Properties

Label 1680.2.ba.a
Level $1680$
Weight $2$
Character orbit 1680.ba
Analytic conductor $13.415$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(911,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.911"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.ba (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-2,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.7278137344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + x^{6} + 6x^{5} - 20x^{4} + 18x^{3} + 9x^{2} - 54x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{3} + \beta_{2} q^{5} - \beta_{2} q^{7} + ( - \beta_{7} + \beta_{2} + \beta_1) q^{9} + ( - \beta_{7} - \beta_{6} - \beta_{4} - 1) q^{11} + (\beta_{7} + 2 \beta_{6} + \beta_{5} + \cdots - 1) q^{13}+ \cdots + (2 \beta_{7} - \beta_{6} - 2 \beta_{5} + \cdots + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{9} - 12 q^{11} + 2 q^{15} - 2 q^{21} - 8 q^{23} - 8 q^{25} + 12 q^{27} - 12 q^{33} + 8 q^{35} + 8 q^{37} + 26 q^{39} - 8 q^{45} - 40 q^{47} - 8 q^{49} + 22 q^{51} + 12 q^{57} - 8 q^{59} - 8 q^{61}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{7} + x^{6} + 6x^{5} - 20x^{4} + 18x^{3} + 9x^{2} - 54x + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + \nu^{6} - 5\nu^{5} + 9\nu^{4} - 2\nu^{3} - 15\nu^{2} + 36\nu - 27 ) / 54 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} - \nu^{4} + 2\nu^{3} - 3\nu^{2} - \nu + 12 ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} - \nu^{6} - 4\nu^{5} + 9\nu^{4} - 7\nu^{3} - 12\nu^{2} + 36\nu - 54 ) / 54 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} + 2\nu^{6} - \nu^{5} - 6\nu^{4} + 20\nu^{3} - 18\nu^{2} - 9\nu + 54 ) / 27 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} - 2\nu^{6} + \nu^{5} + 6\nu^{4} - 11\nu^{3} + 9\nu^{2} + 9\nu - 27 ) / 18 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} + \nu^{6} + \nu^{5} - 7\nu^{4} + 14\nu^{3} + 11\nu^{2} - 18\nu + 45 ) / 18 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} - \beta_{5} + \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + 2\beta_{6} + 2\beta_{5} + \beta_{2} - 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} + 2\beta_{6} + 2\beta_{5} + 2\beta_{4} - 2\beta_{3} + 3\beta_{2} - 3\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -2\beta_{7} + 2\beta_{6} + 5\beta_{5} - 2\beta_{4} - 4\beta_{3} - 4\beta_{2} + 2\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -10\beta_{6} - 6\beta_{5} - 6\beta_{4} - 6\beta_{3} + 12\beta_{2} - 2\beta _1 + 9 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -2\beta_{7} + 6\beta_{6} + 2\beta_{5} - 22\beta_{4} + 4\beta_{3} + 12\beta_{2} + 3\beta _1 - 14 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
911.1
0.828750 + 1.52091i
0.828750 1.52091i
1.67936 + 0.423958i
1.67936 0.423958i
−1.71731 + 0.225499i
−1.71731 0.225499i
0.209196 1.71937i
0.209196 + 1.71937i
0 −1.52091 0.828750i 0 1.00000i 0 1.00000i 0 1.62635 + 2.52091i 0
911.2 0 −1.52091 + 0.828750i 0 1.00000i 0 1.00000i 0 1.62635 2.52091i 0
911.3 0 −0.423958 1.67936i 0 1.00000i 0 1.00000i 0 −2.64052 + 1.42396i 0
911.4 0 −0.423958 + 1.67936i 0 1.00000i 0 1.00000i 0 −2.64052 1.42396i 0
911.5 0 0.225499 1.71731i 0 1.00000i 0 1.00000i 0 −2.89830 0.774501i 0
911.6 0 0.225499 + 1.71731i 0 1.00000i 0 1.00000i 0 −2.89830 + 0.774501i 0
911.7 0 1.71937 0.209196i 0 1.00000i 0 1.00000i 0 2.91247 0.719371i 0
911.8 0 1.71937 + 0.209196i 0 1.00000i 0 1.00000i 0 2.91247 + 0.719371i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 911.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.ba.a 8
3.b odd 2 1 1680.2.ba.b yes 8
4.b odd 2 1 1680.2.ba.b yes 8
12.b even 2 1 inner 1680.2.ba.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1680.2.ba.a 8 1.a even 1 1 trivial
1680.2.ba.a 8 12.b even 2 1 inner
1680.2.ba.b yes 8 3.b odd 2 1
1680.2.ba.b yes 8 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{4} + 6T_{11}^{3} - T_{11}^{2} - 48T_{11} - 58 \) acting on \(S_{2}^{\mathrm{new}}(1680, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + T^{6} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} + 6 T^{3} - T^{2} + \cdots - 58)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 41 T^{2} + \cdots + 262)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + 34 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{8} + 68 T^{6} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( (T^{4} + 4 T^{3} + \cdots + 176)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + 166 T^{6} + \cdots + 53824 \) Copy content Toggle raw display
$31$ \( T^{8} + 60 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$37$ \( (T^{4} - 4 T^{3} + \cdots + 3728)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + 112 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$43$ \( T^{8} + 112 T^{6} + \cdots + 30976 \) Copy content Toggle raw display
$47$ \( (T^{4} + 20 T^{3} + \cdots + 16)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + 252 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$59$ \( (T^{4} + 4 T^{3} + \cdots + 640)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 4 T^{3} + \cdots - 832)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 320 T^{6} + \cdots + 16384 \) Copy content Toggle raw display
$71$ \( (T^{4} + 20 T^{3} + \cdots + 1600)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 12 T^{3} + \cdots - 32)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + 182 T^{6} + \cdots + 193600 \) Copy content Toggle raw display
$83$ \( (T^{4} + 24 T^{3} + \cdots - 3712)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} + 328 T^{6} + \cdots + 1638400 \) Copy content Toggle raw display
$97$ \( (T^{4} + 32 T^{3} + \cdots + 2582)^{2} \) Copy content Toggle raw display
show more
show less