Properties

Label 168.4.i.c.125.65
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.65
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.67

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.39518 - 1.50436i) q^{2} +(-4.72061 + 2.17161i) q^{3} +(3.47378 - 7.20645i) q^{4} -2.27823i q^{5} +(-8.03981 + 12.3029i) q^{6} +(-13.7109 + 12.4503i) q^{7} +(-2.52080 - 22.4866i) q^{8} +(17.5682 - 20.5026i) q^{9} +(-3.42729 - 5.45677i) q^{10} -33.8293 q^{11} +(-0.748737 + 41.5625i) q^{12} -41.0309 q^{13} +(-14.1103 + 50.4470i) q^{14} +(4.94743 + 10.7546i) q^{15} +(-39.8658 - 50.0672i) q^{16} -28.4181 q^{17} +(11.2357 - 75.5365i) q^{18} -109.654 q^{19} +(-16.4180 - 7.91406i) q^{20} +(37.6866 - 88.5478i) q^{21} +(-81.0273 + 50.8916i) q^{22} +142.918i q^{23} +(60.7317 + 100.676i) q^{24} +119.810 q^{25} +(-98.2764 + 61.7254i) q^{26} +(-38.4090 + 134.936i) q^{27} +(42.0940 + 142.057i) q^{28} -147.654 q^{29} +(28.0289 + 18.3165i) q^{30} -293.446i q^{31} +(-170.805 - 59.9472i) q^{32} +(159.695 - 73.4640i) q^{33} +(-68.0665 + 42.7512i) q^{34} +(28.3647 + 31.2366i) q^{35} +(-86.7230 - 197.826i) q^{36} -162.028i q^{37} +(-262.642 + 164.960i) q^{38} +(193.691 - 89.1031i) q^{39} +(-51.2296 + 5.74297i) q^{40} -144.009 q^{41} +(-42.9420 - 268.782i) q^{42} +71.1121i q^{43} +(-117.515 + 243.789i) q^{44} +(-46.7097 - 40.0245i) q^{45} +(215.000 + 342.314i) q^{46} +367.170 q^{47} +(296.917 + 149.774i) q^{48} +(32.9788 - 341.411i) q^{49} +(286.966 - 180.237i) q^{50} +(134.151 - 61.7130i) q^{51} +(-142.532 + 295.687i) q^{52} +508.040 q^{53} +(110.997 + 380.977i) q^{54} +77.0710i q^{55} +(314.528 + 276.927i) q^{56} +(517.635 - 238.127i) q^{57} +(-353.658 + 222.125i) q^{58} +202.128i q^{59} +(94.6889 + 1.70579i) q^{60} +363.737 q^{61} +(-441.449 - 702.855i) q^{62} +(14.3877 + 499.840i) q^{63} +(-499.291 + 113.368i) q^{64} +93.4779i q^{65} +(271.981 - 416.199i) q^{66} -531.804i q^{67} +(-98.7182 + 204.794i) q^{68} +(-310.362 - 674.659i) q^{69} +(114.930 + 32.1465i) q^{70} +796.705i q^{71} +(-505.320 - 343.366i) q^{72} -510.267i q^{73} +(-243.749 - 388.087i) q^{74} +(-565.574 + 260.180i) q^{75} +(-380.915 + 790.219i) q^{76} +(463.831 - 421.186i) q^{77} +(329.881 - 504.799i) q^{78} -38.1516 q^{79} +(-114.065 + 90.8234i) q^{80} +(-111.715 - 720.389i) q^{81} +(-344.927 + 216.641i) q^{82} -973.913i q^{83} +(-507.201 - 579.182i) q^{84} +64.7430i q^{85} +(106.978 + 170.326i) q^{86} +(697.016 - 320.647i) q^{87} +(85.2770 + 760.705i) q^{88} -1638.53 q^{89} +(-172.090 - 25.5974i) q^{90} +(562.572 - 510.848i) q^{91} +(1029.93 + 496.464i) q^{92} +(637.249 + 1385.24i) q^{93} +(879.438 - 552.357i) q^{94} +249.818i q^{95} +(936.485 - 87.9343i) q^{96} +133.473i q^{97} +(-434.616 - 867.353i) q^{98} +(-594.321 + 693.589i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.39518 1.50436i 0.846824 0.531873i
\(3\) −4.72061 + 2.17161i −0.908481 + 0.417926i
\(4\) 3.47378 7.20645i 0.434222 0.900806i
\(5\) 2.27823i 0.203771i −0.994796 0.101886i \(-0.967512\pi\)
0.994796 0.101886i \(-0.0324876\pi\)
\(6\) −8.03981 + 12.3029i −0.547040 + 0.837107i
\(7\) −13.7109 + 12.4503i −0.740320 + 0.672254i
\(8\) −2.52080 22.4866i −0.111405 0.993775i
\(9\) 17.5682 20.5026i 0.650675 0.759356i
\(10\) −3.42729 5.45677i −0.108380 0.172558i
\(11\) −33.8293 −0.927265 −0.463633 0.886028i \(-0.653454\pi\)
−0.463633 + 0.886028i \(0.653454\pi\)
\(12\) −0.748737 + 41.5625i −0.0180118 + 0.999838i
\(13\) −41.0309 −0.875379 −0.437689 0.899126i \(-0.644203\pi\)
−0.437689 + 0.899126i \(0.644203\pi\)
\(14\) −14.1103 + 50.4470i −0.269367 + 0.963038i
\(15\) 4.94743 + 10.7546i 0.0851614 + 0.185122i
\(16\) −39.8658 50.0672i −0.622903 0.782299i
\(17\) −28.4181 −0.405436 −0.202718 0.979237i \(-0.564977\pi\)
−0.202718 + 0.979237i \(0.564977\pi\)
\(18\) 11.2357 75.5365i 0.147126 0.989118i
\(19\) −109.654 −1.32402 −0.662012 0.749493i \(-0.730297\pi\)
−0.662012 + 0.749493i \(0.730297\pi\)
\(20\) −16.4180 7.91406i −0.183558 0.0884819i
\(21\) 37.6866 88.5478i 0.391614 0.920130i
\(22\) −81.0273 + 50.8916i −0.785231 + 0.493188i
\(23\) 142.918i 1.29567i 0.761780 + 0.647835i \(0.224326\pi\)
−0.761780 + 0.647835i \(0.775674\pi\)
\(24\) 60.7317 + 100.676i 0.516534 + 0.856267i
\(25\) 119.810 0.958477
\(26\) −98.2764 + 61.7254i −0.741292 + 0.465591i
\(27\) −38.4090 + 134.936i −0.273771 + 0.961795i
\(28\) 42.0940 + 142.057i 0.284107 + 0.958792i
\(29\) −147.654 −0.945471 −0.472735 0.881204i \(-0.656733\pi\)
−0.472735 + 0.881204i \(0.656733\pi\)
\(30\) 28.0289 + 18.3165i 0.170578 + 0.111471i
\(31\) 293.446i 1.70014i −0.526669 0.850071i \(-0.676559\pi\)
0.526669 0.850071i \(-0.323441\pi\)
\(32\) −170.805 59.9472i −0.943573 0.331165i
\(33\) 159.695 73.4640i 0.842403 0.387529i
\(34\) −68.0665 + 42.7512i −0.343333 + 0.215640i
\(35\) 28.3647 + 31.2366i 0.136986 + 0.150856i
\(36\) −86.7230 197.826i −0.401495 0.915861i
\(37\) 162.028i 0.719926i −0.932967 0.359963i \(-0.882789\pi\)
0.932967 0.359963i \(-0.117211\pi\)
\(38\) −262.642 + 164.960i −1.12122 + 0.704213i
\(39\) 193.691 89.1031i 0.795265 0.365844i
\(40\) −51.2296 + 5.74297i −0.202503 + 0.0227011i
\(41\) −144.009 −0.548545 −0.274273 0.961652i \(-0.588437\pi\)
−0.274273 + 0.961652i \(0.588437\pi\)
\(42\) −42.9420 268.782i −0.157764 0.987477i
\(43\) 71.1121i 0.252197i 0.992018 + 0.126099i \(0.0402456\pi\)
−0.992018 + 0.126099i \(0.959754\pi\)
\(44\) −117.515 + 243.789i −0.402639 + 0.835286i
\(45\) −46.7097 40.0245i −0.154735 0.132589i
\(46\) 215.000 + 342.314i 0.689132 + 1.09721i
\(47\) 367.170 1.13951 0.569757 0.821813i \(-0.307037\pi\)
0.569757 + 0.821813i \(0.307037\pi\)
\(48\) 296.917 + 149.774i 0.892839 + 0.450377i
\(49\) 32.9788 341.411i 0.0961480 0.995367i
\(50\) 286.966 180.237i 0.811662 0.509788i
\(51\) 134.151 61.7130i 0.368331 0.169442i
\(52\) −142.532 + 295.687i −0.380109 + 0.788547i
\(53\) 508.040 1.31669 0.658345 0.752716i \(-0.271257\pi\)
0.658345 + 0.752716i \(0.271257\pi\)
\(54\) 110.997 + 380.977i 0.279717 + 0.960082i
\(55\) 77.0710i 0.188950i
\(56\) 314.528 + 276.927i 0.750545 + 0.660819i
\(57\) 517.635 238.127i 1.20285 0.553345i
\(58\) −353.658 + 222.125i −0.800647 + 0.502870i
\(59\) 202.128i 0.446013i 0.974817 + 0.223007i \(0.0715872\pi\)
−0.974817 + 0.223007i \(0.928413\pi\)
\(60\) 94.6889 + 1.70579i 0.203738 + 0.00367029i
\(61\) 363.737 0.763472 0.381736 0.924271i \(-0.375326\pi\)
0.381736 + 0.924271i \(0.375326\pi\)
\(62\) −441.449 702.855i −0.904260 1.43972i
\(63\) 14.3877 + 499.840i 0.0287727 + 0.999586i
\(64\) −499.291 + 113.368i −0.975178 + 0.221423i
\(65\) 93.4779i 0.178377i
\(66\) 271.981 416.199i 0.507251 0.776220i
\(67\) 531.804i 0.969705i −0.874596 0.484852i \(-0.838873\pi\)
0.874596 0.484852i \(-0.161127\pi\)
\(68\) −98.7182 + 204.794i −0.176049 + 0.365219i
\(69\) −310.362 674.659i −0.541495 1.17709i
\(70\) 114.930 + 32.1465i 0.196239 + 0.0548892i
\(71\) 796.705i 1.33171i 0.746081 + 0.665855i \(0.231933\pi\)
−0.746081 + 0.665855i \(0.768067\pi\)
\(72\) −505.320 343.366i −0.827118 0.562029i
\(73\) 510.267i 0.818114i −0.912509 0.409057i \(-0.865858\pi\)
0.912509 0.409057i \(-0.134142\pi\)
\(74\) −243.749 388.087i −0.382909 0.609651i
\(75\) −565.574 + 260.180i −0.870758 + 0.400573i
\(76\) −380.915 + 790.219i −0.574920 + 1.19269i
\(77\) 463.831 421.186i 0.686473 0.623358i
\(78\) 329.881 504.799i 0.478867 0.732786i
\(79\) −38.1516 −0.0543340 −0.0271670 0.999631i \(-0.508649\pi\)
−0.0271670 + 0.999631i \(0.508649\pi\)
\(80\) −114.065 + 90.8234i −0.159410 + 0.126930i
\(81\) −111.715 720.389i −0.153244 0.988188i
\(82\) −344.927 + 216.641i −0.464521 + 0.291757i
\(83\) 973.913i 1.28796i −0.765042 0.643981i \(-0.777282\pi\)
0.765042 0.643981i \(-0.222718\pi\)
\(84\) −507.201 579.182i −0.658811 0.752309i
\(85\) 64.7430i 0.0826161i
\(86\) 106.978 + 170.326i 0.134137 + 0.213567i
\(87\) 697.016 320.647i 0.858942 0.395137i
\(88\) 85.2770 + 760.705i 0.103302 + 0.921493i
\(89\) −1638.53 −1.95150 −0.975750 0.218889i \(-0.929757\pi\)
−0.975750 + 0.218889i \(0.929757\pi\)
\(90\) −172.090 25.5974i −0.201554 0.0299801i
\(91\) 562.572 510.848i 0.648061 0.588477i
\(92\) 1029.93 + 496.464i 1.16715 + 0.562609i
\(93\) 637.249 + 1385.24i 0.710534 + 1.54455i
\(94\) 879.438 552.357i 0.964969 0.606077i
\(95\) 249.818i 0.269798i
\(96\) 936.485 87.9343i 0.995620 0.0934871i
\(97\) 133.473i 0.139713i 0.997557 + 0.0698565i \(0.0222541\pi\)
−0.997557 + 0.0698565i \(0.977746\pi\)
\(98\) −434.616 867.353i −0.447989 0.894039i
\(99\) −594.321 + 693.589i −0.603348 + 0.704125i
\(100\) 416.192 863.402i 0.416192 0.863402i
\(101\) 169.167i 0.166661i 0.996522 + 0.0833306i \(0.0265557\pi\)
−0.996522 + 0.0833306i \(0.973444\pi\)
\(102\) 228.476 349.625i 0.221789 0.339393i
\(103\) 939.850i 0.899089i 0.893258 + 0.449544i \(0.148414\pi\)
−0.893258 + 0.449544i \(0.851586\pi\)
\(104\) 103.431 + 922.644i 0.0975215 + 0.869930i
\(105\) −201.732 85.8588i −0.187496 0.0797996i
\(106\) 1216.85 764.277i 1.11501 0.700312i
\(107\) −2048.48 −1.85078 −0.925392 0.379012i \(-0.876264\pi\)
−0.925392 + 0.379012i \(0.876264\pi\)
\(108\) 838.986 + 745.530i 0.747513 + 0.664247i
\(109\) 238.831i 0.209871i 0.994479 + 0.104935i \(0.0334635\pi\)
−0.994479 + 0.104935i \(0.966536\pi\)
\(110\) 115.943 + 184.599i 0.100497 + 0.160007i
\(111\) 351.862 + 764.871i 0.300876 + 0.654039i
\(112\) 1169.95 + 190.125i 0.987052 + 0.160403i
\(113\) 0.845945i 0.000704246i 1.00000 0.000352123i \(0.000112084\pi\)
−1.00000 0.000352123i \(0.999888\pi\)
\(114\) 881.601 1349.07i 0.724294 1.10835i
\(115\) 325.600 0.264020
\(116\) −512.917 + 1064.06i −0.410544 + 0.851685i
\(117\) −720.840 + 841.241i −0.569587 + 0.664725i
\(118\) 304.074 + 484.132i 0.237223 + 0.377695i
\(119\) 389.639 353.815i 0.300152 0.272556i
\(120\) 229.363 138.361i 0.174482 0.105255i
\(121\) −186.578 −0.140179
\(122\) 871.216 547.194i 0.646527 0.406070i
\(123\) 679.808 312.730i 0.498343 0.229252i
\(124\) −2114.70 1019.36i −1.53150 0.738239i
\(125\) 557.733i 0.399081i
\(126\) 786.403 + 1175.56i 0.556018 + 0.831170i
\(127\) 46.6406 0.0325881 0.0162940 0.999867i \(-0.494813\pi\)
0.0162940 + 0.999867i \(0.494813\pi\)
\(128\) −1025.34 + 1022.65i −0.708035 + 0.706177i
\(129\) −154.428 335.692i −0.105400 0.229117i
\(130\) 140.625 + 223.896i 0.0948739 + 0.151054i
\(131\) 2494.50i 1.66371i 0.554995 + 0.831854i \(0.312720\pi\)
−0.554995 + 0.831854i \(0.687280\pi\)
\(132\) 25.3292 1406.03i 0.0167017 0.927115i
\(133\) 1503.46 1365.23i 0.980202 0.890081i
\(134\) −800.027 1273.77i −0.515760 0.821169i
\(135\) 307.416 + 87.5046i 0.195986 + 0.0557866i
\(136\) 71.6365 + 639.026i 0.0451675 + 0.402912i
\(137\) 201.774i 0.125830i −0.998019 0.0629151i \(-0.979960\pi\)
0.998019 0.0629151i \(-0.0200397\pi\)
\(138\) −1758.30 1149.03i −1.08461 0.708783i
\(139\) 309.414 0.188807 0.0944034 0.995534i \(-0.469906\pi\)
0.0944034 + 0.995534i \(0.469906\pi\)
\(140\) 323.638 95.8998i 0.195374 0.0578929i
\(141\) −1733.26 + 797.349i −1.03523 + 0.476233i
\(142\) 1198.53 + 1908.25i 0.708301 + 1.12772i
\(143\) 1388.05 0.811709
\(144\) −1726.88 62.2387i −0.999351 0.0360178i
\(145\) 336.390i 0.192660i
\(146\) −767.628 1222.18i −0.435133 0.692798i
\(147\) 585.731 + 1683.28i 0.328642 + 0.944455i
\(148\) −1167.65 562.850i −0.648514 0.312608i
\(149\) 1207.81 0.664078 0.332039 0.943266i \(-0.392263\pi\)
0.332039 + 0.943266i \(0.392263\pi\)
\(150\) −963.247 + 1474.01i −0.524325 + 0.802348i
\(151\) −2555.54 −1.37726 −0.688631 0.725112i \(-0.741788\pi\)
−0.688631 + 0.725112i \(0.741788\pi\)
\(152\) 276.417 + 2465.75i 0.147503 + 1.31578i
\(153\) −499.256 + 582.646i −0.263807 + 0.307870i
\(154\) 477.342 1706.59i 0.249775 0.892991i
\(155\) −668.537 −0.346440
\(156\) 30.7213 1705.35i 0.0157672 0.875237i
\(157\) −38.2182 −0.0194276 −0.00971382 0.999953i \(-0.503092\pi\)
−0.00971382 + 0.999953i \(0.503092\pi\)
\(158\) −91.3799 + 57.3939i −0.0460114 + 0.0288988i
\(159\) −2398.25 + 1103.26i −1.19619 + 0.550280i
\(160\) −136.574 + 389.133i −0.0674819 + 0.192273i
\(161\) −1779.37 1959.54i −0.871020 0.959211i
\(162\) −1351.31 1557.40i −0.655361 0.755315i
\(163\) 2887.96i 1.38775i −0.720097 0.693873i \(-0.755903\pi\)
0.720097 0.693873i \(-0.244097\pi\)
\(164\) −500.254 + 1037.79i −0.238190 + 0.494133i
\(165\) −167.368 363.822i −0.0789672 0.171657i
\(166\) −1465.12 2332.70i −0.685032 1.09068i
\(167\) −307.719 −0.142587 −0.0712935 0.997455i \(-0.522713\pi\)
−0.0712935 + 0.997455i \(0.522713\pi\)
\(168\) −2086.14 624.231i −0.958030 0.286669i
\(169\) −513.464 −0.233712
\(170\) 97.3971 + 155.071i 0.0439413 + 0.0699613i
\(171\) −1926.43 + 2248.20i −0.861509 + 1.00541i
\(172\) 512.465 + 247.027i 0.227181 + 0.109510i
\(173\) 2741.35i 1.20475i 0.798215 + 0.602373i \(0.205778\pi\)
−0.798215 + 0.602373i \(0.794222\pi\)
\(174\) 1187.11 1816.57i 0.517210 0.791460i
\(175\) −1642.70 + 1491.67i −0.709580 + 0.644341i
\(176\) 1348.63 + 1693.74i 0.577596 + 0.725399i
\(177\) −438.942 954.165i −0.186401 0.405195i
\(178\) −3924.57 + 2464.94i −1.65258 + 1.03795i
\(179\) −729.734 −0.304709 −0.152354 0.988326i \(-0.548686\pi\)
−0.152354 + 0.988326i \(0.548686\pi\)
\(180\) −450.693 + 197.575i −0.186626 + 0.0818132i
\(181\) 2056.86 0.844671 0.422336 0.906440i \(-0.361210\pi\)
0.422336 + 0.906440i \(0.361210\pi\)
\(182\) 578.958 2069.89i 0.235798 0.843023i
\(183\) −1717.06 + 789.895i −0.693600 + 0.319075i
\(184\) 3213.73 360.268i 1.28761 0.144344i
\(185\) −369.138 −0.146700
\(186\) 3610.23 + 2359.25i 1.42320 + 0.930045i
\(187\) 961.365 0.375946
\(188\) 1275.47 2645.99i 0.494802 1.02648i
\(189\) −1153.38 2328.30i −0.443893 0.896080i
\(190\) 375.818 + 598.360i 0.143498 + 0.228471i
\(191\) 2290.89i 0.867868i −0.900945 0.433934i \(-0.857125\pi\)
0.900945 0.433934i \(-0.142875\pi\)
\(192\) 2110.76 1619.43i 0.793392 0.608711i
\(193\) −3149.48 −1.17464 −0.587318 0.809356i \(-0.699816\pi\)
−0.587318 + 0.809356i \(0.699816\pi\)
\(194\) 200.793 + 319.693i 0.0743096 + 0.118312i
\(195\) −202.997 441.272i −0.0745485 0.162052i
\(196\) −2345.80 1423.64i −0.854883 0.518821i
\(197\) 415.958 0.150435 0.0752177 0.997167i \(-0.476035\pi\)
0.0752177 + 0.997167i \(0.476035\pi\)
\(198\) −380.094 + 2555.35i −0.136425 + 0.917175i
\(199\) 1202.25i 0.428266i −0.976804 0.214133i \(-0.931307\pi\)
0.976804 0.214133i \(-0.0686927\pi\)
\(200\) −302.017 2694.11i −0.106779 0.952511i
\(201\) 1154.87 + 2510.44i 0.405265 + 0.880958i
\(202\) 254.489 + 405.186i 0.0886426 + 0.141133i
\(203\) 2024.47 1838.34i 0.699951 0.635597i
\(204\) 21.2777 1181.13i 0.00730263 0.405370i
\(205\) 328.085i 0.111778i
\(206\) 1413.88 + 2251.11i 0.478201 + 0.761370i
\(207\) 2930.19 + 2510.81i 0.983876 + 0.843061i
\(208\) 1635.73 + 2054.30i 0.545276 + 0.684808i
\(209\) 3709.53 1.22772
\(210\) −612.348 + 97.8318i −0.201219 + 0.0321478i
\(211\) 4107.87i 1.34027i 0.742239 + 0.670135i \(0.233764\pi\)
−0.742239 + 0.670135i \(0.766236\pi\)
\(212\) 1764.82 3661.16i 0.571736 1.18608i
\(213\) −1730.13 3760.93i −0.556557 1.20983i
\(214\) −4906.47 + 3081.66i −1.56729 + 0.984382i
\(215\) 162.010 0.0513906
\(216\) 3131.07 + 523.539i 0.986307 + 0.164918i
\(217\) 3653.49 + 4023.41i 1.14293 + 1.25865i
\(218\) 359.289 + 572.044i 0.111624 + 0.177723i
\(219\) 1108.10 + 2408.77i 0.341911 + 0.743240i
\(220\) 555.408 + 267.727i 0.170207 + 0.0820462i
\(221\) 1166.02 0.354910
\(222\) 1993.42 + 1302.68i 0.602655 + 0.393828i
\(223\) 3886.29i 1.16702i −0.812106 0.583509i \(-0.801679\pi\)
0.812106 0.583509i \(-0.198321\pi\)
\(224\) 3088.26 1304.65i 0.921173 0.389153i
\(225\) 2104.84 2456.41i 0.623657 0.727826i
\(226\) 1.27261 + 2.02619i 0.000374570 + 0.000596373i
\(227\) 2560.28i 0.748598i −0.927308 0.374299i \(-0.877883\pi\)
0.927308 0.374299i \(-0.122117\pi\)
\(228\) 82.1023 4557.51i 0.0238481 1.32381i
\(229\) −1212.09 −0.349770 −0.174885 0.984589i \(-0.555955\pi\)
−0.174885 + 0.984589i \(0.555955\pi\)
\(230\) 779.870 489.821i 0.223579 0.140425i
\(231\) −1274.91 + 2995.51i −0.363130 + 0.853204i
\(232\) 372.207 + 3320.23i 0.105330 + 0.939585i
\(233\) 4448.69i 1.25083i 0.780292 + 0.625415i \(0.215070\pi\)
−0.780292 + 0.625415i \(0.784930\pi\)
\(234\) −461.009 + 3099.33i −0.128791 + 0.865853i
\(235\) 836.497i 0.232200i
\(236\) 1456.62 + 702.146i 0.401772 + 0.193669i
\(237\) 180.099 82.8503i 0.0493614 0.0227076i
\(238\) 400.988 1433.61i 0.109211 0.390450i
\(239\) 475.148i 0.128597i −0.997931 0.0642987i \(-0.979519\pi\)
0.997931 0.0642987i \(-0.0204810\pi\)
\(240\) 341.221 676.445i 0.0917738 0.181935i
\(241\) 7311.01i 1.95412i −0.212960 0.977061i \(-0.568310\pi\)
0.212960 0.977061i \(-0.431690\pi\)
\(242\) −446.888 + 280.682i −0.118707 + 0.0745574i
\(243\) 2091.77 + 3158.07i 0.552209 + 0.833706i
\(244\) 1263.54 2621.25i 0.331516 0.687740i
\(245\) −777.813 75.1332i −0.202827 0.0195922i
\(246\) 1157.80 1771.72i 0.300076 0.459191i
\(247\) 4499.22 1.15902
\(248\) −6598.58 + 739.719i −1.68956 + 0.189404i
\(249\) 2114.96 + 4597.46i 0.538273 + 1.17009i
\(250\) −839.034 1335.87i −0.212261 0.337952i
\(251\) 5996.84i 1.50804i −0.656853 0.754018i \(-0.728113\pi\)
0.656853 0.754018i \(-0.271887\pi\)
\(252\) 3652.05 + 1632.65i 0.912927 + 0.408124i
\(253\) 4834.81i 1.20143i
\(254\) 111.713 70.1645i 0.0275964 0.0173327i
\(255\) −140.597 305.626i −0.0345274 0.0750551i
\(256\) −917.442 + 3991.93i −0.223985 + 0.974593i
\(257\) 2528.53 0.613719 0.306859 0.951755i \(-0.400722\pi\)
0.306859 + 0.951755i \(0.400722\pi\)
\(258\) −874.885 571.727i −0.211116 0.137962i
\(259\) 2017.30 + 2221.56i 0.483974 + 0.532976i
\(260\) 673.644 + 324.721i 0.160683 + 0.0774552i
\(261\) −2594.02 + 3027.29i −0.615194 + 0.717949i
\(262\) 3752.64 + 5974.78i 0.884882 + 1.40887i
\(263\) 6792.30i 1.59251i −0.604958 0.796257i \(-0.706810\pi\)
0.604958 0.796257i \(-0.293190\pi\)
\(264\) −2054.51 3405.80i −0.478964 0.793986i
\(265\) 1157.43i 0.268304i
\(266\) 1547.26 5531.74i 0.356648 1.27508i
\(267\) 7734.84 3558.24i 1.77290 0.815583i
\(268\) −3832.42 1847.37i −0.873516 0.421067i
\(269\) 2766.06i 0.626950i 0.949597 + 0.313475i \(0.101493\pi\)
−0.949597 + 0.313475i \(0.898507\pi\)
\(270\) 867.954 252.876i 0.195637 0.0569983i
\(271\) 923.677i 0.207046i −0.994627 0.103523i \(-0.966989\pi\)
0.994627 0.103523i \(-0.0330115\pi\)
\(272\) 1132.91 + 1422.81i 0.252547 + 0.317172i
\(273\) −1546.32 + 3633.20i −0.342811 + 0.805462i
\(274\) −303.542 483.286i −0.0669257 0.106556i
\(275\) −4053.08 −0.888763
\(276\) −5940.02 107.008i −1.29546 0.0233374i
\(277\) 3713.69i 0.805537i 0.915302 + 0.402768i \(0.131952\pi\)
−0.915302 + 0.402768i \(0.868048\pi\)
\(278\) 741.102 465.472i 0.159886 0.100421i
\(279\) −6016.40 5155.32i −1.29101 1.10624i
\(280\) 630.903 716.567i 0.134656 0.152939i
\(281\) 4766.56i 1.01192i 0.862557 + 0.505960i \(0.168862\pi\)
−0.862557 + 0.505960i \(0.831138\pi\)
\(282\) −2951.97 + 4517.25i −0.623360 + 0.953896i
\(283\) −8241.05 −1.73102 −0.865512 0.500888i \(-0.833007\pi\)
−0.865512 + 0.500888i \(0.833007\pi\)
\(284\) 5741.41 + 2767.57i 1.19961 + 0.578258i
\(285\) −542.507 1179.29i −0.112756 0.245106i
\(286\) 3324.62 2088.13i 0.687374 0.431726i
\(287\) 1974.49 1792.95i 0.406099 0.368762i
\(288\) −4229.82 + 2448.78i −0.865431 + 0.501027i
\(289\) −4105.41 −0.835622
\(290\) 506.053 + 805.714i 0.102470 + 0.163149i
\(291\) −289.852 630.075i −0.0583898 0.126927i
\(292\) −3677.22 1772.55i −0.736961 0.355243i
\(293\) 4955.76i 0.988118i 0.869428 + 0.494059i \(0.164487\pi\)
−0.869428 + 0.494059i \(0.835513\pi\)
\(294\) 3935.20 + 3150.61i 0.780632 + 0.624991i
\(295\) 460.494 0.0908847
\(296\) −3643.46 + 408.441i −0.715445 + 0.0802033i
\(297\) 1299.35 4564.79i 0.253858 0.891839i
\(298\) 2892.92 1816.99i 0.562357 0.353205i
\(299\) 5864.05i 1.13420i
\(300\) −89.7059 + 4979.59i −0.0172639 + 0.958322i
\(301\) −885.369 975.012i −0.169541 0.186707i
\(302\) −6120.97 + 3844.46i −1.16630 + 0.732529i
\(303\) −367.365 798.572i −0.0696521 0.151408i
\(304\) 4371.46 + 5490.09i 0.824738 + 1.03578i
\(305\) 828.678i 0.155574i
\(306\) −319.296 + 2146.60i −0.0596502 + 0.401024i
\(307\) 6152.25 1.14374 0.571869 0.820345i \(-0.306219\pi\)
0.571869 + 0.820345i \(0.306219\pi\)
\(308\) −1424.01 4805.68i −0.263443 0.889055i
\(309\) −2040.99 4436.66i −0.375753 0.816805i
\(310\) −1601.27 + 1005.72i −0.293374 + 0.184262i
\(311\) 4710.11 0.858798 0.429399 0.903115i \(-0.358725\pi\)
0.429399 + 0.903115i \(0.358725\pi\)
\(312\) −2491.88 4130.83i −0.452163 0.749558i
\(313\) 6006.89i 1.08476i 0.840134 + 0.542379i \(0.182476\pi\)
−0.840134 + 0.542379i \(0.817524\pi\)
\(314\) −91.5394 + 57.4940i −0.0164518 + 0.0103330i
\(315\) 1138.75 32.7785i 0.203687 0.00586305i
\(316\) −132.530 + 274.937i −0.0235930 + 0.0489444i
\(317\) 8487.77 1.50385 0.751926 0.659248i \(-0.229125\pi\)
0.751926 + 0.659248i \(0.229125\pi\)
\(318\) −4084.54 + 6250.36i −0.720282 + 1.10221i
\(319\) 4995.03 0.876702
\(320\) 258.280 + 1137.50i 0.0451196 + 0.198713i
\(321\) 9670.06 4448.49i 1.68140 0.773491i
\(322\) −7209.78 2016.61i −1.24778 0.349011i
\(323\) 3116.17 0.536806
\(324\) −5579.52 1697.40i −0.956708 0.291050i
\(325\) −4915.90 −0.839031
\(326\) −4344.55 6917.19i −0.738105 1.17518i
\(327\) −518.648 1127.43i −0.0877104 0.190663i
\(328\) 363.017 + 3238.26i 0.0611106 + 0.545131i
\(329\) −5034.23 + 4571.38i −0.843606 + 0.766044i
\(330\) −948.197 619.636i −0.158171 0.103363i
\(331\) 10975.0i 1.82247i −0.411885 0.911236i \(-0.635130\pi\)
0.411885 0.911236i \(-0.364870\pi\)
\(332\) −7018.45 3383.15i −1.16020 0.559261i
\(333\) −3322.00 2846.55i −0.546680 0.468438i
\(334\) −737.043 + 462.922i −0.120746 + 0.0758382i
\(335\) −1211.57 −0.197598
\(336\) −5935.74 + 1643.17i −0.963754 + 0.266792i
\(337\) 1629.69 0.263427 0.131714 0.991288i \(-0.457952\pi\)
0.131714 + 0.991288i \(0.457952\pi\)
\(338\) −1229.84 + 772.438i −0.197913 + 0.124305i
\(339\) −1.83706 3.99337i −0.000294323 0.000639794i
\(340\) 466.567 + 224.903i 0.0744211 + 0.0358737i
\(341\) 9927.06i 1.57648i
\(342\) −1232.04 + 8282.91i −0.194799 + 1.30962i
\(343\) 3798.51 + 5091.65i 0.597960 + 0.801526i
\(344\) 1599.07 179.260i 0.250628 0.0280960i
\(345\) −1537.03 + 707.076i −0.239857 + 0.110341i
\(346\) 4123.99 + 6566.03i 0.640772 + 1.02021i
\(347\) −3090.79 −0.478162 −0.239081 0.971000i \(-0.576846\pi\)
−0.239081 + 0.971000i \(0.576846\pi\)
\(348\) 110.554 6136.86i 0.0170296 0.945317i
\(349\) −8418.13 −1.29115 −0.645576 0.763696i \(-0.723383\pi\)
−0.645576 + 0.763696i \(0.723383\pi\)
\(350\) −1690.55 + 6044.04i −0.258182 + 0.923050i
\(351\) 1575.96 5536.55i 0.239653 0.841935i
\(352\) 5778.21 + 2027.97i 0.874942 + 0.307078i
\(353\) 694.292 0.104684 0.0523420 0.998629i \(-0.483331\pi\)
0.0523420 + 0.998629i \(0.483331\pi\)
\(354\) −2486.76 1625.07i −0.373361 0.243987i
\(355\) 1815.08 0.271364
\(356\) −5691.87 + 11808.0i −0.847384 + 1.75792i
\(357\) −1070.98 + 2516.36i −0.158774 + 0.373053i
\(358\) −1747.84 + 1097.79i −0.258035 + 0.162066i
\(359\) 3336.44i 0.490503i −0.969460 0.245251i \(-0.921129\pi\)
0.969460 0.245251i \(-0.0788705\pi\)
\(360\) −782.267 + 1151.23i −0.114525 + 0.168543i
\(361\) 5165.10 0.753040
\(362\) 4926.56 3094.27i 0.715288 0.449258i
\(363\) 880.762 405.175i 0.127350 0.0585845i
\(364\) −1727.15 5828.71i −0.248702 0.839307i
\(365\) −1162.51 −0.166708
\(366\) −2924.38 + 4475.03i −0.417650 + 0.639108i
\(367\) 8875.98i 1.26246i −0.775596 0.631229i \(-0.782551\pi\)
0.775596 0.631229i \(-0.217449\pi\)
\(368\) 7155.49 5697.53i 1.01360 0.807077i
\(369\) −2529.98 + 2952.55i −0.356925 + 0.416541i
\(370\) −884.151 + 555.318i −0.124229 + 0.0780259i
\(371\) −6965.69 + 6325.26i −0.974773 + 0.885151i
\(372\) 12196.3 + 219.713i 1.69987 + 0.0306226i
\(373\) 1584.56i 0.219960i −0.993934 0.109980i \(-0.964921\pi\)
0.993934 0.109980i \(-0.0350788\pi\)
\(374\) 2302.64 1446.24i 0.318360 0.199956i
\(375\) 1211.18 + 2632.84i 0.166787 + 0.362558i
\(376\) −925.563 8256.38i −0.126947 1.13242i
\(377\) 6058.37 0.827645
\(378\) −6265.16 3841.61i −0.852500 0.522727i
\(379\) 1454.58i 0.197142i 0.995130 + 0.0985711i \(0.0314272\pi\)
−0.995130 + 0.0985711i \(0.968573\pi\)
\(380\) 1800.30 + 867.812i 0.243036 + 0.117152i
\(381\) −220.172 + 101.285i −0.0296056 + 0.0136194i
\(382\) −3446.33 5487.09i −0.461595 0.734931i
\(383\) −14348.5 −1.91429 −0.957147 0.289603i \(-0.906477\pi\)
−0.957147 + 0.289603i \(0.906477\pi\)
\(384\) 2619.44 7054.19i 0.348107 0.937455i
\(385\) −959.559 1056.71i −0.127022 0.139883i
\(386\) −7543.58 + 4737.97i −0.994710 + 0.624757i
\(387\) 1457.98 + 1249.31i 0.191508 + 0.164099i
\(388\) 961.869 + 463.656i 0.125854 + 0.0606665i
\(389\) −2531.67 −0.329977 −0.164988 0.986296i \(-0.552759\pi\)
−0.164988 + 0.986296i \(0.552759\pi\)
\(390\) −1150.05 751.544i −0.149321 0.0975793i
\(391\) 4061.46i 0.525311i
\(392\) −7760.29 + 119.051i −0.999882 + 0.0153393i
\(393\) −5417.09 11775.6i −0.695307 1.51145i
\(394\) 996.294 625.752i 0.127392 0.0800126i
\(395\) 86.9181i 0.0110717i
\(396\) 2933.78 + 6692.32i 0.372293 + 0.849246i
\(397\) 6962.76 0.880229 0.440115 0.897942i \(-0.354938\pi\)
0.440115 + 0.897942i \(0.354938\pi\)
\(398\) −1808.62 2879.60i −0.227783 0.362666i
\(399\) −4132.50 + 9709.66i −0.518506 + 1.21827i
\(400\) −4776.30 5998.53i −0.597038 0.749816i
\(401\) 6420.79i 0.799598i 0.916603 + 0.399799i \(0.130920\pi\)
−0.916603 + 0.399799i \(0.869080\pi\)
\(402\) 6542.74 + 4275.60i 0.811746 + 0.530467i
\(403\) 12040.3i 1.48827i
\(404\) 1219.10 + 587.649i 0.150129 + 0.0723679i
\(405\) −1641.21 + 254.512i −0.201364 + 0.0312267i
\(406\) 2083.44 7448.70i 0.254678 0.910524i
\(407\) 5481.30i 0.667563i
\(408\) −1725.88 2861.02i −0.209421 0.347161i
\(409\) 650.008i 0.0785840i −0.999228 0.0392920i \(-0.987490\pi\)
0.999228 0.0392920i \(-0.0125102\pi\)
\(410\) 493.559 + 785.822i 0.0594516 + 0.0946561i
\(411\) 438.175 + 952.497i 0.0525878 + 0.114314i
\(412\) 6772.98 + 3264.83i 0.809904 + 0.390404i
\(413\) −2516.56 2771.36i −0.299834 0.330193i
\(414\) 10795.5 + 1605.78i 1.28157 + 0.190627i
\(415\) −2218.80 −0.262449
\(416\) 7008.28 + 2459.69i 0.825984 + 0.289895i
\(417\) −1460.62 + 671.926i −0.171527 + 0.0789074i
\(418\) 8885.00 5580.49i 1.03966 0.652992i
\(419\) 2741.55i 0.319651i −0.987145 0.159825i \(-0.948907\pi\)
0.987145 0.159825i \(-0.0510931\pi\)
\(420\) −1319.51 + 1155.52i −0.153299 + 0.134247i
\(421\) 5647.52i 0.653784i 0.945062 + 0.326892i \(0.106001\pi\)
−0.945062 + 0.326892i \(0.893999\pi\)
\(422\) 6179.73 + 9839.08i 0.712854 + 1.13497i
\(423\) 6450.52 7527.94i 0.741454 0.865298i
\(424\) −1280.67 11424.1i −0.146686 1.30849i
\(425\) −3404.76 −0.388601
\(426\) −9801.78 6405.35i −1.11478 0.728499i
\(427\) −4987.17 + 4528.65i −0.565214 + 0.513247i
\(428\) −7115.95 + 14762.2i −0.803651 + 1.66720i
\(429\) −6552.42 + 3014.30i −0.737422 + 0.339234i
\(430\) 388.043 243.722i 0.0435188 0.0273333i
\(431\) 1269.04i 0.141828i −0.997482 0.0709139i \(-0.977408\pi\)
0.997482 0.0709139i \(-0.0225915\pi\)
\(432\) 8287.07 3456.30i 0.922944 0.384934i
\(433\) 9965.68i 1.10605i 0.833164 + 0.553026i \(0.186527\pi\)
−0.833164 + 0.553026i \(0.813473\pi\)
\(434\) 14803.4 + 4140.61i 1.63730 + 0.457962i
\(435\) −730.507 1587.96i −0.0805176 0.175028i
\(436\) 1721.13 + 829.646i 0.189053 + 0.0911304i
\(437\) 15671.6i 1.71550i
\(438\) 6277.77 + 4102.45i 0.684848 + 0.447541i
\(439\) 17103.9i 1.85951i 0.368180 + 0.929754i \(0.379981\pi\)
−0.368180 + 0.929754i \(0.620019\pi\)
\(440\) 1733.06 194.281i 0.187774 0.0210499i
\(441\) −6420.44 6674.14i −0.693277 0.720671i
\(442\) 2792.83 1754.12i 0.300546 0.188767i
\(443\) 6755.15 0.724485 0.362242 0.932084i \(-0.382011\pi\)
0.362242 + 0.932084i \(0.382011\pi\)
\(444\) 6734.29 + 121.316i 0.719809 + 0.0129672i
\(445\) 3732.94i 0.397659i
\(446\) −5846.40 9308.36i −0.620706 0.988260i
\(447\) −5701.59 + 2622.89i −0.603302 + 0.277536i
\(448\) 5434.27 7770.72i 0.573091 0.819491i
\(449\) 6557.46i 0.689233i 0.938744 + 0.344617i \(0.111991\pi\)
−0.938744 + 0.344617i \(0.888009\pi\)
\(450\) 1346.14 9050.00i 0.141017 0.948047i
\(451\) 4871.71 0.508647
\(452\) 6.09626 + 2.93862i 0.000634389 + 0.000305799i
\(453\) 12063.7 5549.63i 1.25122 0.575594i
\(454\) −3851.59 6132.33i −0.398159 0.633931i
\(455\) −1163.83 1281.67i −0.119915 0.132056i
\(456\) −6659.51 11039.6i −0.683903 1.13372i
\(457\) 428.629 0.0438740 0.0219370 0.999759i \(-0.493017\pi\)
0.0219370 + 0.999759i \(0.493017\pi\)
\(458\) −2903.18 + 1823.43i −0.296193 + 0.186033i
\(459\) 1091.51 3834.63i 0.110996 0.389946i
\(460\) 1131.06 2346.42i 0.114643 0.237831i
\(461\) 14233.2i 1.43798i 0.695022 + 0.718988i \(0.255395\pi\)
−0.695022 + 0.718988i \(0.744605\pi\)
\(462\) 1452.70 + 9092.72i 0.146289 + 0.915653i
\(463\) −6905.29 −0.693123 −0.346562 0.938027i \(-0.612651\pi\)
−0.346562 + 0.938027i \(0.612651\pi\)
\(464\) 5886.34 + 7392.61i 0.588936 + 0.739641i
\(465\) 3155.90 1451.80i 0.314734 0.144786i
\(466\) 6692.45 + 10655.4i 0.665283 + 1.05923i
\(467\) 9126.22i 0.904307i −0.891940 0.452153i \(-0.850656\pi\)
0.891940 0.452153i \(-0.149344\pi\)
\(468\) 3558.32 + 8116.98i 0.351460 + 0.801726i
\(469\) 6621.13 + 7291.52i 0.651888 + 0.717892i
\(470\) −1258.40 2003.56i −0.123501 0.196633i
\(471\) 180.413 82.9949i 0.0176496 0.00811933i
\(472\) 4545.16 509.524i 0.443237 0.0496881i
\(473\) 2405.67i 0.233854i
\(474\) 306.731 469.375i 0.0297229 0.0454834i
\(475\) −13137.7 −1.26905
\(476\) −1196.23 4036.98i −0.115187 0.388729i
\(477\) 8925.36 10416.1i 0.856738 0.999837i
\(478\) −714.796 1138.06i −0.0683975 0.108899i
\(479\) 17657.1 1.68429 0.842143 0.539254i \(-0.181294\pi\)
0.842143 + 0.539254i \(0.181294\pi\)
\(480\) −200.335 2133.53i −0.0190500 0.202879i
\(481\) 6648.16i 0.630208i
\(482\) −10998.4 17511.2i −1.03934 1.65480i
\(483\) 12655.1 + 5386.09i 1.19219 + 0.507403i
\(484\) −648.131 + 1344.57i −0.0608688 + 0.126274i
\(485\) 304.083 0.0284695
\(486\) 9761.05 + 4417.38i 0.911050 + 0.412297i
\(487\) −9567.19 −0.890206 −0.445103 0.895479i \(-0.646833\pi\)
−0.445103 + 0.895479i \(0.646833\pi\)
\(488\) −916.911 8179.20i −0.0850545 0.758720i
\(489\) 6271.53 + 13632.9i 0.579976 + 1.26074i
\(490\) −1976.03 + 990.156i −0.182179 + 0.0912872i
\(491\) −7159.61 −0.658063 −0.329031 0.944319i \(-0.606722\pi\)
−0.329031 + 0.944319i \(0.606722\pi\)
\(492\) 107.824 5985.35i 0.00988029 0.548456i
\(493\) 4196.05 0.383327
\(494\) 10776.4 6768.47i 0.981488 0.616453i
\(495\) 1580.16 + 1354.00i 0.143480 + 0.122945i
\(496\) −14692.0 + 11698.4i −1.33002 + 1.05902i
\(497\) −9919.23 10923.6i −0.895248 0.985892i
\(498\) 11982.0 + 7830.07i 1.07816 + 0.704566i
\(499\) 17819.0i 1.59858i 0.600947 + 0.799289i \(0.294790\pi\)
−0.600947 + 0.799289i \(0.705210\pi\)
\(500\) −4019.27 1937.44i −0.359495 0.173290i
\(501\) 1452.62 668.246i 0.129538 0.0595909i
\(502\) −9021.43 14363.5i −0.802084 1.27704i
\(503\) −20477.4 −1.81520 −0.907599 0.419839i \(-0.862087\pi\)
−0.907599 + 0.419839i \(0.862087\pi\)
\(504\) 11203.4 1583.53i 0.990158 0.139952i
\(505\) 385.402 0.0339607
\(506\) −7273.32 11580.2i −0.639009 1.01740i
\(507\) 2423.86 1115.04i 0.212323 0.0976742i
\(508\) 162.019 336.113i 0.0141505 0.0293555i
\(509\) 18659.8i 1.62491i −0.583022 0.812457i \(-0.698130\pi\)
0.583022 0.812457i \(-0.301870\pi\)
\(510\) −796.527 520.522i −0.0691585 0.0451943i
\(511\) 6353.00 + 6996.24i 0.549980 + 0.605666i
\(512\) 3807.88 + 10941.6i 0.328684 + 0.944440i
\(513\) 4211.72 14796.3i 0.362479 1.27344i
\(514\) 6056.30 3803.84i 0.519712 0.326420i
\(515\) 2141.19 0.183208
\(516\) −2955.59 53.2442i −0.252157 0.00454253i
\(517\) −12421.1 −1.05663
\(518\) 8173.84 + 2286.27i 0.693316 + 0.193924i
\(519\) −5953.15 12940.8i −0.503495 1.09449i
\(520\) 2102.00 235.639i 0.177267 0.0198721i
\(521\) −17496.1 −1.47125 −0.735623 0.677391i \(-0.763110\pi\)
−0.735623 + 0.677391i \(0.763110\pi\)
\(522\) −1658.99 + 11153.3i −0.139103 + 0.935182i
\(523\) −1593.34 −0.133216 −0.0666079 0.997779i \(-0.521218\pi\)
−0.0666079 + 0.997779i \(0.521218\pi\)
\(524\) 17976.5 + 8665.34i 1.49868 + 0.722419i
\(525\) 4515.22 10608.9i 0.375353 0.881923i
\(526\) −10218.1 16268.8i −0.847016 1.34858i
\(527\) 8339.17i 0.689298i
\(528\) −10044.5 5066.77i −0.827898 0.417619i
\(529\) −8258.51 −0.678763
\(530\) −1741.20 2772.26i −0.142704 0.227206i
\(531\) 4144.15 + 3551.03i 0.338683 + 0.290210i
\(532\) −4615.79 15577.1i −0.376165 1.26946i
\(533\) 5908.80 0.480185
\(534\) 13173.4 20158.6i 1.06755 1.63361i
\(535\) 4666.91i 0.377136i
\(536\) −11958.4 + 1340.57i −0.963668 + 0.108030i
\(537\) 3444.79 1584.70i 0.276822 0.127346i
\(538\) 4161.16 + 6625.20i 0.333458 + 0.530916i
\(539\) −1115.65 + 11549.7i −0.0891547 + 0.922969i
\(540\) 1698.49 1911.40i 0.135354 0.152322i
\(541\) 8592.00i 0.682807i −0.939917 0.341404i \(-0.889098\pi\)
0.939917 0.341404i \(-0.110902\pi\)
\(542\) −1389.55 2212.37i −0.110122 0.175331i
\(543\) −9709.64 + 4466.70i −0.767368 + 0.353010i
\(544\) 4853.95 + 1703.59i 0.382558 + 0.134266i
\(545\) 544.113 0.0427656
\(546\) 1761.95 + 11028.4i 0.138103 + 0.864416i
\(547\) 468.066i 0.0365870i −0.999833 0.0182935i \(-0.994177\pi\)
0.999833 0.0182935i \(-0.00582332\pi\)
\(548\) −1454.08 700.919i −0.113349 0.0546383i
\(549\) 6390.22 7457.57i 0.496772 0.579747i
\(550\) −9707.85 + 6097.31i −0.752626 + 0.472709i
\(551\) 16190.9 1.25183
\(552\) −14388.4 + 8679.65i −1.10944 + 0.669258i
\(553\) 523.093 475.000i 0.0402246 0.0365263i
\(554\) 5586.74 + 8894.94i 0.428443 + 0.682148i
\(555\) 1742.55 801.623i 0.133274 0.0613099i
\(556\) 1074.84 2229.78i 0.0819841 0.170078i
\(557\) 7441.55 0.566084 0.283042 0.959108i \(-0.408656\pi\)
0.283042 + 0.959108i \(0.408656\pi\)
\(558\) −22165.8 3297.05i −1.68164 0.250135i
\(559\) 2917.79i 0.220768i
\(560\) 433.149 2665.41i 0.0326855 0.201133i
\(561\) −4538.22 + 2087.71i −0.341540 + 0.157118i
\(562\) 7170.65 + 11416.8i 0.538213 + 0.856918i
\(563\) 14562.5i 1.09012i 0.838397 + 0.545059i \(0.183493\pi\)
−0.838397 + 0.545059i \(0.816507\pi\)
\(564\) −274.913 + 15260.5i −0.0205247 + 1.13933i
\(565\) 1.92726 0.000143505
\(566\) −19738.8 + 12397.5i −1.46587 + 0.920685i
\(567\) 10500.8 + 8486.32i 0.777764 + 0.628557i
\(568\) 17915.2 2008.34i 1.32342 0.148359i
\(569\) 19130.4i 1.40947i −0.709470 0.704735i \(-0.751066\pi\)
0.709470 0.704735i \(-0.248934\pi\)
\(570\) −3073.49 2008.49i −0.225850 0.147590i
\(571\) 13903.0i 1.01896i −0.860483 0.509479i \(-0.829838\pi\)
0.860483 0.509479i \(-0.170162\pi\)
\(572\) 4821.76 10002.9i 0.352462 0.731192i
\(573\) 4974.91 + 10814.4i 0.362705 + 0.788441i
\(574\) 2032.00 7264.80i 0.147760 0.528270i
\(575\) 17122.9i 1.24187i
\(576\) −6447.31 + 12228.5i −0.466385 + 0.884582i
\(577\) 20711.2i 1.49431i −0.664648 0.747157i \(-0.731418\pi\)
0.664648 0.747157i \(-0.268582\pi\)
\(578\) −9833.20 + 6176.03i −0.707625 + 0.444445i
\(579\) 14867.5 6839.45i 1.06713 0.490911i
\(580\) 2424.18 + 1168.54i 0.173549 + 0.0836571i
\(581\) 12125.5 + 13353.2i 0.865838 + 0.953504i
\(582\) −1642.11 1073.10i −0.116955 0.0764286i
\(583\) −17186.6 −1.22092
\(584\) −11474.2 + 1286.28i −0.813021 + 0.0911418i
\(585\) 1916.54 + 1642.24i 0.135452 + 0.116065i
\(586\) 7455.27 + 11869.9i 0.525553 + 0.836762i
\(587\) 4831.23i 0.339704i −0.985470 0.169852i \(-0.945671\pi\)
0.985470 0.169852i \(-0.0543290\pi\)
\(588\) 14165.2 + 1626.31i 0.993474 + 0.114061i
\(589\) 32177.6i 2.25103i
\(590\) 1102.97 692.750i 0.0769633 0.0483391i
\(591\) −1963.57 + 903.298i −0.136668 + 0.0628709i
\(592\) −8112.29 + 6459.38i −0.563198 + 0.448444i
\(593\) 637.576 0.0441519 0.0220760 0.999756i \(-0.492972\pi\)
0.0220760 + 0.999756i \(0.492972\pi\)
\(594\) −3754.94 12888.2i −0.259372 0.890251i
\(595\) −806.072 887.687i −0.0555390 0.0611624i
\(596\) 4195.66 8704.02i 0.288357 0.598205i
\(597\) 2610.81 + 5675.33i 0.178984 + 0.389072i
\(598\) −8821.67 14045.5i −0.603252 0.960470i
\(599\) 10757.3i 0.733774i 0.930266 + 0.366887i \(0.119576\pi\)
−0.930266 + 0.366887i \(0.880424\pi\)
\(600\) 7276.25 + 12062.0i 0.495086 + 0.820712i
\(601\) 594.275i 0.0403344i 0.999797 + 0.0201672i \(0.00641985\pi\)
−0.999797 + 0.0201672i \(0.993580\pi\)
\(602\) −3587.39 1003.41i −0.242876 0.0679336i
\(603\) −10903.4 9342.86i −0.736351 0.630963i
\(604\) −8877.36 + 18416.3i −0.598038 + 1.24065i
\(605\) 425.068i 0.0285644i
\(606\) −2081.25 1360.07i −0.139513 0.0911703i
\(607\) 1028.34i 0.0687628i −0.999409 0.0343814i \(-0.989054\pi\)
0.999409 0.0343814i \(-0.0109461\pi\)
\(608\) 18729.5 + 6573.48i 1.24931 + 0.438470i
\(609\) −5564.58 + 13074.4i −0.370259 + 0.869955i
\(610\) −1246.63 1984.83i −0.0827454 0.131743i
\(611\) −15065.3 −0.997507
\(612\) 2464.50 + 5621.84i 0.162780 + 0.371323i
\(613\) 20648.4i 1.36049i −0.732983 0.680247i \(-0.761873\pi\)
0.732983 0.680247i \(-0.238127\pi\)
\(614\) 14735.7 9255.22i 0.968544 0.608323i
\(615\) −712.472 1548.76i −0.0467149 0.101548i
\(616\) −10640.2 9368.24i −0.695954 0.612755i
\(617\) 8883.01i 0.579605i 0.957086 + 0.289803i \(0.0935897\pi\)
−0.957086 + 0.289803i \(0.906410\pi\)
\(618\) −11562.9 7556.21i −0.752633 0.491837i
\(619\) −20038.9 −1.30118 −0.650589 0.759430i \(-0.725478\pi\)
−0.650589 + 0.759430i \(0.725478\pi\)
\(620\) −2322.35 + 4817.78i −0.150432 + 0.312075i
\(621\) −19284.8 5489.33i −1.24617 0.354717i
\(622\) 11281.6 7085.73i 0.727251 0.456771i
\(623\) 22465.7 20400.2i 1.44473 1.31190i
\(624\) −12182.8 6145.38i −0.781572 0.394250i
\(625\) 13705.6 0.877156
\(626\) 9036.55 + 14387.6i 0.576954 + 0.918600i
\(627\) −17511.2 + 8055.66i −1.11536 + 0.513097i
\(628\) −132.761 + 275.417i −0.00843591 + 0.0175005i
\(629\) 4604.54i 0.291884i
\(630\) 2678.20 1791.61i 0.169369 0.113301i
\(631\) 24780.4 1.56338 0.781689 0.623669i \(-0.214359\pi\)
0.781689 + 0.623669i \(0.214359\pi\)
\(632\) 96.1727 + 857.898i 0.00605307 + 0.0539958i
\(633\) −8920.68 19391.6i −0.560134 1.21761i
\(634\) 20329.7 12768.7i 1.27350 0.799858i
\(635\) 106.258i 0.00664051i
\(636\) −380.388 + 21115.4i −0.0237160 + 1.31648i
\(637\) −1353.15 + 14008.4i −0.0841659 + 0.871323i
\(638\) 11964.0 7514.34i 0.742412 0.466294i
\(639\) 16334.5 + 13996.7i 1.01124 + 0.866511i
\(640\) 2329.84 + 2335.97i 0.143899 + 0.144277i
\(641\) 17191.8i 1.05934i −0.848205 0.529668i \(-0.822316\pi\)
0.848205 0.529668i \(-0.177684\pi\)
\(642\) 16469.4 25202.2i 1.01245 1.54930i
\(643\) 6251.36 0.383405 0.191703 0.981453i \(-0.438599\pi\)
0.191703 + 0.981453i \(0.438599\pi\)
\(644\) −20302.4 + 6015.98i −1.24228 + 0.368110i
\(645\) −764.784 + 351.822i −0.0466874 + 0.0214775i
\(646\) 7463.80 4687.86i 0.454581 0.285513i
\(647\) 24046.1 1.46113 0.730565 0.682843i \(-0.239257\pi\)
0.730565 + 0.682843i \(0.239257\pi\)
\(648\) −15917.5 + 4328.04i −0.964965 + 0.262379i
\(649\) 6837.84i 0.413573i
\(650\) −11774.5 + 7395.30i −0.710512 + 0.446258i
\(651\) −25984.0 11059.0i −1.56435 0.665799i
\(652\) −20812.0 10032.1i −1.25009 0.602590i
\(653\) −15862.2 −0.950593 −0.475296 0.879826i \(-0.657659\pi\)
−0.475296 + 0.879826i \(0.657659\pi\)
\(654\) −2938.32 1920.16i −0.175684 0.114808i
\(655\) 5683.05 0.339016
\(656\) 5741.01 + 7210.10i 0.341690 + 0.429127i
\(657\) −10461.8 8964.49i −0.621240 0.532326i
\(658\) −5180.87 + 18522.6i −0.306948 + 1.09740i
\(659\) −16357.6 −0.966922 −0.483461 0.875366i \(-0.660620\pi\)
−0.483461 + 0.875366i \(0.660620\pi\)
\(660\) −3203.26 57.7059i −0.188919 0.00340333i
\(661\) −1599.08 −0.0940954 −0.0470477 0.998893i \(-0.514981\pi\)
−0.0470477 + 0.998893i \(0.514981\pi\)
\(662\) −16510.3 26287.0i −0.969324 1.54331i
\(663\) −5504.33 + 2532.14i −0.322429 + 0.148326i
\(664\) −21899.9 + 2455.04i −1.27994 + 0.143485i
\(665\) −3110.32 3425.24i −0.181373 0.199737i
\(666\) −12239.0 1820.49i −0.712092 0.105920i
\(667\) 21102.4i 1.22502i
\(668\) −1068.95 + 2217.56i −0.0619144 + 0.128443i
\(669\) 8439.50 + 18345.6i 0.487728 + 1.06021i
\(670\) −2901.93 + 1822.65i −0.167331 + 0.105097i
\(671\) −12305.0 −0.707941
\(672\) −11745.3 + 12865.2i −0.674231 + 0.738521i
\(673\) 22120.1 1.26696 0.633481 0.773758i \(-0.281625\pi\)
0.633481 + 0.773758i \(0.281625\pi\)
\(674\) 3903.41 2451.65i 0.223077 0.140110i
\(675\) −4601.77 + 16166.6i −0.262403 + 0.921859i
\(676\) −1783.66 + 3700.25i −0.101483 + 0.210529i
\(677\) 1541.71i 0.0875227i −0.999042 0.0437613i \(-0.986066\pi\)
0.999042 0.0437613i \(-0.0139341\pi\)
\(678\) −10.4076 6.80124i −0.000589529 0.000385251i
\(679\) −1661.79 1830.04i −0.0939227 0.103432i
\(680\) 1455.85 163.204i 0.0821018 0.00920383i
\(681\) 5559.93 + 12086.1i 0.312859 + 0.680087i
\(682\) 14933.9 + 23777.1i 0.838489 + 1.33500i
\(683\) 25827.4 1.44694 0.723468 0.690357i \(-0.242547\pi\)
0.723468 + 0.690357i \(0.242547\pi\)
\(684\) 9509.56 + 21692.5i 0.531589 + 1.21262i
\(685\) −459.689 −0.0256406
\(686\) 16757.8 + 6481.09i 0.932677 + 0.360713i
\(687\) 5721.81 2632.19i 0.317759 0.146178i
\(688\) 3560.38 2834.94i 0.197294 0.157094i
\(689\) −20845.3 −1.15260
\(690\) −2617.76 + 4005.82i −0.144430 + 0.221013i
\(691\) 21254.8 1.17015 0.585073 0.810981i \(-0.301066\pi\)
0.585073 + 0.810981i \(0.301066\pi\)
\(692\) 19755.4 + 9522.84i 1.08524 + 0.523127i
\(693\) −486.726 16909.2i −0.0266799 0.926881i
\(694\) −7403.00 + 4649.67i −0.404919 + 0.254322i
\(695\) 704.917i 0.0384734i
\(696\) −8967.28 14865.2i −0.488368 0.809575i
\(697\) 4092.45 0.222400
\(698\) −20162.9 + 12663.9i −1.09338 + 0.686729i
\(699\) −9660.81 21000.5i −0.522755 1.13635i
\(700\) 5043.26 + 17019.8i 0.272311 + 0.918981i
\(701\) −12172.2 −0.655829 −0.327914 0.944707i \(-0.606346\pi\)
−0.327914 + 0.944707i \(0.606346\pi\)
\(702\) −4554.29 15631.8i −0.244859 0.840436i
\(703\) 17767.1i 0.953200i
\(704\) 16890.7 3835.18i 0.904249 0.205318i
\(705\) 1816.55 + 3948.77i 0.0970426 + 0.210950i
\(706\) 1662.96 1044.47i 0.0886489 0.0556786i
\(707\) −2106.19 2319.44i −0.112039 0.123383i
\(708\) −8400.93 151.340i −0.445941 0.00803351i
\(709\) 24941.7i 1.32117i −0.750753 0.660583i \(-0.770309\pi\)
0.750753 0.660583i \(-0.229691\pi\)
\(710\) 4347.44 2730.54i 0.229798 0.144331i
\(711\) −670.256 + 782.207i −0.0353538 + 0.0412589i
\(712\) 4130.40 + 36844.8i 0.217407 + 1.93935i
\(713\) 41938.6 2.20282
\(714\) 1220.33 + 7638.29i 0.0639632 + 0.400358i
\(715\) 3162.29i 0.165403i
\(716\) −2534.93 + 5258.79i −0.132311 + 0.274484i
\(717\) 1031.84 + 2242.99i 0.0537442 + 0.116828i
\(718\) −5019.22 7991.37i −0.260885 0.415370i
\(719\) −9926.70 −0.514887 −0.257443 0.966293i \(-0.582880\pi\)
−0.257443 + 0.966293i \(0.582880\pi\)
\(720\) −141.794 + 3934.23i −0.00733938 + 0.203639i
\(721\) −11701.4 12886.2i −0.604416 0.665613i
\(722\) 12371.3 7770.19i 0.637692 0.400522i
\(723\) 15876.6 + 34512.4i 0.816679 + 1.77528i
\(724\) 7145.08 14822.7i 0.366775 0.760885i
\(725\) −17690.4 −0.906212
\(726\) 1500.05 2295.45i 0.0766835 0.117345i
\(727\) 18517.3i 0.944659i −0.881422 0.472330i \(-0.843413\pi\)
0.881422 0.472330i \(-0.156587\pi\)
\(728\) −12905.4 11362.6i −0.657011 0.578467i
\(729\) −16732.5 10365.5i −0.850099 0.526623i
\(730\) −2784.41 + 1748.83i −0.141172 + 0.0886675i
\(731\) 2020.87i 0.102250i
\(732\) −272.343 + 15117.8i −0.0137515 + 0.763348i
\(733\) −2791.96 −0.140687 −0.0703434 0.997523i \(-0.522409\pi\)
−0.0703434 + 0.997523i \(0.522409\pi\)
\(734\) −13352.7 21259.6i −0.671468 1.06908i
\(735\) 3834.91 1334.43i 0.192453 0.0669677i
\(736\) 8567.53 24411.1i 0.429081 1.22256i
\(737\) 17990.6i 0.899174i
\(738\) −1618.03 + 10877.9i −0.0807054 + 0.542576i
\(739\) 7989.50i 0.397698i −0.980030 0.198849i \(-0.936280\pi\)
0.980030 0.198849i \(-0.0637203\pi\)
\(740\) −1282.30 + 2660.17i −0.0637005 + 0.132148i
\(741\) −21239.1 + 9770.55i −1.05295 + 0.484386i
\(742\) −7168.59 + 25629.1i −0.354673 + 1.26802i
\(743\) 10189.8i 0.503131i 0.967840 + 0.251565i \(0.0809454\pi\)
−0.967840 + 0.251565i \(0.919055\pi\)
\(744\) 29542.9 17821.5i 1.45577 0.878181i
\(745\) 2751.67i 0.135320i
\(746\) −2383.75 3795.30i −0.116991 0.186268i
\(747\) −19967.8 17109.9i −0.978022 0.838044i
\(748\) 3339.57 6928.03i 0.163244 0.338655i
\(749\) 28086.5 25504.2i 1.37017 1.24420i
\(750\) 6861.74 + 4484.07i 0.334074 + 0.218313i
\(751\) −7615.28 −0.370020 −0.185010 0.982737i \(-0.559232\pi\)
−0.185010 + 0.982737i \(0.559232\pi\)
\(752\) −14637.5 18383.1i −0.709807 0.891442i
\(753\) 13022.8 + 28308.7i 0.630248 + 1.37002i
\(754\) 14510.9 9114.00i 0.700870 0.440202i
\(755\) 5822.10i 0.280646i
\(756\) −20785.4 + 223.741i −0.999942 + 0.0107637i
\(757\) 3586.57i 0.172201i 0.996286 + 0.0861004i \(0.0274406\pi\)
−0.996286 + 0.0861004i \(0.972559\pi\)
\(758\) 2188.22 + 3483.99i 0.104855 + 0.166945i
\(759\) 10499.3 + 22823.2i 0.502110 + 1.09148i
\(760\) 5617.55 629.743i 0.268118 0.0300568i
\(761\) 17846.0 0.850089 0.425045 0.905172i \(-0.360258\pi\)
0.425045 + 0.905172i \(0.360258\pi\)
\(762\) −374.982 + 573.815i −0.0178270 + 0.0272797i
\(763\) −2973.53 3274.60i −0.141086 0.155371i
\(764\) −16509.2 7958.03i −0.781780 0.376847i
\(765\) 1327.40 + 1137.42i 0.0627351 + 0.0537562i
\(766\) −34367.3 + 21585.4i −1.62107 + 1.01816i
\(767\) 8293.49i 0.390431i
\(768\) −4338.04 20836.7i −0.203822 0.979008i
\(769\) 16449.0i 0.771346i 0.922636 + 0.385673i \(0.126031\pi\)
−0.922636 + 0.385673i \(0.873969\pi\)
\(770\) −3888.00 1087.49i −0.181966 0.0508969i
\(771\) −11936.2 + 5490.99i −0.557552 + 0.256489i
\(772\) −10940.6 + 22696.6i −0.510053 + 1.05812i
\(773\) 34278.9i 1.59499i −0.603328 0.797493i \(-0.706159\pi\)
0.603328 0.797493i \(-0.293841\pi\)
\(774\) 5371.56 + 798.991i 0.249453 + 0.0371048i
\(775\) 35157.6i 1.62955i
\(776\) 3001.36 336.460i 0.138843 0.0155647i
\(777\) −14347.2 6106.29i −0.662425 0.281933i
\(778\) −6063.82 + 3808.56i −0.279432 + 0.175506i
\(779\) 15791.2 0.726287
\(780\) −3885.17 69.9903i −0.178348 0.00321289i
\(781\) 26952.0i 1.23485i
\(782\) −6109.91 9727.92i −0.279399 0.444846i
\(783\) 5671.24 19923.8i 0.258842 0.909349i
\(784\) −18408.2 + 11959.5i −0.838566 + 0.544800i
\(785\) 87.0698i 0.00395880i
\(786\) −30689.6 20055.3i −1.39270 0.910114i
\(787\) 17734.8 0.803273 0.401636 0.915799i \(-0.368442\pi\)
0.401636 + 0.915799i \(0.368442\pi\)
\(788\) 1444.94 2997.58i 0.0653224 0.135513i
\(789\) 14750.2 + 32063.8i 0.665554 + 1.44677i
\(790\) 130.757 + 208.185i 0.00588874 + 0.00937579i
\(791\) −10.5323 11.5987i −0.000473433 0.000521368i
\(792\) 17094.6 + 11615.8i 0.766958 + 0.521150i
\(793\) −14924.5 −0.668327
\(794\) 16677.1 10474.5i 0.745399 0.468170i
\(795\) 2513.49 + 5463.78i 0.112131 + 0.243749i
\(796\) −8663.93 4176.34i −0.385785 0.185963i
\(797\) 10674.8i 0.474428i 0.971457 + 0.237214i \(0.0762343\pi\)
−0.971457 + 0.237214i \(0.923766\pi\)
\(798\) 4708.78 + 29473.2i 0.208884 + 1.30744i
\(799\) −10434.3 −0.462000
\(800\) −20464.1 7182.26i −0.904393 0.317414i
\(801\) −28786.0 + 33594.1i −1.26979 + 1.48188i
\(802\) 9659.20 + 15378.9i 0.425285 + 0.677119i
\(803\) 17262.0i 0.758608i
\(804\) 22103.1 + 398.181i 0.969547 + 0.0174661i
\(805\) −4464.27 + 4053.82i −0.195460 + 0.177489i
\(806\) 18113.1 + 28838.8i 0.791570 + 1.26030i
\(807\) −6006.79 13057.5i −0.262019 0.569572i
\(808\) 3803.99 426.438i 0.165624 0.0185669i
\(809\) 40808.4i 1.77348i −0.462265 0.886742i \(-0.652963\pi\)
0.462265 0.886742i \(-0.347037\pi\)
\(810\) −3548.12 + 3078.59i −0.153912 + 0.133544i
\(811\) 18140.2 0.785436 0.392718 0.919659i \(-0.371535\pi\)
0.392718 + 0.919659i \(0.371535\pi\)
\(812\) −6215.34 20975.2i −0.268615 0.906510i
\(813\) 2005.87 + 4360.32i 0.0865299 + 0.188097i
\(814\) 8245.87 + 13128.7i 0.355059 + 0.565308i
\(815\) −6579.45 −0.282783
\(816\) −8437.82 4256.31i −0.361989 0.182599i
\(817\) 7797.76i 0.333915i
\(818\) −977.849 1556.89i −0.0417967 0.0665468i
\(819\) −590.341 20508.9i −0.0251870 0.875017i
\(820\) 2364.33 + 1139.69i 0.100690 + 0.0485364i
\(821\) −7359.71 −0.312857 −0.156429 0.987689i \(-0.549998\pi\)
−0.156429 + 0.987689i \(0.549998\pi\)
\(822\) 2482.41 + 1622.23i 0.105333 + 0.0688341i
\(823\) 23969.6 1.01522 0.507611 0.861586i \(-0.330529\pi\)
0.507611 + 0.861586i \(0.330529\pi\)
\(824\) 21134.0 2369.18i 0.893492 0.100163i
\(825\) 19133.0 8801.70i 0.807424 0.371437i
\(826\) −10196.7 2852.08i −0.429528 0.120141i
\(827\) 35380.2 1.48765 0.743827 0.668373i \(-0.233009\pi\)
0.743827 + 0.668373i \(0.233009\pi\)
\(828\) 28272.9 12394.3i 1.18665 0.520206i
\(829\) 29620.3 1.24096 0.620479 0.784223i \(-0.286938\pi\)
0.620479 + 0.784223i \(0.286938\pi\)
\(830\) −5314.42 + 3337.88i −0.222248 + 0.139590i
\(831\) −8064.67 17530.8i −0.336655 0.731815i
\(832\) 20486.4 4651.61i 0.853650 0.193829i
\(833\) −937.194 + 9702.25i −0.0389818 + 0.403557i
\(834\) −2487.63 + 3806.69i −0.103285 + 0.158052i
\(835\) 701.056i 0.0290551i
\(836\) 12886.1 26732.6i 0.533104 1.10594i
\(837\) 39596.4 + 11270.9i 1.63519 + 0.465449i
\(838\) −4124.30 6566.52i −0.170014 0.270688i
\(839\) −25895.0 −1.06555 −0.532774 0.846257i \(-0.678851\pi\)
−0.532774 + 0.846257i \(0.678851\pi\)
\(840\) −1422.14 + 4752.70i −0.0584149 + 0.195219i
\(841\) −2587.32 −0.106085
\(842\) 8495.92 + 13526.8i 0.347730 + 0.553640i
\(843\) −10351.1 22501.1i −0.422908 0.919309i
\(844\) 29603.1 + 14269.8i 1.20732 + 0.581975i
\(845\) 1169.79i 0.0476237i
\(846\) 4125.39 27734.7i 0.167652 1.12711i
\(847\) 2558.16 2322.96i 0.103777 0.0942359i
\(848\) −20253.4 25436.1i −0.820170 1.03005i
\(849\) 38902.8 17896.3i 1.57260 0.723441i
\(850\) −8155.03 + 5122.01i −0.329077 + 0.206686i
\(851\) 23156.7 0.932787
\(852\) −33113.0 596.522i −1.33149 0.0239865i
\(853\) 37192.4 1.49290 0.746449 0.665442i \(-0.231757\pi\)
0.746449 + 0.665442i \(0.231757\pi\)
\(854\) −5132.44 + 18349.5i −0.205654 + 0.735252i
\(855\) 5121.93 + 4388.86i 0.204873 + 0.175551i
\(856\) 5163.81 + 46063.2i 0.206186 + 1.83926i
\(857\) 16970.1 0.676414 0.338207 0.941072i \(-0.390180\pi\)
0.338207 + 0.941072i \(0.390180\pi\)
\(858\) −11159.6 + 17077.0i −0.444037 + 0.679487i
\(859\) −31307.1 −1.24352 −0.621760 0.783208i \(-0.713582\pi\)
−0.621760 + 0.783208i \(0.713582\pi\)
\(860\) 562.786 1167.51i 0.0223149 0.0462929i
\(861\) −5427.20 + 12751.6i −0.214818 + 0.504733i
\(862\) −1909.11 3039.59i −0.0754343 0.120103i
\(863\) 35041.9i 1.38220i 0.722759 + 0.691101i \(0.242874\pi\)
−0.722759 + 0.691101i \(0.757126\pi\)
\(864\) 14649.5 20745.2i 0.576835 0.816860i
\(865\) 6245.43 0.245493
\(866\) 14992.0 + 23869.6i 0.588279 + 0.936631i
\(867\) 19380.0 8915.35i 0.759147 0.349228i
\(868\) 41685.9 12352.3i 1.63008 0.483023i
\(869\) 1290.64 0.0503821
\(870\) −4138.57 2704.51i −0.161277 0.105392i
\(871\) 21820.4i 0.848859i
\(872\) 5370.50 602.047i 0.208564 0.0233806i
\(873\) 2736.55 + 2344.89i 0.106092 + 0.0909078i
\(874\) −23575.8 37536.2i −0.912428 1.45273i
\(875\) 6943.96 + 7647.03i 0.268284 + 0.295448i
\(876\) 21208.0 + 382.056i 0.817981 + 0.0147357i
\(877\) 19272.8i 0.742070i −0.928619 0.371035i \(-0.879003\pi\)
0.928619 0.371035i \(-0.120997\pi\)
\(878\) 25730.5 + 40966.9i 0.989023 + 1.57468i
\(879\) −10762.0 23394.2i −0.412961 0.897686i
\(880\) 3858.72 3072.49i 0.147815 0.117697i
\(881\) 40919.7 1.56484 0.782418 0.622754i \(-0.213986\pi\)
0.782418 + 0.622754i \(0.213986\pi\)
\(882\) −25418.4 6327.08i −0.970389 0.241546i
\(883\) 31577.4i 1.20347i 0.798696 + 0.601735i \(0.205524\pi\)
−0.798696 + 0.601735i \(0.794476\pi\)
\(884\) 4050.50 8402.87i 0.154110 0.319705i
\(885\) −2173.81 + 1000.01i −0.0825670 + 0.0379831i
\(886\) 16179.8 10162.2i 0.613511 0.385334i
\(887\) −17298.4 −0.654817 −0.327409 0.944883i \(-0.606175\pi\)
−0.327409 + 0.944883i \(0.606175\pi\)
\(888\) 16312.3 9840.25i 0.616449 0.371866i
\(889\) −639.486 + 580.691i −0.0241256 + 0.0219075i
\(890\) 5615.70 + 8941.07i 0.211504 + 0.336748i
\(891\) 3779.23 + 24370.3i 0.142098 + 0.916313i
\(892\) −28006.3 13500.1i −1.05126 0.506745i
\(893\) −40261.8 −1.50875
\(894\) −9710.56 + 14859.6i −0.363277 + 0.555904i
\(895\) 1662.50i 0.0620909i
\(896\) 1326.05 26787.4i 0.0494422 0.998777i
\(897\) 12734.4 + 27681.9i 0.474013 + 1.03040i
\(898\) 9864.81 + 15706.3i 0.366585 + 0.583659i
\(899\) 43328.4i 1.60743i
\(900\) −10390.2 23701.5i −0.384824 0.877832i
\(901\) −14437.5 −0.533833
\(902\) 11668.6 7328.83i 0.430735 0.270536i
\(903\) 6296.82 + 2679.97i 0.232054 + 0.0987640i
\(904\) 19.0224 2.13246i 0.000699863 7.84565e-5i
\(905\) 4686.01i 0.172120i
\(906\) 20546.0 31440.5i 0.753417 1.15292i
\(907\) 28199.6i 1.03236i −0.856480 0.516181i \(-0.827353\pi\)
0.856480 0.516181i \(-0.172647\pi\)
\(908\) −18450.5 8893.83i −0.674341 0.325058i
\(909\) 3468.37 + 2971.97i 0.126555 + 0.108442i
\(910\) −4715.68 1319.00i −0.171784 0.0480489i
\(911\) 37866.6i 1.37714i −0.725168 0.688571i \(-0.758238\pi\)
0.725168 0.688571i \(-0.241762\pi\)
\(912\) −32558.3 16423.4i −1.18214 0.596310i
\(913\) 32946.8i 1.19428i
\(914\) 1026.64 644.815i 0.0371536 0.0233354i
\(915\) 1799.56 + 3911.86i 0.0650183 + 0.141336i
\(916\) −4210.54 + 8734.88i −0.151878 + 0.315075i
\(917\) −31057.4 34201.9i −1.11844 1.23168i
\(918\) −3154.31 10826.7i −0.113407 0.389252i
\(919\) −47333.4 −1.69901 −0.849503 0.527584i \(-0.823098\pi\)
−0.849503 + 0.527584i \(0.823098\pi\)
\(920\) −820.773 7321.62i −0.0294131 0.262377i
\(921\) −29042.3 + 13360.3i −1.03906 + 0.477998i
\(922\) 21412.0 + 34091.1i 0.764821 + 1.21771i
\(923\) 32689.5i 1.16575i
\(924\) 17158.2 + 19593.3i 0.610892 + 0.697590i
\(925\) 19412.5i 0.690033i
\(926\) −16539.4 + 10388.1i −0.586954 + 0.368654i
\(927\) 19269.4 + 16511.5i 0.682729 + 0.585015i
\(928\) 25220.0 + 8851.44i 0.892120 + 0.313107i
\(929\) 3499.09 0.123575 0.0617877 0.998089i \(-0.480320\pi\)
0.0617877 + 0.998089i \(0.480320\pi\)
\(930\) 5374.91 8224.95i 0.189516 0.290007i
\(931\) −3616.27 + 37437.2i −0.127302 + 1.31789i
\(932\) 32059.2 + 15453.7i 1.12675 + 0.543138i
\(933\) −22234.6 + 10228.5i −0.780201 + 0.358914i
\(934\) −13729.2 21859.0i −0.480977 0.765789i
\(935\) 2190.21i 0.0766070i
\(936\) 20733.7 + 14088.6i 0.724041 + 0.491988i
\(937\) 5794.61i 0.202029i 0.994885 + 0.101015i \(0.0322089\pi\)
−0.994885 + 0.101015i \(0.967791\pi\)
\(938\) 26827.9 + 7503.92i 0.933862 + 0.261206i
\(939\) −13044.6 28356.2i −0.453349 0.985483i
\(940\) −6028.17 2905.80i −0.209167 0.100826i
\(941\) 20620.2i 0.714345i 0.934038 + 0.357173i \(0.116259\pi\)
−0.934038 + 0.357173i \(0.883741\pi\)
\(942\) 307.267 470.194i 0.0106277 0.0162630i
\(943\) 20581.4i 0.710734i
\(944\) 10120.0 8057.98i 0.348916 0.277823i
\(945\) −5304.41 + 2627.66i −0.182595 + 0.0904526i
\(946\) −3619.01 5762.02i −0.124381 0.198033i
\(947\) 2984.78 0.102421 0.0512103 0.998688i \(-0.483692\pi\)
0.0512103 + 0.998688i \(0.483692\pi\)
\(948\) 28.5655 1585.67i 0.000978654 0.0543252i
\(949\) 20936.7i 0.716159i
\(950\) −31467.1 + 19763.8i −1.07466 + 0.674972i
\(951\) −40067.4 + 18432.1i −1.36622 + 0.628499i
\(952\) −8938.28 7869.73i −0.304298 0.267920i
\(953\) 1650.21i 0.0560920i 0.999607 + 0.0280460i \(0.00892849\pi\)
−0.999607 + 0.0280460i \(0.991072\pi\)
\(954\) 5708.16 38375.5i 0.193720 1.30236i
\(955\) −5219.17 −0.176846
\(956\) −3424.13 1650.56i −0.115841 0.0558398i
\(957\) −23579.6 + 10847.3i −0.796467 + 0.366397i
\(958\) 42291.9 26562.7i 1.42629 0.895827i
\(959\) 2512.16 + 2766.51i 0.0845899 + 0.0931547i
\(960\) −3689.44 4808.81i −0.124038 0.161670i
\(961\) −56319.3 −1.89048
\(962\) 10001.3 + 15923.5i 0.335191 + 0.533676i
\(963\) −35988.1 + 41999.2i −1.20426 + 1.40540i
\(964\) −52686.4 25396.8i −1.76028 0.848523i
\(965\) 7175.25i 0.239357i
\(966\) 38413.8 6137.18i 1.27944 0.204410i
\(967\) 19631.7 0.652858 0.326429 0.945222i \(-0.394155\pi\)
0.326429 + 0.945222i \(0.394155\pi\)
\(968\) 470.327 + 4195.50i 0.0156166 + 0.139306i
\(969\) −14710.2 + 6767.11i −0.487678 + 0.224346i
\(970\) 728.334 457.452i 0.0241087 0.0151422i
\(971\) 2477.59i 0.0818841i −0.999162 0.0409421i \(-0.986964\pi\)
0.999162 0.0409421i \(-0.0130359\pi\)
\(972\) 30024.8 4103.76i 0.990788 0.135420i
\(973\) −4242.35 + 3852.31i −0.139778 + 0.126926i
\(974\) −22915.1 + 14392.5i −0.753848 + 0.473477i
\(975\) 23206.0 10675.4i 0.762244 0.350653i
\(976\) −14500.7 18211.3i −0.475569 0.597264i
\(977\) 27876.8i 0.912853i 0.889761 + 0.456427i \(0.150871\pi\)
−0.889761 + 0.456427i \(0.849129\pi\)
\(978\) 35530.3 + 23218.7i 1.16169 + 0.759153i
\(979\) 55430.2 1.80956
\(980\) −3243.39 + 5344.27i −0.105721 + 0.174201i
\(981\) 4896.67 + 4195.84i 0.159367 + 0.136558i
\(982\) −17148.6 + 10770.7i −0.557263 + 0.350006i
\(983\) −55169.7 −1.79007 −0.895035 0.445996i \(-0.852850\pi\)
−0.895035 + 0.445996i \(0.852850\pi\)
\(984\) −8745.89 14498.2i −0.283342 0.469701i
\(985\) 947.648i 0.0306544i
\(986\) 10050.3 6312.38i 0.324611 0.203882i
\(987\) 13837.4 32512.1i 0.446250 1.04850i
\(988\) 15629.3 32423.4i 0.503273 1.04405i
\(989\) −10163.2 −0.326765
\(990\) 5821.67 + 865.943i 0.186894 + 0.0277995i
\(991\) −24768.7 −0.793949 −0.396975 0.917830i \(-0.629940\pi\)
−0.396975 + 0.917830i \(0.629940\pi\)
\(992\) −17591.3 + 50122.0i −0.563027 + 1.60421i
\(993\) 23833.3 + 51808.4i 0.761659 + 1.65568i
\(994\) −40191.4 11241.7i −1.28249 0.358719i
\(995\) −2739.00 −0.0872683
\(996\) 40478.2 + 729.204i 1.28775 + 0.0231985i
\(997\) −3203.48 −0.101760 −0.0508802 0.998705i \(-0.516203\pi\)
−0.0508802 + 0.998705i \(0.516203\pi\)
\(998\) 26806.3 + 42679.8i 0.850240 + 1.35371i
\(999\) 21863.5 + 6223.34i 0.692421 + 0.197095i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.65 yes 80
3.2 odd 2 inner 168.4.i.c.125.15 yes 80
4.3 odd 2 672.4.i.c.209.65 80
7.6 odd 2 inner 168.4.i.c.125.66 yes 80
8.3 odd 2 672.4.i.c.209.16 80
8.5 even 2 inner 168.4.i.c.125.14 yes 80
12.11 even 2 672.4.i.c.209.68 80
21.20 even 2 inner 168.4.i.c.125.16 yes 80
24.5 odd 2 inner 168.4.i.c.125.68 yes 80
24.11 even 2 672.4.i.c.209.13 80
28.27 even 2 672.4.i.c.209.15 80
56.13 odd 2 inner 168.4.i.c.125.13 80
56.27 even 2 672.4.i.c.209.66 80
84.83 odd 2 672.4.i.c.209.14 80
168.83 odd 2 672.4.i.c.209.67 80
168.125 even 2 inner 168.4.i.c.125.67 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.13 80 56.13 odd 2 inner
168.4.i.c.125.14 yes 80 8.5 even 2 inner
168.4.i.c.125.15 yes 80 3.2 odd 2 inner
168.4.i.c.125.16 yes 80 21.20 even 2 inner
168.4.i.c.125.65 yes 80 1.1 even 1 trivial
168.4.i.c.125.66 yes 80 7.6 odd 2 inner
168.4.i.c.125.67 yes 80 168.125 even 2 inner
168.4.i.c.125.68 yes 80 24.5 odd 2 inner
672.4.i.c.209.13 80 24.11 even 2
672.4.i.c.209.14 80 84.83 odd 2
672.4.i.c.209.15 80 28.27 even 2
672.4.i.c.209.16 80 8.3 odd 2
672.4.i.c.209.65 80 4.3 odd 2
672.4.i.c.209.66 80 56.27 even 2
672.4.i.c.209.67 80 168.83 odd 2
672.4.i.c.209.68 80 12.11 even 2