L(s) = 1 | + (1.71 + 0.209i)3-s − i·5-s + i·7-s + (2.91 + 0.719i)9-s − 1.73·11-s + 3.59·13-s + (0.209 − 1.71i)15-s + 1.58i·17-s − 7.56i·19-s + (−0.209 + 1.71i)21-s + 5.40·23-s − 25-s + (4.85 + 1.84i)27-s − 2.80i·29-s + 0.682i·31-s + ⋯ |
L(s) = 1 | + (0.992 + 0.120i)3-s − 0.447i·5-s + 0.377i·7-s + (0.970 + 0.239i)9-s − 0.523·11-s + 0.996·13-s + (0.0540 − 0.443i)15-s + 0.383i·17-s − 1.73i·19-s + (−0.0456 + 0.375i)21-s + 1.12·23-s − 0.200·25-s + (0.934 + 0.355i)27-s − 0.520i·29-s + 0.122i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.120i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 + 0.120i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.635904706\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.635904706\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.71 - 0.209i)T \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 - iT \) |
good | 11 | \( 1 + 1.73T + 11T^{2} \) |
| 13 | \( 1 - 3.59T + 13T^{2} \) |
| 17 | \( 1 - 1.58iT - 17T^{2} \) |
| 19 | \( 1 + 7.56iT - 19T^{2} \) |
| 23 | \( 1 - 5.40T + 23T^{2} \) |
| 29 | \( 1 + 2.80iT - 29T^{2} \) |
| 31 | \( 1 - 0.682iT - 31T^{2} \) |
| 37 | \( 1 - 8.04T + 37T^{2} \) |
| 41 | \( 1 - 7.40iT - 41T^{2} \) |
| 43 | \( 1 - 5.40iT - 43T^{2} \) |
| 47 | \( 1 + 1.72T + 47T^{2} \) |
| 53 | \( 1 + 0.990iT - 53T^{2} \) |
| 59 | \( 1 + 7.71T + 59T^{2} \) |
| 61 | \( 1 - 12.2T + 61T^{2} \) |
| 67 | \( 1 + 0.285iT - 67T^{2} \) |
| 71 | \( 1 - 1.86T + 71T^{2} \) |
| 73 | \( 1 - 9.56T + 73T^{2} \) |
| 79 | \( 1 + 9.68iT - 79T^{2} \) |
| 83 | \( 1 + 11.9T + 83T^{2} \) |
| 89 | \( 1 - 12.5iT - 89T^{2} \) |
| 97 | \( 1 + 4.71T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.256991780653962091918437981659, −8.534863858921500482801472072145, −8.025052852090088359702259269165, −7.05557251973336728297760626038, −6.17225489283347890786007761276, −5.02645544006750995117754018099, −4.35365925563537221984679444579, −3.20563094530210770697302034248, −2.44850704110050492001286391117, −1.12258009097653561621670714899,
1.22789196489058653716696450710, 2.42210058972937053970923226308, 3.42689404194258765016102033226, 4.02087206053895333968619310047, 5.27543792695685625337854767672, 6.30444440710422361544801650513, 7.14912315044027159341425921475, 7.82631087303824981805282688875, 8.500658400200254448153136636249, 9.302893481014672675186313961955