Properties

Label 2-1680-12.11-c1-0-4
Degree $2$
Conductor $1680$
Sign $0.130 - 0.991i$
Analytic cond. $13.4148$
Root an. cond. $3.66263$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.225 − 1.71i)3-s i·5-s + i·7-s + (−2.89 − 0.774i)9-s − 2.63·11-s − 2.35·13-s + (−1.71 − 0.225i)15-s + 5.43i·17-s + 3.16i·19-s + (1.71 + 0.225i)21-s − 2.36·23-s − 25-s + (−1.98 + 4.80i)27-s + 9.68i·29-s − 4.06i·31-s + ⋯
L(s)  = 1  + (0.130 − 0.991i)3-s − 0.447i·5-s + 0.377i·7-s + (−0.966 − 0.258i)9-s − 0.793·11-s − 0.652·13-s + (−0.443 − 0.0582i)15-s + 1.31i·17-s + 0.726i·19-s + (0.374 + 0.0492i)21-s − 0.492·23-s − 0.200·25-s + (−0.381 + 0.924i)27-s + 1.79i·29-s − 0.730i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1680\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7\)
Sign: $0.130 - 0.991i$
Analytic conductor: \(13.4148\)
Root analytic conductor: \(3.66263\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1680} (911, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1680,\ (\ :1/2),\ 0.130 - 0.991i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6039950037\)
\(L(\frac12)\) \(\approx\) \(0.6039950037\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.225 + 1.71i)T \)
5 \( 1 + iT \)
7 \( 1 - iT \)
good11 \( 1 + 2.63T + 11T^{2} \)
13 \( 1 + 2.35T + 13T^{2} \)
17 \( 1 - 5.43iT - 17T^{2} \)
19 \( 1 - 3.16iT - 19T^{2} \)
23 \( 1 + 2.36T + 23T^{2} \)
29 \( 1 - 9.68iT - 29T^{2} \)
31 \( 1 + 4.06iT - 31T^{2} \)
37 \( 1 - 9.77T + 37T^{2} \)
41 \( 1 + 0.361iT - 41T^{2} \)
43 \( 1 + 2.36iT - 43T^{2} \)
47 \( 1 + 12.4T + 47T^{2} \)
53 \( 1 - 9.67iT - 53T^{2} \)
59 \( 1 - 5.96T + 59T^{2} \)
61 \( 1 + 1.45T + 61T^{2} \)
67 \( 1 + 13.9iT - 67T^{2} \)
71 \( 1 + 14.7T + 71T^{2} \)
73 \( 1 + 1.16T + 73T^{2} \)
79 \( 1 - 8.78iT - 79T^{2} \)
83 \( 1 + 2.37T + 83T^{2} \)
89 \( 1 + 7.06iT - 89T^{2} \)
97 \( 1 + 4.74T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.403981413683791213540387833584, −8.508198296427628963141953354029, −7.993450126540943707780040859124, −7.30832205715515958212129695039, −6.21531319277439183721160198033, −5.67621609494935205918355604829, −4.69314936965364383258278683658, −3.43044102324585423438656799523, −2.36619533110570051623671617016, −1.43665485781503178756529250359, 0.21655119866969495107375127509, 2.45311537108973060760689812974, 3.04926411721459907603962033707, 4.26928945562676919009551531410, 4.89132731753087569417725154619, 5.77307941734128839221860610103, 6.82077897296214023828913343732, 7.68877289119997446349371678593, 8.347097693798992191012384052373, 9.516871736074502877337122219151

Graph of the $Z$-function along the critical line