) 2.00000 + 2.00000i 0.227921 + 0.227921i
\(78\) 0 0
\(79\) −1.45703 −0.163929 −0.0819644 0.996635i \(-0.526119\pi\)
−0.0819644 + 0.996635i \(0.526119\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −7.93338 7.93338i −0.870802 0.870802i 0.121758 0.992560i \(-0.461147\pi\)
−0.992560 + 0.121758i \(0.961147\pi\)
\(84\) 0 0
\(85\) −18.0147 + 2.79518i −1.95397 + 0.303180i
\(86\) 0 0
\(87\) 0.728515 0.728515i 0.0781050 0.0781050i
\(88\) 0 0
\(89\) 3.92007i 0.415527i −0.978179 0.207763i \(-0.933382\pi\)
0.978179 0.207763i \(-0.0666184\pi\)
\(90\) 0 0
\(91\) 4.41926i 0.463264i
\(92\) 0 0
\(93\) −1.15516 + 1.15516i −0.119785 + 0.119785i
\(94\) 0 0
\(95\) 7.70025 10.5287i 0.790029 1.08022i
\(96\) 0 0
\(97\) −0.155162 0.155162i −0.0157543 0.0157543i 0.699186 0.714940i \(-0.253546\pi\)
−0.714940 + 0.699186i \(0.753546\pi\)
\(98\) 0 0
\(99\) −2.82843 −0.284268
\(100\) 0 0
\(101\) −11.6097 −1.15521 −0.577607 0.816315i \(-0.696013\pi\)
−0.577607 + 0.816315i \(0.696013\pi\)
\(102\) 0 0
\(103\) −10.4722 10.4722i −1.03185 1.03185i −0.999476 0.0323764i \(-0.989692\pi\)
−0.0323764 0.999476i \(-0.510308\pi\)
\(104\) 0 0
\(105\) −1.32001 + 1.80487i −0.128820 + 0.176138i
\(106\) 0 0
\(107\) −10.5287 + 10.5287i −1.01785 + 1.01785i −0.0180075 + 0.999838i \(0.505732\pi\)
−0.999838 + 0.0180075i \(0.994268\pi\)
\(108\) 0 0
\(109\) 13.4693i 1.29012i −0.764131 0.645061i \(-0.776832\pi\)
0.764131 0.645061i \(-0.223168\pi\)
\(110\) 0 0
\(111\) 1.41421i 0.134231i
\(112\) 0 0
\(113\) 7.12489 7.12489i 0.670253 0.670253i −0.287521 0.957774i \(-0.592831\pi\)
0.957774 + 0.287521i \(0.0928312\pi\)
\(114\) 0 0
\(115\) 15.2239 2.36216i 1.41963 0.220273i
\(116\) 0 0
\(117\) 3.12489 + 3.12489i 0.288896 + 0.288896i
\(118\) 0 0
\(119\) −8.15281 −0.747367
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) −3.23818 3.23818i −0.291976 0.291976i
\(124\) 0 0
\(125\) −10.6001 3.55510i −0.948098 0.317978i
\(126\) 0 0
\(127\) 13.0383 13.0383i 1.15697 1.15697i 0.171840 0.985125i \(-0.445029\pi\)
0.985125 0.171840i \(-0.0549713\pi\)
\(128\) 0 0
\(129\) 9.28005i 0.817063i
\(130\) 0 0
\(131\) 4.19982i 0.366940i 0.983025 + 0.183470i \(0.0587331\pi\)
−0.983025 + 0.183470i \(0.941267\pi\)
\(132\) 0 0
\(133\) 4.12489 4.12489i 0.357673 0.357673i
\(134\) 0 0
\(135\) −0.342849 2.20963i −0.0295078 0.190174i
\(136\) 0 0
\(137\) 13.3747 + 13.3747i 1.14267 + 1.14267i 0.987959 + 0.154715i \(0.0494459\pi\)
0.154715 + 0.987959i \(0.450554\pi\)
\(138\) 0 0
\(139\) −1.28042 −0.108603 −0.0543017 0.998525i \(-0.517293\pi\)
−0.0543017 + 0.998525i \(0.517293\pi\)
\(140\) 0 0
\(141\) −5.28005 −0.444660
\(142\) 0 0
\(143\) 8.83851 + 8.83851i 0.739113 + 0.739113i
\(144\) 0 0
\(145\) 1.85952 + 1.35998i 0.154425 + 0.112940i
\(146\) 0 0
\(147\) −0.707107 + 0.707107i −0.0583212 + 0.0583212i
\(148\) 0 0
\(149\) 2.49954i 0.204770i −0.994745 0.102385i \(-0.967353\pi\)
0.994745 0.102385i \(-0.0326474\pi\)
\(150\) 0 0
\(151\) 23.6871i 1.92763i −0.266573 0.963815i \(-0.585891\pi\)
0.266573 0.963815i \(-0.414109\pi\)
\(152\) 0 0
\(153\) 5.76491 5.76491i 0.466065 0.466065i
\(154\) 0 0
\(155\) −2.94852 2.15643i −0.236831 0.173209i
\(156\) 0 0
\(157\) 3.90539 + 3.90539i 0.311684 + 0.311684i 0.845562 0.533878i \(-0.179266\pi\)
−0.533878 + 0.845562i \(0.679266\pi\)
\(158\) 0 0
\(159\) 0.219432 0.0174021
\(160\) 0 0
\(161\) 6.88979 0.542992
\(162\) 0 0
\(163\) 14.8486 + 14.8486i 1.16303 + 1.16303i 0.983808 + 0.179223i \(0.0573584\pi\)
0.179223 + 0.983808i \(0.442642\pi\)
\(164\) 0 0
\(165\) −0.969724 6.24977i −0.0754929 0.486544i
\(166\) 0 0
\(167\) −16.3056 + 16.3056i −1.26177 + 1.26177i −0.311531 + 0.950236i \(0.600842\pi\)
−0.950236 + 0.311531i \(0.899158\pi\)
\(168\) 0 0
\(169\) 6.52982i 0.502294i
\(170\) 0 0
\(171\) 5.83347i 0.446097i
\(172\) 0 0
\(173\) 13.7649 13.7649i 1.04653 1.04653i 0.0476632 0.998863i \(-0.484823\pi\)
0.998863 0.0476632i \(-0.0151774\pi\)
\(174\) 0 0
\(175\) −4.44066 2.29793i −0.335683 0.173708i
\(176\) 0 0
\(177\) −1.03028 1.03028i −0.0774403 0.0774403i
\(178\) 0 0
\(179\) −6.91521 −0.516867 −0.258434 0.966029i \(-0.583206\pi\)
−0.258434 + 0.966029i \(0.583206\pi\)
\(180\) 0 0
\(181\) 5.34060 0.396964 0.198482 0.980105i \(-0.436399\pi\)
0.198482 + 0.980105i \(0.436399\pi\)
\(182\) 0 0
\(183\) 4.46207 + 4.46207i 0.329846 + 0.329846i
\(184\) 0 0
\(185\) 3.12489 0.484862i 0.229746 0.0356478i
\(186\) 0 0
\(187\) 16.3056 16.3056i 1.19239 1.19239i
\(188\) 0 0
\(189\) 1.00000i 0.0727393i
\(190\) 0 0
\(191\) 7.38148i 0.534105i 0.963682 + 0.267053i \(0.0860497\pi\)
−0.963682 + 0.267053i \(0.913950\pi\)
\(192\) 0 0
\(193\) −0.219495 + 0.219495i −0.0157996 + 0.0157996i −0.714962 0.699163i \(-0.753556\pi\)
0.699163 + 0.714962i \(0.253556\pi\)
\(194\) 0 0
\(195\) −5.83347 + 7.97620i −0.417743 + 0.571187i
\(196\) 0 0
\(197\) −2.34438 2.34438i −0.167030 0.167030i 0.618642 0.785673i \(-0.287683\pi\)
−0.785673 + 0.618642i \(0.787683\pi\)
\(198\) 0 0
\(199\) 12.1968 0.864607 0.432303 0.901728i \(-0.357701\pi\)
0.432303 + 0.901728i \(0.357701\pi\)
\(200\) 0 0
\(201\) 5.28005 0.372426
\(202\) 0 0
\(203\) 0.728515 + 0.728515i 0.0511317 + 0.0511317i
\(204\) 0 0
\(205\) 6.04496 8.26537i 0.422198 0.577278i
\(206\) 0 0
\(207\) −4.87182 + 4.87182i −0.338615 + 0.338615i
\(208\) 0 0
\(209\) 16.4995i 1.14130i
\(210\) 0 0
\(211\) 5.65685i 0.389434i 0.980859 + 0.194717i \(0.0623788\pi\)
−0.980859 + 0.194717i \(0.937621\pi\)
\(212\) 0 0
\(213\) 5.67030 5.67030i 0.388523 0.388523i
\(214\) 0 0
\(215\) −20.5054 + 3.18166i −1.39846 + 0.216987i
\(216\) 0 0
\(217\) −1.15516 1.15516i −0.0784175 0.0784175i
\(218\) 0 0
\(219\) −11.4475 −0.773551
\(220\) 0 0
\(221\) −36.0294 −2.42360
\(222\) 0 0
\(223\) −1.98687 1.98687i −0.133051 0.133051i 0.637445 0.770496i \(-0.279991\pi\)
−0.770496 + 0.637445i \(0.779991\pi\)
\(224\) 0 0
\(225\) 4.76491 1.51514i 0.317661 0.101009i
\(226\) 0 0
\(227\) −2.74279 + 2.74279i −0.182046 + 0.182046i −0.792247 0.610201i \(-0.791089\pi\)
0.610201 + 0.792247i \(0.291089\pi\)
\(228\) 0 0
\(229\) 17.5298i 1.15840i 0.815184 + 0.579201i \(0.196636\pi\)
−0.815184 + 0.579201i \(0.803364\pi\)
\(230\) 0 0
\(231\) 2.82843i 0.186097i
\(232\) 0 0
\(233\) 12.6547 12.6547i 0.829037 0.829037i −0.158346 0.987384i \(-0.550616\pi\)
0.987384 + 0.158346i \(0.0506163\pi\)
\(234\) 0 0
\(235\) −1.81026 11.6669i −0.118088 0.761067i
\(236\) 0 0
\(237\) 1.03028 + 1.03028i 0.0669236 + 0.0669236i
\(238\) 0 0
\(239\) −18.6952 −1.20929 −0.604646 0.796495i \(-0.706685\pi\)
−0.604646 + 0.796495i \(0.706685\pi\)
\(240\) 0 0
\(241\) −13.0303 −0.839354 −0.419677 0.907674i \(-0.637857\pi\)
−0.419677 + 0.907674i \(0.637857\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −1.80487 1.32001i −0.115309 0.0843325i
\(246\) 0 0
\(247\) 18.2289 18.2289i 1.15988 1.15988i
\(248\) 0 0
\(249\) 11.2195i 0.711007i
\(250\) 0 0
\(251\) 8.75288i 0.552477i −0.961089 0.276238i \(-0.910912\pi\)
0.961089 0.276238i \(-0.0890879\pi\)
\(252\) 0 0
\(253\) −13.7796 + 13.7796i −0.866315 + 0.866315i
\(254\) 0 0
\(255\) 14.7148 + 10.7618i 0.921476 + 0.673931i
\(256\) 0 0
\(257\) 9.37466 + 9.37466i 0.584775 + 0.584775i 0.936212 0.351437i \(-0.114307\pi\)
−0.351437 + 0.936212i \(0.614307\pi\)
\(258\) 0 0
\(259\) 1.41421 0.0878750
\(260\) 0 0
\(261\) −1.03028 −0.0637725
\(262\) 0 0
\(263\) −13.3571 13.3571i −0.823634 0.823634i 0.162993 0.986627i \(-0.447885\pi\)
−0.986627 + 0.162993i \(0.947885\pi\)
\(264\) 0 0
\(265\) 0.0752319 + 0.484862i 0.00462146 + 0.0297848i
\(266\) 0 0
\(267\) −2.77191 + 2.77191i −0.169638 + 0.169638i
\(268\) 0 0
\(269\) 22.6694i 1.38218i 0.722770 + 0.691088i \(0.242868\pi\)
−0.722770 + 0.691088i \(0.757132\pi\)
\(270\) 0 0
\(271\) 19.6639i 1.19450i 0.802056 + 0.597248i \(0.203739\pi\)
−0.802056 + 0.597248i \(0.796261\pi\)
\(272\) 0 0
\(273\) −3.12489 + 3.12489i −0.189127 + 0.189127i
\(274\) 0 0
\(275\) 13.4772 4.28546i 0.812706 0.258423i
\(276\) 0 0
\(277\) 8.03028 + 8.03028i 0.482493 + 0.482493i 0.905927 0.423434i \(-0.139176\pi\)
−0.423434 + 0.905927i \(0.639176\pi\)
\(278\) 0 0
\(279\) 1.63365 0.0978038
\(280\) 0 0
\(281\) −2.96972 −0.177159 −0.0885794 0.996069i \(-0.528233\pi\)
−0.0885794 + 0.996069i \(0.528233\pi\)
\(282\) 0 0
\(283\) 22.0535 + 22.0535i 1.31094 + 1.31094i 0.920721 + 0.390221i \(0.127601\pi\)
0.390221 + 0.920721i \(0.372399\pi\)
\(284\) 0 0
\(285\) −12.8898 + 2.00000i −0.763526 + 0.118470i
\(286\) 0 0
\(287\) 3.23818 3.23818i 0.191143 0.191143i
\(288\) 0 0
\(289\) 49.4683i 2.90990i
\(290\) 0 0
\(291\) 0.219432i 0.0128633i
\(292\) 0 0
\(293\) −12.9045 + 12.9045i −0.753887 + 0.753887i −0.975202 0.221315i \(-0.928965\pi\)
0.221315 + 0.975202i \(0.428965\pi\)
\(294\) 0 0
\(295\) 1.92330 2.62976i 0.111979 0.153110i
\(296\) 0 0
\(297\) 2.00000 + 2.00000i 0.116052 + 0.116052i
\(298\) 0 0
\(299\) 30.4478 1.76084
\(300\) 0 0
\(301\) −9.28005 −0.534893
\(302\) 0 0
\(303\) 8.20933 + 8.20933i 0.471614 + 0.471614i
\(304\) 0 0
\(305\) −8.32970 + 11.3893i −0.476957 + 0.652151i
\(306\) 0 0
\(307\) 6.01008 6.01008i 0.343014 0.343014i −0.514485 0.857499i \(-0.672017\pi\)
0.857499 + 0.514485i \(0.172017\pi\)
\(308\) 0 0
\(309\) 14.8099i 0.842504i
\(310\) 0 0
\(311\) 30.2765i 1.71682i 0.512962 + 0.858411i \(0.328548\pi\)
−0.512962 + 0.858411i \(0.671452\pi\)
\(312\) 0 0
\(313\) 19.1249 19.1249i 1.08100 1.08100i 0.0845863 0.996416i \(-0.473043\pi\)
0.996416 0.0845863i \(-0.0269569\pi\)
\(314\) 0 0
\(315\) 2.20963 0.342849i 0.124498 0.0193174i
\(316\) 0 0
\(317\) 6.87511 + 6.87511i 0.386145 + 0.386145i 0.873310 0.487165i \(-0.161969\pi\)
−0.487165 + 0.873310i \(0.661969\pi\)
\(318\) 0 0
\(319\) −2.91406 −0.163156
\(320\) 0 0
\(321\) 14.8898 0.831067
\(322\) 0 0
\(323\) −33.6294 33.6294i −1.87119 1.87119i
\(324\) 0 0
\(325\) −19.6244 10.1552i −1.08857 0.563307i
\(326\) 0 0
\(327\) −9.52421 + 9.52421i −0.526690 + 0.526690i
\(328\) 0 0
\(329\) 5.28005i 0.291098i
\(330\) 0 0
\(331\) 0.932534i 0.0512567i 0.999672 + 0.0256283i \(0.00815865\pi\)
−0.999672 + 0.0256283i \(0.991841\pi\)
\(332\) 0 0
\(333\) −1.00000 + 1.00000i −0.0547997 + 0.0547997i
\(334\) 0 0
\(335\) 1.81026 + 11.6669i 0.0989051 + 0.637433i
\(336\) 0 0
\(337\) 19.0294 + 19.0294i 1.03660 + 1.03660i 0.999304 + 0.0372908i \(0.0118728\pi\)
0.0372908 + 0.999304i \(0.488127\pi\)
\(338\) 0 0
\(339\) −10.0761 −0.547259
\(340\) 0 0
\(341\) 4.62065 0.250222
\(342\) 0 0
\(343\) −0.707107 0.707107i −0.0381802 0.0381802i
\(344\) 0 0
\(345\) −12.4352 9.09461i −0.669489 0.489637i
\(346\) 0 0
\(347\) −5.42372 + 5.42372i −0.291161 + 0.291161i −0.837539 0.546378i \(-0.816006\pi\)
0.546378 + 0.837539i \(0.316006\pi\)
\(348\) 0 0
\(349\) 36.7493i 1.96715i 0.180512 + 0.983573i \(0.442225\pi\)
−0.180512 + 0.983573i \(0.557775\pi\)
\(350\) 0 0
\(351\) 4.41926i 0.235882i
\(352\) 0 0
\(353\) −8.59415 + 8.59415i −0.457421 + 0.457421i −0.897808 0.440387i \(-0.854841\pi\)
0.440387 + 0.897808i \(0.354841\pi\)
\(354\) 0 0
\(355\) 14.4733 + 10.5852i 0.768163 + 0.561804i
\(356\) 0 0
\(357\) 5.76491 + 5.76491i 0.305111 + 0.305111i
\(358\) 0 0
\(359\) 27.2661 1.43905 0.719525 0.694467i \(-0.244360\pi\)
0.719525 + 0.694467i \(0.244360\pi\)
\(360\) 0 0
\(361\) 15.0294 0.791019
\(362\) 0 0
\(363\) −2.12132 2.12132i −0.111340 0.111340i
\(364\) 0 0
\(365\) −3.92477 25.2947i −0.205432 1.32399i
\(366\) 0 0
\(367\) 8.74753 8.74753i 0.456617 0.456617i −0.440926 0.897543i \(-0.645350\pi\)
0.897543 + 0.440926i \(0.145350\pi\)
\(368\) 0 0
\(369\) 4.57947i 0.238398i
\(370\) 0 0
\(371\) 0.219432i 0.0113923i
\(372\) 0 0
\(373\) −12.4087 + 12.4087i −0.642499 + 0.642499i −0.951169 0.308670i \(-0.900116\pi\)
0.308670 + 0.951169i \(0.400116\pi\)
\(374\) 0 0
\(375\) 4.98154 + 10.0092i 0.257245 + 0.516873i
\(376\) 0 0
\(377\) 3.21949 + 3.21949i 0.165812 + 0.165812i
\(378\) 0 0
\(379\) −29.5152 −1.51610 −0.758048 0.652199i \(-0.773847\pi\)
−0.758048 + 0.652199i \(0.773847\pi\)
\(380\) 0 0
\(381\) −18.4390 −0.944658
\(382\) 0 0
\(383\) 20.0392 + 20.0392i 1.02395 + 1.02395i 0.999706 + 0.0242484i \(0.00771926\pi\)
0.0242484 + 0.999706i \(0.492281\pi\)
\(384\) 0 0
\(385\) 6.24977 0.969724i 0.318518 0.0494217i
\(386\) 0 0
\(387\) 6.56198 6.56198i 0.333564 0.333564i
\(388\) 0 0
\(389\) 5.21949i 0.264639i 0.991207 + 0.132319i \(0.0422425\pi\)
−0.991207 + 0.132319i \(0.957758\pi\)
\(390\) 0 0
\(391\) 56.1712i 2.84070i
\(392\) 0 0
\(393\) 2.96972 2.96972i 0.149803 0.149803i
\(394\) 0 0
\(395\) −1.92330 + 2.62976i −0.0967716 + 0.132317i
\(396\) 0 0
\(397\) −21.9348 21.9348i −1.10087 1.10087i −0.994305 0.106568i \(-0.966014\pi\)
−0.106568 0.994305i \(-0.533986\pi\)
\(398\) 0 0
\(399\) −5.83347 −0.292039
\(400\) 0 0
\(401\) 15.2800 0.763049 0.381525 0.924359i \(-0.375399\pi\)
0.381525 + 0.924359i \(0.375399\pi\)
\(402\) 0 0
\(403\) −5.10495 5.10495i −0.254296 0.254296i
\(404\) 0 0
\(405\) −1.32001 + 1.80487i −0.0655919 + 0.0896849i
\(406\) 0 0
\(407\) −2.82843 + 2.82843i −0.140200 + 0.140200i
\(408\) 0 0
\(409\) 30.8392i 1.52490i −0.647046 0.762451i \(-0.723996\pi\)
0.647046 0.762451i \(-0.276004\pi\)
\(410\) 0 0
\(411\) 18.9146i 0.932989i
\(412\) 0 0
\(413\) 1.03028 1.03028i 0.0506966 0.0506966i
\(414\) 0 0
\(415\) −24.7909 + 3.84659i −1.21694 + 0.188822i
\(416\) 0 0
\(417\) 0.905391 + 0.905391i 0.0443372 + 0.0443372i
\(418\) 0 0
\(419\) 20.8172 1.01698 0.508492 0.861067i \(-0.330203\pi\)
0.508492 + 0.861067i \(0.330203\pi\)
\(420\) 0 0
\(421\) 9.65092 0.470357 0.235179 0.971952i \(-0.424433\pi\)
0.235179 + 0.971952i \(0.424433\pi\)
\(422\) 0 0
\(423\) 3.73356 + 3.73356i 0.181532 + 0.181532i
\(424\) 0 0
\(425\) −18.7346 + 36.2039i −0.908763 + 1.75615i
\(426\) 0 0
\(427\) −4.46207 + 4.46207i −0.215935 + 0.215935i
\(428\) 0 0
\(429\) 12.4995i 0.603484i
\(430\) 0 0
\(431\) 16.5899i 0.799109i 0.916709 + 0.399554i \(0.130835\pi\)
−0.916709 + 0.399554i \(0.869165\pi\)
\(432\) 0 0
\(433\) 24.7153 24.7153i 1.18774 1.18774i 0.210048 0.977691i \(-0.432638\pi\)
0.977691 0.210048i \(-0.0673622\pi\)
\(434\) 0 0
\(435\) −0.353229 2.27653i −0.0169360 0.109151i
\(436\) 0 0
\(437\) 28.4196 + 28.4196i 1.35949 + 1.35949i
\(438\) 0 0
\(439\) −6.18670 −0.295275 −0.147637 0.989042i \(-0.547167\pi\)
−0.147637 + 0.989042i \(0.547167\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −4.31992 4.31992i −0.205246 0.205246i 0.596998 0.802243i \(-0.296360\pi\)
−0.802243 + 0.596998i \(0.796360\pi\)
\(444\) 0 0
\(445\) −7.07523 5.17454i −0.335398 0.245297i
\(446\) 0 0
\(447\) −1.76744 + 1.76744i −0.0835972 + 0.0835972i
\(448\) 0 0
\(449\) 38.4995i 1.81691i 0.417987 + 0.908453i \(0.362736\pi\)
−0.417987 + 0.908453i \(0.637264\pi\)
\(450\) 0 0
\(451\) 12.9527i 0.609919i
\(452\) 0 0
\(453\) −16.7493 + 16.7493i −0.786951 + 0.786951i
\(454\) 0 0
\(455\) −7.97620 5.83347i −0.373930 0.273477i
\(456\) 0 0
\(457\) 18.8401 + 18.8401i 0.881305 + 0.881305i 0.993667 0.112363i \(-0.0358418\pi\)
−0.112363 + 0.993667i \(0.535842\pi\)
\(458\) 0 0
\(459\) −8.15281 −0.380541
\(460\) 0 0
\(461\) −13.6703 −0.636689 −0.318345 0.947975i \(-0.603127\pi\)
−0.318345 + 0.947975i \(0.603127\pi\)
\(462\) 0 0
\(463\) −17.2382 17.2382i −0.801125 0.801125i 0.182146 0.983271i \(-0.441696\pi\)
−0.983271 + 0.182146i \(0.941696\pi\)
\(464\) 0 0
\(465\) 0.560094 + 3.60975i 0.0259737 + 0.167398i
\(466\) 0 0
\(467\) −20.2379 + 20.2379i −0.936496 + 0.936496i −0.998101 0.0616045i \(-0.980378\pi\)
0.0616045 + 0.998101i \(0.480378\pi\)
\(468\) 0 0
\(469\) 5.28005i 0.243810i
\(470\) 0 0
\(471\) 5.52306i 0.254489i
\(472\) 0 0
\(473\) 18.5601 18.5601i 0.853394 0.853394i
\(474\) 0 0
\(475\) −8.83851 27.7959i −0.405539 1.27537i
\(476\) 0 0
\(477\) −0.155162 0.155162i −0.00710436 0.00710436i
\(478\) 0 0
\(479\) 38.6213 1.76465 0.882327 0.470637i \(-0.155976\pi\)
0.882327 + 0.470637i \(0.155976\pi\)
\(480\) 0 0
\(481\) 6.24977 0.284965
\(482\) 0 0
\(483\) −4.87182 4.87182i −0.221675 0.221675i
\(484\) 0 0
\(485\) −0.484862 + 0.0752319i −0.0220164 + 0.00341611i
\(486\) 0 0
\(487\) −3.81919 + 3.81919i −0.173064 + 0.173064i −0.788324 0.615260i \(-0.789051\pi\)
0.615260 + 0.788324i \(0.289051\pi\)
\(488\) 0 0
\(489\) 20.9991i 0.949611i
\(490\) 0 0
\(491\) 5.81141i 0.262265i −0.991365 0.131133i \(-0.958139\pi\)
0.991365 0.131133i \(-0.0418614\pi\)
\(492\) 0 0
\(493\) 5.93945 5.93945i 0.267499 0.267499i
\(494\) 0 0
\(495\) −3.73356 + 5.10495i −0.167811 + 0.229451i
\(496\) 0 0
\(497\) 5.67030 + 5.67030i 0.254348 + 0.254348i
\(498\) 0 0
\(499\) 35.1721 1.57452 0.787259 0.616622i \(-0.211499\pi\)
0.787259 + 0.616622i \(0.211499\pi\)
\(500\) 0 0
\(501\) 23.0596 1.03023
\(502\) 0 0
\(503\) −16.7719 16.7719i −0.747822 0.747822i 0.226248 0.974070i \(-0.427354\pi\)
−0.974070 + 0.226248i \(0.927354\pi\)
\(504\) 0 0
\(505\) −15.3250 + 20.9541i −0.681954 + 0.932446i
\(506\) 0 0
\(507\) −4.61728 + 4.61728i −0.205061 + 0.205061i
\(508\) 0 0
\(509\) 12.7006i 0.562943i 0.959570 + 0.281472i \(0.0908225\pi\)
−0.959570 + 0.281472i \(0.909177\pi\)
\(510\) 0 0
\(511\) 11.4475i 0.506408i
\(512\) 0 0
\(513\) 4.12489 4.12489i 0.182118 0.182118i
\(514\) 0 0
\(515\) −32.7243 + 5.07755i −1.44200 + 0.223744i
\(516\) 0 0
\(517\) 10.5601 + 10.5601i 0.464432 + 0.464432i
\(518\) 0 0
\(519\) −19.4665 −0.854485
\(520\) 0 0
\(521\) 28.1093 1.23149 0.615745 0.787945i \(-0.288855\pi\)
0.615745 + 0.787945i \(0.288855\pi\)
\(522\) 0 0
\(523\) 18.8718 + 18.8718i 0.825206 + 0.825206i 0.986849 0.161643i \(-0.0516793\pi\)
−0.161643 + 0.986849i \(0.551679\pi\)
\(524\) 0 0
\(525\) 1.51514 + 4.76491i 0.0661260 + 0.207958i
\(526\) 0 0
\(527\) −9.41782 + 9.41782i −0.410246 + 0.410246i
\(528\) 0 0
\(529\) 24.4693i 1.06388i
\(530\) 0 0
\(531\) 1.45703i 0.0632297i
\(532\) 0 0
\(533\) 14.3103 14.3103i 0.619849 0.619849i
\(534\) 0 0
\(535\) 5.10495 + 32.9009i 0.220706 + 1.42243i
\(536\) 0 0
\(537\) 4.88979 + 4.88979i 0.211010 + 0.211010i
\(538\) 0 0
\(539\) 2.82843 0.121829
\(540\) 0 0
\(541\) −35.4087 −1.52234 −0.761170 0.648553i \(-0.775375\pi\)
−0.761170 + 0.648553i \(0.775375\pi\)
\(542\) 0 0
\(543\) −3.77637 3.77637i −0.162060 0.162060i
\(544\) 0 0
\(545\) −24.3103 17.7796i −1.04134 0.761594i
\(546\) 0 0
\(547\) 13.2370 13.2370i 0.565973 0.565973i −0.365024 0.930998i \(-0.618939\pi\)
0.930998 + 0.365024i \(0.118939\pi\)
\(548\) 0 0
\(549\) 6.31032i 0.269318i
\(550\) 0 0
\(551\) 6.01008i 0.256038i
\(552\) 0 0
\(553\) −1.03028 + 1.03028i −0.0438118 + 0.0438118i
\(554\) 0 0
\(555\) −2.55248 1.86678i −0.108347 0.0792403i
\(556\) 0 0
\(557\) −0.654703 0.654703i −0.0277407 0.0277407i 0.693100 0.720841i \(-0.256244\pi\)
−0.720841 + 0.693100i \(0.756244\pi\)
\(558\) 0 0
\(559\) −41.0109 −1.73458
\(560\) 0 0
\(561\) −23.0596 −0.973579
\(562\) 0 0
\(563\) 23.1352 + 23.1352i 0.975033 + 0.975033i 0.999696 0.0246632i \(-0.00785134\pi\)
−0.0246632 + 0.999696i \(0.507851\pi\)
\(564\) 0 0
\(565\) −3.45459 22.2645i −0.145336 0.936672i
\(566\) 0 0
\(567\) −0.707107 + 0.707107i −0.0296957 + 0.0296957i
\(568\) 0 0
\(569\) 40.2791i 1.68859i −0.535879 0.844294i \(-0.680020\pi\)
0.535879 0.844294i \(-0.319980\pi\)
\(570\) 0 0
\(571\) 1.81026i 0.0757570i 0.999282 + 0.0378785i \(0.0120600\pi\)
−0.999282 + 0.0378785i \(0.987940\pi\)
\(572\) 0 0
\(573\) 5.21949 5.21949i 0.218048 0.218048i
\(574\) 0 0
\(575\) 15.8323 30.5953i 0.660253 1.27591i
\(576\) 0 0
\(577\) 14.3444 + 14.3444i 0.597164 + 0.597164i 0.939557 0.342393i \(-0.111237\pi\)
−0.342393 + 0.939557i \(0.611237\pi\)
\(578\) 0 0
\(579\) 0.310412 0.0129003
\(580\) 0 0
\(581\) −11.2195 −0.465463
\(582\) 0 0
\(583\) −0.438863 0.438863i −0.0181758 0.0181758i
\(584\) 0 0
\(585\) 9.76491 1.51514i 0.403729 0.0626432i
\(586\) 0 0
\(587\) 7.26844 7.26844i 0.300001 0.300001i −0.541013 0.841014i \(-0.681959\pi\)
0.841014 + 0.541013i \(0.181959\pi\)
\(588\) 0 0
\(589\) 9.52982i 0.392669i
\(590\) 0 0
\(591\) 3.31545i 0.136380i
\(592\) 0 0
\(593\) 1.26537 1.26537i 0.0519624 0.0519624i −0.680648 0.732611i \(-0.738302\pi\)
0.732611 + 0.680648i \(0.238302\pi\)
\(594\) 0 0
\(595\) −10.7618 + 14.7148i −0.441191 + 0.603248i
\(596\) 0 0
\(597\) −8.62443 8.62443i −0.352974 0.352974i
\(598\) 0 0
\(599\) 12.3319 0.503867 0.251933 0.967745i \(-0.418934\pi\)
0.251933 + 0.967745i \(0.418934\pi\)
\(600\) 0 0
\(601\) −35.8089 −1.46068 −0.730339 0.683085i \(-0.760638\pi\)
−0.730339 + 0.683085i \(0.760638\pi\)
\(602\) 0 0
\(603\) −3.73356 3.73356i −0.152042 0.152042i
\(604\) 0 0
\(605\) 3.96004 5.41462i 0.160998 0.220136i
\(606\) 0 0
\(607\) −24.9675 + 24.9675i −1.01340 + 1.01340i −0.0134914 + 0.999909i \(0.504295\pi\)
−0.999909 + 0.0134914i \(0.995705\pi\)
\(608\) 0 0
\(609\) 1.03028i 0.0417489i
\(610\) 0 0
\(611\) 23.3339i 0.943988i
\(612\) 0 0
\(613\) 9.68876 9.68876i 0.391325 0.391325i −0.483834 0.875160i \(-0.660756\pi\)
0.875160 + 0.483834i \(0.160756\pi\)
\(614\) 0 0
\(615\) −10.1189 + 1.57007i −0.408034 + 0.0633113i
\(616\) 0 0
\(617\) −27.6850 27.6850i −1.11456 1.11456i −0.992527 0.122029i \(-0.961060\pi\)
−0.122029 0.992527i \(-0.538940\pi\)
\(618\) 0 0
\(619\) 16.9211 0.680117 0.340058 0.940404i \(-0.389553\pi\)
0.340058 + 0.940404i \(0.389553\pi\)
\(620\) 0 0
\(621\) 6.88979 0.276478
\(622\) 0 0
\(623\) −2.77191 2.77191i −0.111054 0.111054i
\(624\) 0 0
\(625\) −20.4087 + 14.4390i −0.816349 + 0.577560i
\(626\) 0 0
\(627\) 11.6669 11.6669i 0.465933 0.465933i
\(628\) 0 0
\(629\) 11.5298i 0.459724i
\(630\) 0 0
\(631\) 0.181962i 0.00724379i −0.999993 0.00362189i \(-0.998847\pi\)
0.999993 0.00362189i \(-0.00115289\pi\)
\(632\) 0 0
\(633\) 4.00000 4.00000i 0.158986 0.158986i
\(634\) 0 0
\(635\) −6.32179 40.7433i −0.250873 1.61685i
\(636\) 0 0
\(637\) −3.12489 3.12489i −0.123812 0.123812i
\(638\) 0 0
\(639\) −8.01901 −0.317227
\(640\) 0 0
\(641\) −10.9697 −0.433278 −0.216639 0.976252i \(-0.569509\pi\)
−0.216639 + 0.976252i \(0.569509\pi\)
\(642\) 0 0
\(643\) 24.0844 + 24.0844i 0.949798 + 0.949798i 0.998799 0.0490008i \(-0.0156037\pi\)
−0.0490008 + 0.998799i \(0.515604\pi\)
\(644\) 0 0
\(645\) 16.7493 + 12.2498i 0.659504 + 0.482334i
\(646\) 0 0
\(647\) 22.3157 22.3157i 0.877321 0.877321i −0.115936 0.993257i \(-0.536987\pi\)
0.993257 + 0.115936i \(0.0369867\pi\)
\(648\) 0 0
\(649\) 4.12110i 0.161767i
\(650\) 0 0
\(651\) 1.63365i 0.0640276i
\(652\) 0 0
\(653\) −0.276266 + 0.276266i −0.0108111 + 0.0108111i −0.712492 0.701681i \(-0.752433\pi\)
0.701681 + 0.712492i \(0.252433\pi\)
\(654\) 0 0
\(655\) 7.58015 + 5.54382i 0.296181 + 0.216615i
\(656\) 0 0
\(657\) 8.09461 + 8.09461i 0.315801 + 0.315801i
\(658\) 0 0
\(659\) 24.8183 0.966784 0.483392 0.875404i \(-0.339405\pi\)
0.483392 + 0.875404i \(0.339405\pi\)
\(660\) 0 0
\(661\) −8.37088 −0.325589 −0.162795 0.986660i \(-0.552051\pi\)
−0.162795 + 0.986660i \(0.552051\pi\)
\(662\) 0 0
\(663\) 25.4766 + 25.4766i 0.989429 + 0.989429i
\(664\) 0 0
\(665\) −2.00000 12.8898i −0.0775567 0.499845i
\(666\) 0 0
\(667\) −5.01932 + 5.01932i −0.194349 + 0.194349i
\(668\) 0 0
\(669\) 2.80986i 0.108636i
\(670\) 0 0
\(671\) 17.8483i 0.689026i
\(672\) 0 0
\(673\) 27.5601 27.5601i 1.06236 1.06236i 0.0644421 0.997921i \(-0.479473\pi\)
0.997921 0.0644421i \(-0.0205268\pi\)
\(674\) 0 0
\(675\) −4.44066 2.29793i −0.170921 0.0884476i
\(676\) 0 0
\(677\) −0.174539 0.174539i −0.00670808 0.00670808i 0.703745 0.710453i \(-0.251510\pi\)
−0.710453 + 0.703745i \(0.751510\pi\)
\(678\) 0 0
\(679\) −0.219432 −0.00842101
\(680\) 0 0
\(681\) 3.87890 0.148640
\(682\) 0 0
\(683\) −28.1201 28.1201i −1.07598 1.07598i −0.996865 0.0791191i \(-0.974789\pi\)
−0.0791191 0.996865i \(-0.525211\pi\)
\(684\) 0 0
\(685\) 41.7943 6.48486i 1.59688 0.247774i
\(686\) 0 0
\(687\) 12.3955 12.3955i 0.472916 0.472916i
\(688\) 0 0
\(689\) 0.969724i 0.0369435i
\(690\) 0 0
\(691\) 39.1953i 1.49106i −0.666473 0.745530i \(-0.732197\pi\)
0.666473 0.745530i \(-0.267803\pi\)
\(692\) 0 0
\(693\) −2.00000 + 2.00000i −0.0759737 + 0.0759737i
\(694\) 0 0
\(695\) −1.69016 + 2.31099i −0.0641116 + 0.0876608i
\(696\) 0 0
\(697\) −26.4002 26.4002i −0.999980 0.999980i
\(698\) 0 0
\(699\) −17.8965 −0.676906
\(700\) 0 0
\(701\) 10.8486 0.409747 0.204873 0.978788i \(-0.434322\pi\)
0.204873 + 0.978788i \(0.434322\pi\)
\(702\) 0 0
\(703\) 5.83347 + 5.83347i 0.220013 + 0.220013i
\(704\) 0 0
\(705\) −6.96972 + 9.52982i −0.262495 + 0.358914i
\(706\) 0 0
\(707\) −8.20933 + 8.20933i −0.308744 + 0.308744i
\(708\) 0 0
\(709\) 31.5592i 1.18523i 0.805486 + 0.592615i \(0.201904\pi\)
−0.805486 + 0.592615i \(0.798096\pi\)
\(710\) 0 0
\(711\) 1.45703i 0.0546429i
\(712\) 0 0
\(713\) 7.95883 7.95883i 0.298060 0.298060i
\(714\) 0 0
\(715\) 27.6193 4.28546i 1.03290 0.160267i
\(716\) 0 0
\(717\) 13.2195 + 13.2195i 0.493691 + 0.493691i
\(718\) 0 0
\(719\) −19.8405 −0.739926 −0.369963 0.929046i \(-0.620630\pi\)
−0.369963 + 0.929046i \(0.620630\pi\)
\(720\) 0 0
\(721\) −14.8099 −0.551548
\(722\) 0 0
\(723\) 9.21380 + 9.21380i 0.342665 + 0.342665i
\(724\) 0 0
\(725\) 4.90917 1.56101i 0.182322 0.0579745i
\(726\) 0 0
\(727\) −24.8765 + 24.8765i −0.922620 + 0.922620i −0.997214 0.0745942i \(-0.976234\pi\)
0.0745942 + 0.997214i \(0.476234\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 75.6585i 2.79833i
\(732\) 0 0
\(733\) 29.7531 29.7531i 1.09896 1.09896i 0.104423 0.994533i \(-0.466701\pi\)
0.994533 0.104423i \(-0.0332994\pi\)
\(734\) 0 0
\(735\) 0.342849 + 2.20963i 0.0126462 + 0.0815033i
\(736\) 0 0
\(737\) −10.5601 10.5601i −0.388986 0.388986i
\(738\) 0 0
\(739\) −31.0271 −1.14135 −0.570675 0.821176i \(-0.693318\pi\)
−0.570675 + 0.821176i \(0.693318\pi\)
\(740\) 0 0
\(741\) −25.7796 −0.947037
\(742\) 0 0
\(743\) 19.2541 + 19.2541i 0.706366 + 0.706366i 0.965769 0.259403i \(-0.0835258\pi\)
−0.259403 + 0.965769i \(0.583526\pi\)
\(744\) 0 0
\(745\) −4.51136 3.29942i −0.165283 0.120882i
\(746\) 0 0
\(747\) 7.93338 7.93338i 0.290267 0.290267i
\(748\) 0 0
\(749\) 14.8898i 0.544061i
\(750\) 0 0
\(751\) 15.1603i 0.553207i −0.960984 0.276604i \(-0.910791\pi\)
0.960984 0.276604i \(-0.0892089\pi\)
\(752\) 0 0
\(753\) −6.18922 + 6.18922i −0.225548 + 0.225548i
\(754\) 0 0
\(755\) −42.7522 31.2673i −1.55591 1.13793i
\(756\) 0 0
\(757\) 12.5298 + 12.5298i 0.455404 + 0.455404i 0.897143 0.441739i \(-0.145638\pi\)
−0.441739 + 0.897143i \(0.645638\pi\)
\(758\) 0 0
\(759\) 19.4873 0.707343
\(760\) 0 0
\(761\) 1.33062 0.0482348 0.0241174 0.999709i \(-0.492322\pi\)
0.0241174 + 0.999709i \(0.492322\pi\)
\(762\) 0 0
\(763\) −9.52421 9.52421i −0.344800 0.344800i
\(764\) 0 0
\(765\) −2.79518 18.0147i −0.101060 0.651322i
\(766\) 0 0
\(767\) 4.55305 4.55305i 0.164401 0.164401i
\(768\) 0 0
\(769\) 2.31032i 0.0833124i 0.999132 + 0.0416562i \(0.0132634\pi\)
−0.999132 + 0.0416562i \(0.986737\pi\)
\(770\) 0 0
\(771\) 13.2578i 0.477467i
\(772\) 0 0
\(773\) −21.8448 + 21.8448i −0.785704 + 0.785704i −0.980787 0.195083i \(-0.937503\pi\)
0.195083 + 0.980787i \(0.437503\pi\)
\(774\) 0 0
\(775\) −7.78417 + 2.47520i −0.279616 + 0.0889117i
\(776\) 0 0
\(777\) −1.00000 1.00000i −0.0358748 0.0358748i
\(778\) 0 0
\(779\) 26.7142 0.957136
\(780\) 0 0
\(781\) −22.6812 −0.811597
\(782\) 0 0
\(783\) 0.728515 + 0.728515i 0.0260350 + 0.0260350i
\(784\) 0 0
\(785\) 12.2039 1.89358i 0.435576 0.0675846i
\(786\) 0 0
\(787\) −21.6146 + 21.6146i −0.770477 + 0.770477i −0.978190 0.207713i \(-0.933398\pi\)
0.207713 + 0.978190i \(0.433398\pi\)
\(788\) 0 0
\(789\) 18.8898i 0.672494i
\(790\) 0 0
\(791\) 10.0761i 0.358265i
\(792\) 0 0
\(793\) −19.7190 + 19.7190i −0.700244 + 0.700244i
\(794\) 0 0
\(795\) 0.289652 0.396046i 0.0102729 0.0140463i
\(796\) 0 0
\(797\) −14.2645 14.2645i −0.505273 0.505273i 0.407799 0.913072i \(-0.366296\pi\)
−0.913072 + 0.407799i \(0.866296\pi\)
\(798\) 0 0
\(799\) −43.0472 −1.52290
\(800\) 0 0
\(801\) 3.92007 0.138509
\(802\) 0 0
\(803\) 22.8950 + 22.8950i 0.807947 + 0.807947i
\(804\) 0 0
\(805\) 9.09461 12.4352i 0.320543 0.438284i
\(806\) 0 0
\(807\) 16.0297 16.0297i 0.564271 0.564271i
\(808\) 0 0
\(809\) 20.3709i 0.716202i 0.933683 + 0.358101i \(0.116576\pi\)
−0.933683 + 0.358101i \(0.883424\pi\)
\(810\) 0 0
\(811\) 43.3510i 1.52226i 0.648600 + 0.761130i \(0.275355\pi\)
−0.648600 + 0.761130i \(0.724645\pi\)
\(812\) 0 0
\(813\) 13.9045 13.9045i 0.487651 0.487651i
\(814\) 0 0
\(815\) 46.4002 7.19952i 1.62533 0.252188i
\(816\) 0 0
\(817\) −38.2791 38.2791i −1.33922 1.33922i
\(818\) 0 0
\(819\) 4.41926 0.154421
\(820\) 0 0
\(821\) −15.8713 −0.553913 −0.276957 0.960882i \(-0.589326\pi\)
−0.276957 + 0.960882i \(0.589326\pi\)
\(822\) 0 0
\(823\) −9.19174 9.19174i −0.320404 0.320404i 0.528518 0.848922i \(-0.322748\pi\)
−0.848922 + 0.528518i \(0.822748\pi\)
\(824\) 0 0
\(825\) −12.5601 6.49954i −0.437286 0.226285i
\(826\) 0 0
\(827\) −20.4436 + 20.4436i −0.710893 + 0.710893i −0.966722 0.255829i \(-0.917652\pi\)
0.255829 + 0.966722i \(0.417652\pi\)
\(828\) 0 0
\(829\) 52.6576i 1.82887i −0.404729 0.914436i \(-0.632634\pi\)
0.404729 0.914436i \(-0.367366\pi\)
\(830\) 0 0
\(831\) 11.3565i 0.393954i
\(832\) 0 0
\(833\) −5.76491 + 5.76491i −0.199742 + 0.199742i
\(834\) 0 0
\(835\) 7.90598 + 50.9532i 0.273598 + 1.76331i
\(836\) 0 0
\(837\) −1.15516 1.15516i −0.0399282 0.0399282i
\(838\) 0 0
\(839\) 22.6274 0.781185 0.390593 0.920564i \(-0.372270\pi\)
0.390593 + 0.920564i \(0.372270\pi\)
\(840\) 0 0
\(841\) 27.9385 0.963398
\(842\) 0 0
\(843\) 2.09991 + 2.09991i 0.0723248 + 0.0723248i
\(844\) 0 0
\(845\) −11.7855 8.61944i −0.405433 0.296518i
\(846\) 0 0
\(847\) 2.12132 2.12132i 0.0728894 0.0728894i
\(848\) 0 0
\(849\) 31.1883i 1.07038i
\(850\) 0 0
\(851\) 9.74364i 0.334008i
\(852\) 0 0
\(853\) −34.7834 + 34.7834i −1.19096 + 1.19096i −0.214162 + 0.976798i \(0.568702\pi\)
−0.976798 + 0.214162i \(0.931298\pi\)
\(854\) 0 0
\(855\) 10.5287 + 7.70025i 0.360073 + 0.263343i
\(856\) 0 0
\(857\) −35.9348 35.9348i −1.22751 1.22751i −0.964904 0.262604i \(-0.915419\pi\)
−0.262604 0.964904i \(-0.584581\pi\)
\(858\) 0 0
\(859\) 19.8900 0.678637 0.339319 0.940672i \(-0.389804\pi\)
0.339319 + 0.940672i \(0.389804\pi\)
\(860\) 0 0
\(861\) −4.57947 −0.156068
\(862\) 0 0
\(863\) −7.78588 7.78588i −0.265034 0.265034i 0.562061 0.827096i \(-0.310009\pi\)
−0.827096 + 0.562061i \(0.810009\pi\)
\(864\) 0 0
\(865\) −6.67408 43.0138i −0.226926 1.46251i
\(866\) 0 0
\(867\) 34.9794 34.9794i 1.18796 1.18796i
\(868\) 0 0
\(869\) 4.12110i 0.139799i
\(870\) 0 0
\(871\) 23.3339i 0.790638i
\(872\) 0 0
\(873\) 0.155162 0.155162i 0.00525142 0.00525142i
\(874\) 0 0
\(875\) −10.0092 + 4.98154i −0.338373 + 0.168407i
\(876\) 0 0
\(877\) 33.1892 + 33.1892i 1.12072 + 1.12072i 0.991633 + 0.129087i \(0.0412047\pi\)
0.129087 + 0.991633i \(0.458795\pi\)
\(878\) 0 0
\(879\) 18.2497 0.615547
\(880\) 0 0
\(881\) 23.1396 0.779592 0.389796 0.920901i \(-0.372546\pi\)
0.389796 + 0.920901i \(0.372546\pi\)
\(882\) 0 0
\(883\) −36.1046 36.1046i −1.21502 1.21502i −0.969356 0.245661i \(-0.920995\pi\)
−0.245661 0.969356i \(-0.579005\pi\)
\(884\) 0 0
\(885\) −3.21949 + 0.499542i −0.108222 + 0.0167919i
\(886\) 0 0
\(887\) −14.8760 + 14.8760i −0.499487 + 0.499487i −0.911278 0.411791i \(-0.864903\pi\)
0.411791 + 0.911278i \(0.364903\pi\)
\(888\) 0 0
\(889\) 18.4390i 0.618424i
\(890\) 0 0
\(891\) 2.82843i 0.0947559i
\(892\) 0 0
\(893\) 21.7796 21.7796i 0.728826 0.728826i
\(894\) 0 0
\(895\) −9.12816 + 12.4811i −0.305121 + 0.417197i
\(896\) 0 0
\(897\) −21.5298 21.5298i −0.718860 0.718860i
\(898\) 0 0
\(899\) 1.68311 0.0561347
\(900\) 0 0
\(901\) 1.78898 0.0595997
\(902\) 0 0
\(903\) 6.56198 + 6.56198i 0.218369 + 0.218369i
\(904\) 0 0
\(905\) 7.04965 9.63911i 0.234338 0.320415i
\(906\) 0 0
\(907\) 16.0380 16.0380i 0.532534 0.532534i −0.388792 0.921326i \(-0.627107\pi\)
0.921326 + 0.388792i \(0.127107\pi\)
\(908\) 0 0
\(909\) 11.6097i 0.385071i
\(910\) 0 0
\(911\) 17.2823i 0.572587i 0.958142 + 0.286294i \(0.0924233\pi\)
−0.958142 + 0.286294i \(0.907577\pi\)
\(912\) 0 0
\(913\) 22.4390 22.4390i 0.742622 0.742622i
\(914\) 0 0
\(915\) 13.9435 2.16349i 0.460957 0.0715227i
\(916\) 0 0
\(917\) 2.96972 + 2.96972i 0.0980689 + 0.0980689i
\(918\) 0 0
\(919\) 17.6770 0.583111 0.291556 0.956554i \(-0.405827\pi\)
0.291556 + 0.956554i \(0.405827\pi\)
\(920\) 0 0
\(921\) −8.49954 −0.280069
\(922\) 0 0
\(923\) 25.0585 + 25.0585i 0.824811 + 0.824811i
\(924\) 0 0
\(925\) 3.24977 6.28005i 0.106852 0.206487i
\(926\) 0 0
\(927\) 10.4722 10.4722i 0.343951 0.343951i
\(928\) 0 0
\(929\) 16.2304i 0.532502i −0.963904 0.266251i \(-0.914215\pi\)
0.963904 0.266251i \(-0.0857850\pi\)
\(930\) 0 0
\(931\) 5.83347i 0.191184i
\(932\) 0 0
\(933\) 21.4087 21.4087i 0.700890 0.700890i
\(934\) 0 0
\(935\) −7.90598 50.9532i −0.258553 1.66635i
\(936\) 0 0
\(937\) −13.0038 13.0038i −0.424815 0.424815i 0.462043 0.886858i \(-0.347117\pi\)
−0.886858 + 0.462043i \(0.847117\pi\)
\(938\) 0 0
\(939\) −27.0467 −0.882635
\(940\) 0 0
\(941\) 19.4499 0.634048 0.317024 0.948417i \(-0.397316\pi\)
0.317024 + 0.948417i \(0.397316\pi\)
\(942\) 0 0
\(943\) 22.3104 + 22.3104i 0.726525 + 0.726525i
\(944\) 0 0
\(945\) −1.80487 1.32001i −0.0587125 0.0429400i
\(946\) 0 0
\(947\) −28.7576 + 28.7576i −0.934496 + 0.934496i −0.997983 0.0634864i \(-0.979778\pi\)
0.0634864 + 0.997983i \(0.479778\pi\)
\(948\) 0 0
\(949\) 50.5895i 1.64220i
\(950\) 0 0
\(951\) 9.72288i 0.315286i
\(952\) 0 0
\(953\) 24.2838 24.2838i 0.786630 0.786630i −0.194310 0.980940i \(-0.562247\pi\)
0.980940 + 0.194310i \(0.0622467\pi\)
\(954\) 0 0
\(955\) 13.3226 + 9.74364i 0.431110 + 0.315297i
\(956\) 0 0
\(957\) 2.06055 + 2.06055i 0.0666082 + 0.0666082i
\(958\) 0 0
\(959\) 18.9146 0.610785
\(960\) 0 0
\(961\) 28.3312 0.913910
\(962\) 0 0
\(963\) −10.5287 10.5287i −0.339282 0.339282i
\(964\) 0 0
\(965\) 0.106425 + 0.685896i 0.00342593 + 0.0220798i
\(966\) 0 0
\(967\) −27.7739 + 27.7739i −0.893148 + 0.893148i −0.994818 0.101670i \(-0.967581\pi\)
0.101670 + 0.994818i \(0.467581\pi\)
\(968\) 0 0
\(969\) 47.5592i 1.52782i
\(970\) 0 0
\(971\) 57.9815i 1.86071i −0.366655 0.930357i \(-0.619497\pi\)
0.366655 0.930357i \(-0.380503\pi\)
\(972\) 0 0
\(973\) −0.905391 + 0.905391i −0.0290255 + 0.0290255i
\(974\) 0 0
\(975\) 6.69578 + 21.0573i 0.214437 + 0.674375i
\(976\) 0 0
\(977\) 22.2451 + 22.2451i 0.711683 + 0.711683i 0.966887 0.255204i \(-0.0821427\pi\)
−0.255204 + 0.966887i \(0.582143\pi\)
\(978\) 0 0
\(979\) 11.0876 0.354362
\(980\) 0 0
\(981\) 13.4693 0.430041
\(982\) 0 0
\(983\) −34.8189 34.8189i −1.11055 1.11055i −0.993076 0.117473i \(-0.962521\pi\)
−0.117473 0.993076i \(-0.537479\pi\)
\(984\) 0 0
\(985\) −7.32592 + 1.13670i −0.233423 + 0.0362183i
\(986\) 0 0
\(987\) −3.73356 + 3.73356i −0.118840 + 0.118840i
\(988\) 0 0
\(989\) 63.9376i 2.03310i
\(990\) 0 0
\(991\) 10.2099i 0.324328i −0.986764 0.162164i \(-0.948153\pi\)
0.986764 0.162164i \(-0.0518474\pi\)
\(992\) 0 0
\(993\) 0.659401 0.659401i 0.0209255 0.0209255i
\(994\) 0 0
\(995\) 16.0999 22.0137i 0.510401 0.697880i
\(996\) 0 0
\(997\) −4.96503 4.96503i −0.157244 0.157244i 0.624100 0.781344i \(-0.285466\pi\)
−0.781344 + 0.624100i \(0.785466\pi\)
\(998\) 0 0
\(999\) 1.41421 0.0447437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.bl.c.127.3 12
4.3 odd 2 inner 1680.2.bl.c.127.6 yes 12
5.3 odd 4 inner 1680.2.bl.c.463.6 yes 12
20.3 even 4 inner 1680.2.bl.c.463.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.bl.c.127.3 12 1.1 even 1 trivial
1680.2.bl.c.127.6 yes 12 4.3 odd 2 inner
1680.2.bl.c.463.3 yes 12 20.3 even 4 inner
1680.2.bl.c.463.6 yes 12 5.3 odd 4 inner