Properties

Label 168.4.i.c.125.15
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.15
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.39518 + 1.50436i) q^{2} +(-4.72061 - 2.17161i) q^{3} +(3.47378 - 7.20645i) q^{4} +2.27823i q^{5} +(14.5736 - 1.90012i) q^{6} +(-13.7109 + 12.4503i) q^{7} +(2.52080 + 22.4866i) q^{8} +(17.5682 + 20.5026i) q^{9} +(-3.42729 - 5.45677i) q^{10} +33.8293 q^{11} +(-32.0479 + 26.4751i) q^{12} -41.0309 q^{13} +(14.1103 - 50.4470i) q^{14} +(4.94743 - 10.7546i) q^{15} +(-39.8658 - 50.0672i) q^{16} +28.4181 q^{17} +(-72.9225 - 22.6785i) q^{18} -109.654 q^{19} +(16.4180 + 7.91406i) q^{20} +(91.7611 - 28.9983i) q^{21} +(-81.0273 + 50.8916i) q^{22} -142.918i q^{23} +(36.9323 - 111.624i) q^{24} +119.810 q^{25} +(98.2764 - 61.7254i) q^{26} +(-38.4090 - 134.936i) q^{27} +(42.0940 + 142.057i) q^{28} +147.654 q^{29} +(4.32890 + 33.2020i) q^{30} -293.446i q^{31} +(170.805 + 59.9472i) q^{32} +(-159.695 - 73.4640i) q^{33} +(-68.0665 + 42.7512i) q^{34} +(-28.3647 - 31.2366i) q^{35} +(208.779 - 55.3830i) q^{36} -162.028i q^{37} +(262.642 - 164.960i) q^{38} +(193.691 + 89.1031i) q^{39} +(-51.2296 + 5.74297i) q^{40} +144.009 q^{41} +(-176.160 + 207.498i) q^{42} +71.1121i q^{43} +(117.515 - 243.789i) q^{44} +(-46.7097 + 40.0245i) q^{45} +(215.000 + 342.314i) q^{46} -367.170 q^{47} +(79.4642 + 322.920i) q^{48} +(32.9788 - 341.411i) q^{49} +(-286.966 + 180.237i) q^{50} +(-134.151 - 61.7130i) q^{51} +(-142.532 + 295.687i) q^{52} -508.040 q^{53} +(294.989 + 265.415i) q^{54} +77.0710i q^{55} +(-314.528 - 276.927i) q^{56} +(517.635 + 238.127i) q^{57} +(-353.658 + 222.125i) q^{58} -202.128i q^{59} +(-60.3164 - 73.0125i) q^{60} +363.737 q^{61} +(441.449 + 702.855i) q^{62} +(-496.141 - 62.3797i) q^{63} +(-499.291 + 113.368i) q^{64} -93.4779i q^{65} +(493.014 - 64.2796i) q^{66} -531.804i q^{67} +(98.7182 - 204.794i) q^{68} +(-310.362 + 674.659i) q^{69} +(114.930 + 32.1465i) q^{70} -796.705i q^{71} +(-416.747 + 446.732i) q^{72} -510.267i q^{73} +(243.749 + 388.087i) q^{74} +(-565.574 - 260.180i) q^{75} +(-380.915 + 790.219i) q^{76} +(-463.831 + 421.186i) q^{77} +(-597.968 + 77.9635i) q^{78} -38.1516 q^{79} +(114.065 - 90.8234i) q^{80} +(-111.715 + 720.389i) q^{81} +(-344.927 + 216.641i) q^{82} +973.913i q^{83} +(109.783 - 762.005i) q^{84} +64.7430i q^{85} +(-106.978 - 170.326i) q^{86} +(-697.016 - 320.647i) q^{87} +(85.2770 + 760.705i) q^{88} +1638.53 q^{89} +(51.6668 - 166.134i) q^{90} +(562.572 - 510.848i) q^{91} +(-1029.93 - 496.464i) q^{92} +(-637.249 + 1385.24i) q^{93} +(879.438 - 552.357i) q^{94} -249.818i q^{95} +(-676.121 - 653.909i) q^{96} +133.473i q^{97} +(434.616 + 867.353i) q^{98} +(594.321 + 693.589i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.39518 + 1.50436i −0.846824 + 0.531873i
\(3\) −4.72061 2.17161i −0.908481 0.417926i
\(4\) 3.47378 7.20645i 0.434222 0.900806i
\(5\) 2.27823i 0.203771i 0.994796 + 0.101886i \(0.0324876\pi\)
−0.994796 + 0.101886i \(0.967512\pi\)
\(6\) 14.5736 1.90012i 0.991607 0.129286i
\(7\) −13.7109 + 12.4503i −0.740320 + 0.672254i
\(8\) 2.52080 + 22.4866i 0.111405 + 0.993775i
\(9\) 17.5682 + 20.5026i 0.650675 + 0.759356i
\(10\) −3.42729 5.45677i −0.108380 0.172558i
\(11\) 33.8293 0.927265 0.463633 0.886028i \(-0.346546\pi\)
0.463633 + 0.886028i \(0.346546\pi\)
\(12\) −32.0479 + 26.4751i −0.770953 + 0.636892i
\(13\) −41.0309 −0.875379 −0.437689 0.899126i \(-0.644203\pi\)
−0.437689 + 0.899126i \(0.644203\pi\)
\(14\) 14.1103 50.4470i 0.269367 0.963038i
\(15\) 4.94743 10.7546i 0.0851614 0.185122i
\(16\) −39.8658 50.0672i −0.622903 0.782299i
\(17\) 28.4181 0.405436 0.202718 0.979237i \(-0.435023\pi\)
0.202718 + 0.979237i \(0.435023\pi\)
\(18\) −72.9225 22.6785i −0.954888 0.296965i
\(19\) −109.654 −1.32402 −0.662012 0.749493i \(-0.730297\pi\)
−0.662012 + 0.749493i \(0.730297\pi\)
\(20\) 16.4180 + 7.91406i 0.183558 + 0.0884819i
\(21\) 91.7611 28.9983i 0.953520 0.301331i
\(22\) −81.0273 + 50.8916i −0.785231 + 0.493188i
\(23\) 142.918i 1.29567i −0.761780 0.647835i \(-0.775674\pi\)
0.761780 0.647835i \(-0.224326\pi\)
\(24\) 36.9323 111.624i 0.314116 0.949385i
\(25\) 119.810 0.958477
\(26\) 98.2764 61.7254i 0.741292 0.465591i
\(27\) −38.4090 134.936i −0.273771 0.961795i
\(28\) 42.0940 + 142.057i 0.284107 + 0.958792i
\(29\) 147.654 0.945471 0.472735 0.881204i \(-0.343267\pi\)
0.472735 + 0.881204i \(0.343267\pi\)
\(30\) 4.32890 + 33.2020i 0.0263449 + 0.202061i
\(31\) 293.446i 1.70014i −0.526669 0.850071i \(-0.676559\pi\)
0.526669 0.850071i \(-0.323441\pi\)
\(32\) 170.805 + 59.9472i 0.943573 + 0.331165i
\(33\) −159.695 73.4640i −0.842403 0.387529i
\(34\) −68.0665 + 42.7512i −0.343333 + 0.215640i
\(35\) −28.3647 31.2366i −0.136986 0.150856i
\(36\) 208.779 55.3830i 0.966570 0.256403i
\(37\) 162.028i 0.719926i −0.932967 0.359963i \(-0.882789\pi\)
0.932967 0.359963i \(-0.117211\pi\)
\(38\) 262.642 164.960i 1.12122 0.704213i
\(39\) 193.691 + 89.1031i 0.795265 + 0.365844i
\(40\) −51.2296 + 5.74297i −0.202503 + 0.0227011i
\(41\) 144.009 0.548545 0.274273 0.961652i \(-0.411563\pi\)
0.274273 + 0.961652i \(0.411563\pi\)
\(42\) −176.160 + 207.498i −0.647194 + 0.762326i
\(43\) 71.1121i 0.252197i 0.992018 + 0.126099i \(0.0402456\pi\)
−0.992018 + 0.126099i \(0.959754\pi\)
\(44\) 117.515 243.789i 0.402639 0.835286i
\(45\) −46.7097 + 40.0245i −0.154735 + 0.132589i
\(46\) 215.000 + 342.314i 0.689132 + 1.09721i
\(47\) −367.170 −1.13951 −0.569757 0.821813i \(-0.692963\pi\)
−0.569757 + 0.821813i \(0.692963\pi\)
\(48\) 79.4642 + 322.920i 0.238952 + 0.971031i
\(49\) 32.9788 341.411i 0.0961480 0.995367i
\(50\) −286.966 + 180.237i −0.811662 + 0.509788i
\(51\) −134.151 61.7130i −0.368331 0.169442i
\(52\) −142.532 + 295.687i −0.380109 + 0.788547i
\(53\) −508.040 −1.31669 −0.658345 0.752716i \(-0.728743\pi\)
−0.658345 + 0.752716i \(0.728743\pi\)
\(54\) 294.989 + 265.415i 0.743389 + 0.668860i
\(55\) 77.0710i 0.188950i
\(56\) −314.528 276.927i −0.750545 0.660819i
\(57\) 517.635 + 238.127i 1.20285 + 0.553345i
\(58\) −353.658 + 222.125i −0.800647 + 0.502870i
\(59\) 202.128i 0.446013i −0.974817 0.223007i \(-0.928413\pi\)
0.974817 0.223007i \(-0.0715872\pi\)
\(60\) −60.3164 73.0125i −0.129780 0.157098i
\(61\) 363.737 0.763472 0.381736 0.924271i \(-0.375326\pi\)
0.381736 + 0.924271i \(0.375326\pi\)
\(62\) 441.449 + 702.855i 0.904260 + 1.43972i
\(63\) −496.141 62.3797i −0.992189 0.124748i
\(64\) −499.291 + 113.368i −0.975178 + 0.221423i
\(65\) 93.4779i 0.178377i
\(66\) 493.014 64.2796i 0.919483 0.119883i
\(67\) 531.804i 0.969705i −0.874596 0.484852i \(-0.838873\pi\)
0.874596 0.484852i \(-0.161127\pi\)
\(68\) 98.7182 204.794i 0.176049 0.365219i
\(69\) −310.362 + 674.659i −0.541495 + 1.17709i
\(70\) 114.930 + 32.1465i 0.196239 + 0.0548892i
\(71\) 796.705i 1.33171i −0.746081 0.665855i \(-0.768067\pi\)
0.746081 0.665855i \(-0.231933\pi\)
\(72\) −416.747 + 446.732i −0.682141 + 0.731221i
\(73\) 510.267i 0.818114i −0.912509 0.409057i \(-0.865858\pi\)
0.912509 0.409057i \(-0.134142\pi\)
\(74\) 243.749 + 388.087i 0.382909 + 0.609651i
\(75\) −565.574 260.180i −0.870758 0.400573i
\(76\) −380.915 + 790.219i −0.574920 + 1.19269i
\(77\) −463.831 + 421.186i −0.686473 + 0.623358i
\(78\) −597.968 + 77.9635i −0.868032 + 0.113175i
\(79\) −38.1516 −0.0543340 −0.0271670 0.999631i \(-0.508649\pi\)
−0.0271670 + 0.999631i \(0.508649\pi\)
\(80\) 114.065 90.8234i 0.159410 0.126930i
\(81\) −111.715 + 720.389i −0.153244 + 0.988188i
\(82\) −344.927 + 216.641i −0.464521 + 0.291757i
\(83\) 973.913i 1.28796i 0.765042 + 0.643981i \(0.222718\pi\)
−0.765042 + 0.643981i \(0.777282\pi\)
\(84\) 109.783 762.005i 0.142598 0.989781i
\(85\) 64.7430i 0.0826161i
\(86\) −106.978 170.326i −0.134137 0.213567i
\(87\) −697.016 320.647i −0.858942 0.395137i
\(88\) 85.2770 + 760.705i 0.103302 + 0.921493i
\(89\) 1638.53 1.95150 0.975750 0.218889i \(-0.0702433\pi\)
0.975750 + 0.218889i \(0.0702433\pi\)
\(90\) 51.6668 166.134i 0.0605128 0.194579i
\(91\) 562.572 510.848i 0.648061 0.588477i
\(92\) −1029.93 496.464i −1.16715 0.562609i
\(93\) −637.249 + 1385.24i −0.710534 + 1.54455i
\(94\) 879.438 552.357i 0.964969 0.606077i
\(95\) 249.818i 0.269798i
\(96\) −676.121 653.909i −0.718815 0.695201i
\(97\) 133.473i 0.139713i 0.997557 + 0.0698565i \(0.0222541\pi\)
−0.997557 + 0.0698565i \(0.977746\pi\)
\(98\) 434.616 + 867.353i 0.447989 + 0.894039i
\(99\) 594.321 + 693.589i 0.603348 + 0.704125i
\(100\) 416.192 863.402i 0.416192 0.863402i
\(101\) 169.167i 0.166661i −0.996522 0.0833306i \(-0.973444\pi\)
0.996522 0.0833306i \(-0.0265557\pi\)
\(102\) 414.154 53.9977i 0.402033 0.0524173i
\(103\) 939.850i 0.899089i 0.893258 + 0.449544i \(0.148414\pi\)
−0.893258 + 0.449544i \(0.851586\pi\)
\(104\) −103.431 922.644i −0.0975215 0.869930i
\(105\) 66.0649 + 209.053i 0.0614026 + 0.194300i
\(106\) 1216.85 764.277i 1.11501 0.700312i
\(107\) 2048.48 1.85078 0.925392 0.379012i \(-0.123736\pi\)
0.925392 + 0.379012i \(0.123736\pi\)
\(108\) −1105.83 191.945i −0.985268 0.171018i
\(109\) 238.831i 0.209871i 0.994479 + 0.104935i \(0.0334635\pi\)
−0.994479 + 0.104935i \(0.966536\pi\)
\(110\) −115.943 184.599i −0.100497 0.160007i
\(111\) −351.862 + 764.871i −0.300876 + 0.654039i
\(112\) 1169.95 + 190.125i 0.987052 + 0.160403i
\(113\) 0.845945i 0.000704246i −1.00000 0.000352123i \(-0.999888\pi\)
1.00000 0.000352123i \(-0.000112084\pi\)
\(114\) −1598.06 + 208.356i −1.31291 + 0.171178i
\(115\) 325.600 0.264020
\(116\) 512.917 1064.06i 0.410544 0.851685i
\(117\) −720.840 841.241i −0.569587 0.664725i
\(118\) 304.074 + 484.132i 0.237223 + 0.377695i
\(119\) −389.639 + 353.815i −0.300152 + 0.272556i
\(120\) 254.306 + 84.1403i 0.193457 + 0.0640077i
\(121\) −186.578 −0.140179
\(122\) −871.216 + 547.194i −0.646527 + 0.406070i
\(123\) −679.808 312.730i −0.498343 0.229252i
\(124\) −2114.70 1019.36i −1.53150 0.738239i
\(125\) 557.733i 0.399081i
\(126\) 1282.19 596.966i 0.906559 0.422079i
\(127\) 46.6406 0.0325881 0.0162940 0.999867i \(-0.494813\pi\)
0.0162940 + 0.999867i \(0.494813\pi\)
\(128\) 1025.34 1022.65i 0.708035 0.706177i
\(129\) 154.428 335.692i 0.105400 0.229117i
\(130\) 140.625 + 223.896i 0.0948739 + 0.151054i
\(131\) 2494.50i 1.66371i −0.554995 0.831854i \(-0.687280\pi\)
0.554995 0.831854i \(-0.312720\pi\)
\(132\) −1084.16 + 895.635i −0.714878 + 0.590568i
\(133\) 1503.46 1365.23i 0.980202 0.890081i
\(134\) 800.027 + 1273.77i 0.515760 + 0.821169i
\(135\) 307.416 87.5046i 0.195986 0.0557866i
\(136\) 71.6365 + 639.026i 0.0451675 + 0.402912i
\(137\) 201.774i 0.125830i 0.998019 + 0.0629151i \(0.0200397\pi\)
−0.998019 + 0.0629151i \(0.979960\pi\)
\(138\) −271.560 2082.83i −0.167513 1.28480i
\(139\) 309.414 0.188807 0.0944034 0.995534i \(-0.469906\pi\)
0.0944034 + 0.995534i \(0.469906\pi\)
\(140\) −323.638 + 95.8998i −0.195374 + 0.0578929i
\(141\) 1733.26 + 797.349i 1.03523 + 0.476233i
\(142\) 1198.53 + 1908.25i 0.708301 + 1.12772i
\(143\) −1388.05 −0.811709
\(144\) 326.137 1696.94i 0.188737 0.982028i
\(145\) 336.390i 0.192660i
\(146\) 767.628 + 1222.18i 0.435133 + 0.692798i
\(147\) −897.091 + 1540.05i −0.503339 + 0.864089i
\(148\) −1167.65 562.850i −0.648514 0.312608i
\(149\) −1207.81 −0.664078 −0.332039 0.943266i \(-0.607737\pi\)
−0.332039 + 0.943266i \(0.607737\pi\)
\(150\) 1746.06 227.652i 0.950433 0.123918i
\(151\) −2555.54 −1.37726 −0.688631 0.725112i \(-0.741788\pi\)
−0.688631 + 0.725112i \(0.741788\pi\)
\(152\) −276.417 2465.75i −0.147503 1.31578i
\(153\) 499.256 + 582.646i 0.263807 + 0.307870i
\(154\) 477.342 1706.59i 0.249775 0.892991i
\(155\) 668.537 0.346440
\(156\) 1314.95 1086.30i 0.674876 0.557522i
\(157\) −38.2182 −0.0194276 −0.00971382 0.999953i \(-0.503092\pi\)
−0.00971382 + 0.999953i \(0.503092\pi\)
\(158\) 91.3799 57.3939i 0.0460114 0.0288988i
\(159\) 2398.25 + 1103.26i 1.19619 + 0.550280i
\(160\) −136.574 + 389.133i −0.0674819 + 0.192273i
\(161\) 1779.37 + 1959.54i 0.871020 + 0.959211i
\(162\) −816.151 1893.52i −0.395820 0.918328i
\(163\) 2887.96i 1.38775i −0.720097 0.693873i \(-0.755903\pi\)
0.720097 0.693873i \(-0.244097\pi\)
\(164\) 500.254 1037.79i 0.238190 0.494133i
\(165\) 167.368 363.822i 0.0789672 0.171657i
\(166\) −1465.12 2332.70i −0.685032 1.09068i
\(167\) 307.719 0.142587 0.0712935 0.997455i \(-0.477287\pi\)
0.0712935 + 0.997455i \(0.477287\pi\)
\(168\) 883.384 + 1990.29i 0.405682 + 0.914014i
\(169\) −513.464 −0.233712
\(170\) −97.3971 155.071i −0.0439413 0.0699613i
\(171\) −1926.43 2248.20i −0.861509 1.00541i
\(172\) 512.465 + 247.027i 0.227181 + 0.109510i
\(173\) 2741.35i 1.20475i −0.798215 0.602373i \(-0.794222\pi\)
0.798215 0.602373i \(-0.205778\pi\)
\(174\) 2151.85 280.559i 0.937535 0.122237i
\(175\) −1642.70 + 1491.67i −0.709580 + 0.644341i
\(176\) −1348.63 1693.74i −0.577596 0.725399i
\(177\) −438.942 + 954.165i −0.186401 + 0.405195i
\(178\) −3924.57 + 2464.94i −1.65258 + 1.03795i
\(179\) 729.734 0.304709 0.152354 0.988326i \(-0.451314\pi\)
0.152354 + 0.988326i \(0.451314\pi\)
\(180\) 126.175 + 475.647i 0.0522475 + 0.196959i
\(181\) 2056.86 0.844671 0.422336 0.906440i \(-0.361210\pi\)
0.422336 + 0.906440i \(0.361210\pi\)
\(182\) −578.958 + 2069.89i −0.235798 + 0.843023i
\(183\) −1717.06 789.895i −0.693600 0.319075i
\(184\) 3213.73 360.268i 1.28761 0.144344i
\(185\) 369.138 0.146700
\(186\) −557.580 4276.56i −0.219805 1.68587i
\(187\) 961.365 0.375946
\(188\) −1275.47 + 2645.99i −0.494802 + 1.02648i
\(189\) 2206.62 + 1371.89i 0.849249 + 0.527993i
\(190\) 375.818 + 598.360i 0.143498 + 0.228471i
\(191\) 2290.89i 0.867868i 0.900945 + 0.433934i \(0.142875\pi\)
−0.900945 + 0.433934i \(0.857125\pi\)
\(192\) 2603.15 + 549.097i 0.978469 + 0.206394i
\(193\) −3149.48 −1.17464 −0.587318 0.809356i \(-0.699816\pi\)
−0.587318 + 0.809356i \(0.699816\pi\)
\(194\) −200.793 319.693i −0.0743096 0.118312i
\(195\) −202.997 + 441.272i −0.0745485 + 0.162052i
\(196\) −2345.80 1423.64i −0.854883 0.518821i
\(197\) −415.958 −0.150435 −0.0752177 0.997167i \(-0.523965\pi\)
−0.0752177 + 0.997167i \(0.523965\pi\)
\(198\) −2466.92 767.196i −0.885435 0.275365i
\(199\) 1202.25i 0.428266i −0.976804 0.214133i \(-0.931307\pi\)
0.976804 0.214133i \(-0.0686927\pi\)
\(200\) 302.017 + 2694.11i 0.106779 + 0.952511i
\(201\) −1154.87 + 2510.44i −0.405265 + 0.880958i
\(202\) 254.489 + 405.186i 0.0886426 + 0.141133i
\(203\) −2024.47 + 1838.34i −0.699951 + 0.635597i
\(204\) −910.741 + 752.373i −0.312572 + 0.258219i
\(205\) 328.085i 0.111778i
\(206\) −1413.88 2251.11i −0.478201 0.761370i
\(207\) 2930.19 2510.81i 0.983876 0.843061i
\(208\) 1635.73 + 2054.30i 0.545276 + 0.684808i
\(209\) −3709.53 −1.22772
\(210\) −472.729 401.334i −0.155340 0.131879i
\(211\) 4107.87i 1.34027i 0.742239 + 0.670135i \(0.233764\pi\)
−0.742239 + 0.670135i \(0.766236\pi\)
\(212\) −1764.82 + 3661.16i −0.571736 + 1.18608i
\(213\) −1730.13 + 3760.93i −0.556557 + 1.20983i
\(214\) −4906.47 + 3081.66i −1.56729 + 0.984382i
\(215\) −162.010 −0.0513906
\(216\) 2937.43 1203.83i 0.925308 0.379215i
\(217\) 3653.49 + 4023.41i 1.14293 + 1.25865i
\(218\) −359.289 572.044i −0.111624 0.177723i
\(219\) −1108.10 + 2408.77i −0.341911 + 0.743240i
\(220\) 555.408 + 267.727i 0.170207 + 0.0820462i
\(221\) −1166.02 −0.354910
\(222\) −307.872 2361.33i −0.0930767 0.713884i
\(223\) 3886.29i 1.16702i −0.812106 0.583509i \(-0.801679\pi\)
0.812106 0.583509i \(-0.198321\pi\)
\(224\) −3088.26 + 1304.65i −0.921173 + 0.389153i
\(225\) 2104.84 + 2456.41i 0.623657 + 0.727826i
\(226\) 1.27261 + 2.02619i 0.000374570 + 0.000596373i
\(227\) 2560.28i 0.748598i 0.927308 + 0.374299i \(0.122117\pi\)
−0.927308 + 0.374299i \(0.877883\pi\)
\(228\) 3514.20 2903.11i 1.02076 0.843261i
\(229\) −1212.09 −0.349770 −0.174885 0.984589i \(-0.555955\pi\)
−0.174885 + 0.984589i \(0.555955\pi\)
\(230\) −779.870 + 489.821i −0.223579 + 0.140425i
\(231\) 3104.21 980.993i 0.884166 0.279414i
\(232\) 372.207 + 3320.23i 0.105330 + 0.939585i
\(233\) 4448.69i 1.25083i −0.780292 0.625415i \(-0.784930\pi\)
0.780292 0.625415i \(-0.215070\pi\)
\(234\) 2992.08 + 930.518i 0.835889 + 0.259957i
\(235\) 836.497i 0.232200i
\(236\) −1456.62 702.146i −0.401772 0.193669i
\(237\) 180.099 + 82.8503i 0.0493614 + 0.0227076i
\(238\) 400.988 1433.61i 0.109211 0.390450i
\(239\) 475.148i 0.128597i 0.997931 + 0.0642987i \(0.0204810\pi\)
−0.997931 + 0.0642987i \(0.979519\pi\)
\(240\) −735.687 + 181.038i −0.197868 + 0.0486914i
\(241\) 7311.01i 1.95412i −0.212960 0.977061i \(-0.568310\pi\)
0.212960 0.977061i \(-0.431690\pi\)
\(242\) 446.888 280.682i 0.118707 0.0745574i
\(243\) 2091.77 3158.07i 0.552209 0.833706i
\(244\) 1263.54 2621.25i 0.331516 0.687740i
\(245\) 777.813 + 75.1332i 0.202827 + 0.0195922i
\(246\) 2098.72 273.633i 0.543942 0.0709195i
\(247\) 4499.22 1.15902
\(248\) 6598.58 739.719i 1.68956 0.189404i
\(249\) 2114.96 4597.46i 0.538273 1.17009i
\(250\) −839.034 1335.87i −0.212261 0.337952i
\(251\) 5996.84i 1.50804i 0.656853 + 0.754018i \(0.271887\pi\)
−0.656853 + 0.754018i \(0.728113\pi\)
\(252\) −2173.02 + 3358.72i −0.543203 + 0.839601i
\(253\) 4834.81i 1.20143i
\(254\) −111.713 + 70.1645i −0.0275964 + 0.0173327i
\(255\) 140.597 305.626i 0.0345274 0.0750551i
\(256\) −917.442 + 3991.93i −0.223985 + 0.974593i
\(257\) −2528.53 −0.613719 −0.306859 0.951755i \(-0.599278\pi\)
−0.306859 + 0.951755i \(0.599278\pi\)
\(258\) 135.121 + 1036.36i 0.0326057 + 0.250081i
\(259\) 2017.30 + 2221.56i 0.483974 + 0.532976i
\(260\) −673.644 324.721i −0.160683 0.0774552i
\(261\) 2594.02 + 3027.29i 0.615194 + 0.717949i
\(262\) 3752.64 + 5974.78i 0.884882 + 1.40887i
\(263\) 6792.30i 1.59251i 0.604958 + 0.796257i \(0.293190\pi\)
−0.604958 + 0.796257i \(0.706810\pi\)
\(264\) 1249.39 3776.18i 0.291269 0.880332i
\(265\) 1157.43i 0.268304i
\(266\) −1547.26 + 5531.74i −0.356648 + 1.27508i
\(267\) −7734.84 3558.24i −1.77290 0.815583i
\(268\) −3832.42 1847.37i −0.873516 0.421067i
\(269\) 2766.06i 0.626950i −0.949597 0.313475i \(-0.898507\pi\)
0.949597 0.313475i \(-0.101493\pi\)
\(270\) −604.677 + 672.054i −0.136294 + 0.151481i
\(271\) 923.677i 0.207046i −0.994627 0.103523i \(-0.966989\pi\)
0.994627 0.103523i \(-0.0330115\pi\)
\(272\) −1132.91 1422.81i −0.252547 0.317172i
\(273\) −3765.04 + 1189.83i −0.834691 + 0.263779i
\(274\) −303.542 483.286i −0.0669257 0.106556i
\(275\) 4053.08 0.888763
\(276\) 3783.77 + 4580.22i 0.825203 + 0.998901i
\(277\) 3713.69i 0.805537i 0.915302 + 0.402768i \(0.131952\pi\)
−0.915302 + 0.402768i \(0.868048\pi\)
\(278\) −741.102 + 465.472i −0.159886 + 0.100421i
\(279\) 6016.40 5155.32i 1.29101 1.10624i
\(280\) 630.903 716.567i 0.134656 0.152939i
\(281\) 4766.56i 1.01192i −0.862557 0.505960i \(-0.831138\pi\)
0.862557 0.505960i \(-0.168862\pi\)
\(282\) −5350.98 + 697.665i −1.12995 + 0.147324i
\(283\) −8241.05 −1.73102 −0.865512 0.500888i \(-0.833007\pi\)
−0.865512 + 0.500888i \(0.833007\pi\)
\(284\) −5741.41 2767.57i −1.19961 0.578258i
\(285\) −542.507 + 1179.29i −0.112756 + 0.245106i
\(286\) 3324.62 2088.13i 0.687374 0.431726i
\(287\) −1974.49 + 1792.95i −0.406099 + 0.368762i
\(288\) 1771.66 + 4555.12i 0.362487 + 0.931989i
\(289\) −4105.41 −0.835622
\(290\) −506.053 805.714i −0.102470 0.163149i
\(291\) 289.852 630.075i 0.0583898 0.126927i
\(292\) −3677.22 1772.55i −0.736961 0.355243i
\(293\) 4955.76i 0.988118i −0.869428 0.494059i \(-0.835513\pi\)
0.869428 0.494059i \(-0.164487\pi\)
\(294\) −168.101 5038.25i −0.0333464 0.999444i
\(295\) 460.494 0.0908847
\(296\) 3643.46 408.441i 0.715445 0.0802033i
\(297\) −1299.35 4564.79i −0.253858 0.891839i
\(298\) 2892.92 1816.99i 0.562357 0.353205i
\(299\) 5864.05i 1.13420i
\(300\) −3839.65 + 3171.97i −0.738941 + 0.610447i
\(301\) −885.369 975.012i −0.169541 0.186707i
\(302\) 6120.97 3844.46i 1.16630 0.732529i
\(303\) −367.365 + 798.572i −0.0696521 + 0.151408i
\(304\) 4371.46 + 5490.09i 0.824738 + 1.03578i
\(305\) 828.678i 0.155574i
\(306\) −2072.32 644.479i −0.387146 0.120400i
\(307\) 6152.25 1.14374 0.571869 0.820345i \(-0.306219\pi\)
0.571869 + 0.820345i \(0.306219\pi\)
\(308\) 1424.01 + 4805.68i 0.263443 + 0.889055i
\(309\) 2040.99 4436.66i 0.375753 0.816805i
\(310\) −1601.27 + 1005.72i −0.293374 + 0.184262i
\(311\) −4710.11 −0.858798 −0.429399 0.903115i \(-0.641275\pi\)
−0.429399 + 0.903115i \(0.641275\pi\)
\(312\) −1515.37 + 4580.05i −0.274970 + 0.831071i
\(313\) 6006.89i 1.08476i 0.840134 + 0.542379i \(0.182476\pi\)
−0.840134 + 0.542379i \(0.817524\pi\)
\(314\) 91.5394 57.4940i 0.0164518 0.0103330i
\(315\) 142.115 1130.32i 0.0254200 0.202179i
\(316\) −132.530 + 274.937i −0.0235930 + 0.0489444i
\(317\) −8487.77 −1.50385 −0.751926 0.659248i \(-0.770875\pi\)
−0.751926 + 0.659248i \(0.770875\pi\)
\(318\) −7403.96 + 965.334i −1.30564 + 0.170230i
\(319\) 4995.03 0.876702
\(320\) −258.280 1137.50i −0.0451196 0.198713i
\(321\) −9670.06 4448.49i −1.68140 0.773491i
\(322\) −7209.78 2016.61i −1.24778 0.349011i
\(323\) −3116.17 −0.536806
\(324\) 4803.38 + 3307.54i 0.823624 + 0.567136i
\(325\) −4915.90 −0.839031
\(326\) 4344.55 + 6917.19i 0.738105 + 1.17518i
\(327\) 518.648 1127.43i 0.0877104 0.190663i
\(328\) 363.017 + 3238.26i 0.0611106 + 0.545131i
\(329\) 5034.23 4571.38i 0.843606 0.766044i
\(330\) 146.444 + 1123.20i 0.0244287 + 0.187364i
\(331\) 10975.0i 1.82247i −0.411885 0.911236i \(-0.635130\pi\)
0.411885 0.911236i \(-0.364870\pi\)
\(332\) 7018.45 + 3383.15i 1.16020 + 0.559261i
\(333\) 3322.00 2846.55i 0.546680 0.468438i
\(334\) −737.043 + 462.922i −0.120746 + 0.0758382i
\(335\) 1211.57 0.197598
\(336\) −5109.99 3438.18i −0.829681 0.558238i
\(337\) 1629.69 0.263427 0.131714 0.991288i \(-0.457952\pi\)
0.131714 + 0.991288i \(0.457952\pi\)
\(338\) 1229.84 772.438i 0.197913 0.124305i
\(339\) −1.83706 + 3.99337i −0.000294323 + 0.000639794i
\(340\) 466.567 + 224.903i 0.0744211 + 0.0358737i
\(341\) 9927.06i 1.57648i
\(342\) 7996.27 + 2486.79i 1.26430 + 0.393188i
\(343\) 3798.51 + 5091.65i 0.597960 + 0.801526i
\(344\) −1599.07 + 179.260i −0.250628 + 0.0280960i
\(345\) −1537.03 707.076i −0.239857 0.110341i
\(346\) 4123.99 + 6566.03i 0.640772 + 1.02021i
\(347\) 3090.79 0.478162 0.239081 0.971000i \(-0.423154\pi\)
0.239081 + 0.971000i \(0.423154\pi\)
\(348\) −4732.00 + 3909.15i −0.728913 + 0.602163i
\(349\) −8418.13 −1.29115 −0.645576 0.763696i \(-0.723383\pi\)
−0.645576 + 0.763696i \(0.723383\pi\)
\(350\) 1690.55 6044.04i 0.258182 0.923050i
\(351\) 1575.96 + 5536.55i 0.239653 + 0.841935i
\(352\) 5778.21 + 2027.97i 0.874942 + 0.307078i
\(353\) −694.292 −0.104684 −0.0523420 0.998629i \(-0.516669\pi\)
−0.0523420 + 0.998629i \(0.516669\pi\)
\(354\) −384.066 2945.73i −0.0576635 0.442270i
\(355\) 1815.08 0.271364
\(356\) 5691.87 11808.0i 0.847384 1.75792i
\(357\) 2607.68 824.077i 0.386591 0.122170i
\(358\) −1747.84 + 1097.79i −0.258035 + 0.162066i
\(359\) 3336.44i 0.490503i 0.969460 + 0.245251i \(0.0788705\pi\)
−0.969460 + 0.245251i \(0.921129\pi\)
\(360\) −1017.76 949.447i −0.149002 0.139001i
\(361\) 5165.10 0.753040
\(362\) −4926.56 + 3094.27i −0.715288 + 0.449258i
\(363\) 880.762 + 405.175i 0.127350 + 0.0585845i
\(364\) −1727.15 5828.71i −0.248702 0.839307i
\(365\) 1162.51 0.166708
\(366\) 5300.96 691.143i 0.757064 0.0987066i
\(367\) 8875.98i 1.26246i −0.775596 0.631229i \(-0.782551\pi\)
0.775596 0.631229i \(-0.217449\pi\)
\(368\) −7155.49 + 5697.53i −1.01360 + 0.807077i
\(369\) 2529.98 + 2952.55i 0.356925 + 0.416541i
\(370\) −884.151 + 555.318i −0.124229 + 0.0780259i
\(371\) 6965.69 6325.26i 0.974773 0.885151i
\(372\) 7769.00 + 9404.32i 1.08281 + 1.31073i
\(373\) 1584.56i 0.219960i −0.993934 0.109980i \(-0.964921\pi\)
0.993934 0.109980i \(-0.0350788\pi\)
\(374\) −2302.64 + 1446.24i −0.318360 + 0.199956i
\(375\) 1211.18 2632.84i 0.166787 0.362558i
\(376\) −925.563 8256.38i −0.126947 1.13242i
\(377\) −6058.37 −0.827645
\(378\) −7349.08 + 33.6292i −0.999990 + 0.00457592i
\(379\) 1454.58i 0.197142i 0.995130 + 0.0985711i \(0.0314272\pi\)
−0.995130 + 0.0985711i \(0.968573\pi\)
\(380\) −1800.30 867.812i −0.243036 0.117152i
\(381\) −220.172 101.285i −0.0296056 0.0136194i
\(382\) −3446.33 5487.09i −0.461595 0.734931i
\(383\) 14348.5 1.91429 0.957147 0.289603i \(-0.0935233\pi\)
0.957147 + 0.289603i \(0.0935233\pi\)
\(384\) −7061.05 + 2600.90i −0.938367 + 0.345642i
\(385\) −959.559 1056.71i −0.127022 0.139883i
\(386\) 7543.58 4737.97i 0.994710 0.624757i
\(387\) −1457.98 + 1249.31i −0.191508 + 0.164099i
\(388\) 961.869 + 463.656i 0.125854 + 0.0606665i
\(389\) 2531.67 0.329977 0.164988 0.986296i \(-0.447241\pi\)
0.164988 + 0.986296i \(0.447241\pi\)
\(390\) −177.619 1362.31i −0.0230617 0.176880i
\(391\) 4061.46i 0.525311i
\(392\) 7760.29 119.051i 0.999882 0.0153393i
\(393\) −5417.09 + 11775.6i −0.695307 + 1.51145i
\(394\) 996.294 625.752i 0.127392 0.0800126i
\(395\) 86.9181i 0.0110717i
\(396\) 7062.85 1873.57i 0.896267 0.237753i
\(397\) 6962.76 0.880229 0.440115 0.897942i \(-0.354938\pi\)
0.440115 + 0.897942i \(0.354938\pi\)
\(398\) 1808.62 + 2879.60i 0.227783 + 0.362666i
\(399\) −10062.0 + 3179.79i −1.26248 + 0.398969i
\(400\) −4776.30 5998.53i −0.597038 0.749816i
\(401\) 6420.79i 0.799598i −0.916603 0.399799i \(-0.869080\pi\)
0.916603 0.399799i \(-0.130920\pi\)
\(402\) −1010.49 7750.30i −0.125370 0.961566i
\(403\) 12040.3i 1.48827i
\(404\) −1219.10 587.649i −0.150129 0.0723679i
\(405\) −1641.21 254.512i −0.201364 0.0312267i
\(406\) 2083.44 7448.70i 0.254678 0.910524i
\(407\) 5481.30i 0.667563i
\(408\) 1049.55 3172.15i 0.127354 0.384914i
\(409\) 650.008i 0.0785840i −0.999228 0.0392920i \(-0.987490\pi\)
0.999228 0.0392920i \(-0.0125102\pi\)
\(410\) −493.559 785.822i −0.0594516 0.0946561i
\(411\) 438.175 952.497i 0.0525878 0.114314i
\(412\) 6772.98 + 3264.83i 0.809904 + 0.390404i
\(413\) 2516.56 + 2771.36i 0.299834 + 0.330193i
\(414\) −3241.16 + 10421.9i −0.384768 + 1.23722i
\(415\) −2218.80 −0.262449
\(416\) −7008.28 2459.69i −0.825984 0.289895i
\(417\) −1460.62 671.926i −0.171527 0.0789074i
\(418\) 8885.00 5580.49i 1.03966 0.652992i
\(419\) 2741.55i 0.319651i 0.987145 + 0.159825i \(0.0510931\pi\)
−0.987145 + 0.159825i \(0.948907\pi\)
\(420\) 1736.02 + 250.110i 0.201689 + 0.0290575i
\(421\) 5647.52i 0.653784i 0.945062 + 0.326892i \(0.106001\pi\)
−0.945062 + 0.326892i \(0.893999\pi\)
\(422\) −6179.73 9839.08i −0.712854 1.13497i
\(423\) −6450.52 7527.94i −0.741454 0.865298i
\(424\) −1280.67 11424.1i −0.146686 1.30849i
\(425\) 3404.76 0.388601
\(426\) −1513.83 11610.8i −0.172172 1.32053i
\(427\) −4987.17 + 4528.65i −0.565214 + 0.513247i
\(428\) 7115.95 14762.2i 0.803651 1.66720i
\(429\) 6552.42 + 3014.30i 0.737422 + 0.339234i
\(430\) 388.043 243.722i 0.0435188 0.0273333i
\(431\) 1269.04i 0.141828i 0.997482 + 0.0709139i \(0.0225915\pi\)
−0.997482 + 0.0709139i \(0.977408\pi\)
\(432\) −5224.66 + 7302.36i −0.581879 + 0.813275i
\(433\) 9965.68i 1.10605i 0.833164 + 0.553026i \(0.186527\pi\)
−0.833164 + 0.553026i \(0.813473\pi\)
\(434\) −14803.4 4140.61i −1.63730 0.457962i
\(435\) 730.507 1587.96i 0.0805176 0.175028i
\(436\) 1721.13 + 829.646i 0.189053 + 0.0911304i
\(437\) 15671.6i 1.71550i
\(438\) −969.567 7436.43i −0.105771 0.811247i
\(439\) 17103.9i 1.85951i 0.368180 + 0.929754i \(0.379981\pi\)
−0.368180 + 0.929754i \(0.620019\pi\)
\(440\) −1733.06 + 194.281i −0.187774 + 0.0210499i
\(441\) 7579.20 5321.83i 0.818399 0.574650i
\(442\) 2792.83 1754.12i 0.300546 0.188767i
\(443\) −6755.15 −0.724485 −0.362242 0.932084i \(-0.617989\pi\)
−0.362242 + 0.932084i \(0.617989\pi\)
\(444\) 4289.71 + 5192.66i 0.458515 + 0.555029i
\(445\) 3732.94i 0.397659i
\(446\) 5846.40 + 9308.36i 0.620706 + 0.988260i
\(447\) 5701.59 + 2622.89i 0.603302 + 0.277536i
\(448\) 5434.27 7770.72i 0.573091 0.819491i
\(449\) 6557.46i 0.689233i −0.938744 0.344617i \(-0.888009\pi\)
0.938744 0.344617i \(-0.111991\pi\)
\(450\) −8736.82 2717.10i −0.915239 0.284634i
\(451\) 4871.71 0.508647
\(452\) −6.09626 2.93862i −0.000634389 0.000305799i
\(453\) 12063.7 + 5549.63i 1.25122 + 0.575594i
\(454\) −3851.59 6132.33i −0.398159 0.633931i
\(455\) 1163.83 + 1281.67i 0.119915 + 0.132056i
\(456\) −4049.79 + 12240.1i −0.415897 + 1.25701i
\(457\) 428.629 0.0438740 0.0219370 0.999759i \(-0.493017\pi\)
0.0219370 + 0.999759i \(0.493017\pi\)
\(458\) 2903.18 1823.43i 0.296193 0.186033i
\(459\) −1091.51 3834.63i −0.110996 0.389946i
\(460\) 1131.06 2346.42i 0.114643 0.237831i
\(461\) 14233.2i 1.43798i −0.695022 0.718988i \(-0.744605\pi\)
0.695022 0.718988i \(-0.255395\pi\)
\(462\) −5959.38 + 7019.52i −0.600120 + 0.706878i
\(463\) −6905.29 −0.693123 −0.346562 0.938027i \(-0.612651\pi\)
−0.346562 + 0.938027i \(0.612651\pi\)
\(464\) −5886.34 7392.61i −0.588936 0.739641i
\(465\) −3155.90 1451.80i −0.314734 0.144786i
\(466\) 6692.45 + 10655.4i 0.665283 + 1.05923i
\(467\) 9126.22i 0.904307i 0.891940 + 0.452153i \(0.149344\pi\)
−0.891940 + 0.452153i \(0.850656\pi\)
\(468\) −8566.40 + 2272.41i −0.846115 + 0.224450i
\(469\) 6621.13 + 7291.52i 0.651888 + 0.717892i
\(470\) 1258.40 + 2003.56i 0.123501 + 0.196633i
\(471\) 180.413 + 82.9949i 0.0176496 + 0.00811933i
\(472\) 4545.16 509.524i 0.443237 0.0496881i
\(473\) 2405.67i 0.233854i
\(474\) −556.006 + 72.4924i −0.0538780 + 0.00702465i
\(475\) −13137.7 −1.26905
\(476\) 1196.23 + 4036.98i 0.115187 + 0.388729i
\(477\) −8925.36 10416.1i −0.856738 0.999837i
\(478\) −714.796 1138.06i −0.0683975 0.108899i
\(479\) −17657.1 −1.68429 −0.842143 0.539254i \(-0.818706\pi\)
−0.842143 + 0.539254i \(0.818706\pi\)
\(480\) 1489.76 1540.36i 0.141662 0.146474i
\(481\) 6648.16i 0.630208i
\(482\) 10998.4 + 17511.2i 1.03934 + 1.65480i
\(483\) −4144.38 13114.3i −0.390426 1.23545i
\(484\) −648.131 + 1344.57i −0.0608688 + 0.126274i
\(485\) −304.083 −0.0284695
\(486\) −259.263 + 10710.9i −0.0241984 + 0.999707i
\(487\) −9567.19 −0.890206 −0.445103 0.895479i \(-0.646833\pi\)
−0.445103 + 0.895479i \(0.646833\pi\)
\(488\) 916.911 + 8179.20i 0.0850545 + 0.758720i
\(489\) −6271.53 + 13632.9i −0.579976 + 1.26074i
\(490\) −1976.03 + 990.156i −0.182179 + 0.0912872i
\(491\) 7159.61 0.658063 0.329031 0.944319i \(-0.393278\pi\)
0.329031 + 0.944319i \(0.393278\pi\)
\(492\) −4615.17 + 3812.64i −0.422903 + 0.349364i
\(493\) 4196.05 0.383327
\(494\) −10776.4 + 6768.47i −0.981488 + 0.616453i
\(495\) −1580.16 + 1354.00i −0.143480 + 0.122945i
\(496\) −14692.0 + 11698.4i −1.33002 + 1.05902i
\(497\) 9919.23 + 10923.6i 0.895248 + 0.985892i
\(498\) 1850.55 + 14193.4i 0.166516 + 1.27715i
\(499\) 17819.0i 1.59858i 0.600947 + 0.799289i \(0.294790\pi\)
−0.600947 + 0.799289i \(0.705210\pi\)
\(500\) 4019.27 + 1937.44i 0.359495 + 0.173290i
\(501\) −1452.62 668.246i −0.129538 0.0595909i
\(502\) −9021.43 14363.5i −0.802084 1.27704i
\(503\) 20477.4 1.81520 0.907599 0.419839i \(-0.137913\pi\)
0.907599 + 0.419839i \(0.137913\pi\)
\(504\) 152.030 11313.8i 0.0134364 0.999910i
\(505\) 385.402 0.0339607
\(506\) 7273.32 + 11580.2i 0.639009 + 1.01740i
\(507\) 2423.86 + 1115.04i 0.212323 + 0.0976742i
\(508\) 162.019 336.113i 0.0141505 0.0293555i
\(509\) 18659.8i 1.62491i 0.583022 + 0.812457i \(0.301870\pi\)
−0.583022 + 0.812457i \(0.698130\pi\)
\(510\) 123.019 + 943.539i 0.0106811 + 0.0819227i
\(511\) 6353.00 + 6996.24i 0.549980 + 0.605666i
\(512\) −3807.88 10941.6i −0.328684 0.944440i
\(513\) 4211.72 + 14796.3i 0.362479 + 1.27344i
\(514\) 6056.30 3803.84i 0.519712 0.326420i
\(515\) −2141.19 −0.183208
\(516\) −1882.70 2278.99i −0.160623 0.194432i
\(517\) −12421.1 −1.05663
\(518\) −8173.84 2286.27i −0.693316 0.193924i
\(519\) −5953.15 + 12940.8i −0.503495 + 1.09449i
\(520\) 2102.00 235.639i 0.177267 0.0198721i
\(521\) 17496.1 1.47125 0.735623 0.677391i \(-0.236890\pi\)
0.735623 + 0.677391i \(0.236890\pi\)
\(522\) −10767.3 3348.56i −0.902819 0.280771i
\(523\) −1593.34 −0.133216 −0.0666079 0.997779i \(-0.521218\pi\)
−0.0666079 + 0.997779i \(0.521218\pi\)
\(524\) −17976.5 8665.34i −1.49868 0.722419i
\(525\) 10993.9 3474.28i 0.913927 0.288819i
\(526\) −10218.1 16268.8i −0.847016 1.34858i
\(527\) 8339.17i 0.689298i
\(528\) 2688.22 + 10924.2i 0.221571 + 0.900404i
\(529\) −8258.51 −0.678763
\(530\) 1741.20 + 2772.26i 0.142704 + 0.227206i
\(531\) 4144.15 3551.03i 0.338683 0.290210i
\(532\) −4615.79 15577.1i −0.376165 1.26946i
\(533\) −5908.80 −0.480185
\(534\) 23879.2 3113.39i 1.93512 0.252302i
\(535\) 4666.91i 0.377136i
\(536\) 11958.4 1340.57i 0.963668 0.108030i
\(537\) −3444.79 1584.70i −0.276822 0.127346i
\(538\) 4161.16 + 6625.20i 0.333458 + 0.530916i
\(539\) 1115.65 11549.7i 0.0891547 0.922969i
\(540\) 437.296 2519.35i 0.0348486 0.200769i
\(541\) 8592.00i 0.682807i −0.939917 0.341404i \(-0.889098\pi\)
0.939917 0.341404i \(-0.110902\pi\)
\(542\) 1389.55 + 2212.37i 0.110122 + 0.175331i
\(543\) −9709.64 4466.70i −0.767368 0.353010i
\(544\) 4853.95 + 1703.59i 0.382558 + 0.134266i
\(545\) −544.113 −0.0427656
\(546\) 7228.02 8513.84i 0.566540 0.667324i
\(547\) 468.066i 0.0365870i −0.999833 0.0182935i \(-0.994177\pi\)
0.999833 0.0182935i \(-0.00582332\pi\)
\(548\) 1454.08 + 700.919i 0.113349 + 0.0546383i
\(549\) 6390.22 + 7457.57i 0.496772 + 0.579747i
\(550\) −9707.85 + 6097.31i −0.752626 + 0.472709i
\(551\) −16190.9 −1.25183
\(552\) −15953.1 5278.29i −1.23009 0.406990i
\(553\) 523.093 475.000i 0.0402246 0.0365263i
\(554\) −5586.74 8894.94i −0.428443 0.682148i
\(555\) −1742.55 801.623i −0.133274 0.0613099i
\(556\) 1074.84 2229.78i 0.0819841 0.170078i
\(557\) −7441.55 −0.566084 −0.283042 0.959108i \(-0.591344\pi\)
−0.283042 + 0.959108i \(0.591344\pi\)
\(558\) −6654.89 + 21398.8i −0.504882 + 1.62345i
\(559\) 2917.79i 0.220768i
\(560\) −433.149 + 2665.41i −0.0326855 + 0.201133i
\(561\) −4538.22 2087.71i −0.341540 0.157118i
\(562\) 7170.65 + 11416.8i 0.538213 + 0.856918i
\(563\) 14562.5i 1.09012i −0.838397 0.545059i \(-0.816507\pi\)
0.838397 0.545059i \(-0.183493\pi\)
\(564\) 11767.0 9720.86i 0.878512 0.725748i
\(565\) 1.92726 0.000143505
\(566\) 19738.8 12397.5i 1.46587 0.920685i
\(567\) −7437.37 11268.1i −0.550864 0.834595i
\(568\) 17915.2 2008.34i 1.32342 0.148359i
\(569\) 19130.4i 1.40947i 0.709470 + 0.704735i \(0.248934\pi\)
−0.709470 + 0.704735i \(0.751066\pi\)
\(570\) −474.683 3640.75i −0.0348812 0.267534i
\(571\) 13903.0i 1.01896i −0.860483 0.509479i \(-0.829838\pi\)
0.860483 0.509479i \(-0.170162\pi\)
\(572\) −4821.76 + 10002.9i −0.352462 + 0.731192i
\(573\) 4974.91 10814.4i 0.362705 0.788441i
\(574\) 2032.00 7264.80i 0.147760 0.528270i
\(575\) 17122.9i 1.24187i
\(576\) −11096.0 8245.09i −0.802663 0.596433i
\(577\) 20711.2i 1.49431i −0.664648 0.747157i \(-0.731418\pi\)
0.664648 0.747157i \(-0.268582\pi\)
\(578\) 9833.20 6176.03i 0.707625 0.444445i
\(579\) 14867.5 + 6839.45i 1.06713 + 0.490911i
\(580\) 2424.18 + 1168.54i 0.173549 + 0.0836571i
\(581\) −12125.5 13353.2i −0.865838 0.953504i
\(582\) 253.615 + 1945.19i 0.0180630 + 0.138540i
\(583\) −17186.6 −1.22092
\(584\) 11474.2 1286.28i 0.813021 0.0911418i
\(585\) 1916.54 1642.24i 0.135452 0.116065i
\(586\) 7455.27 + 11869.9i 0.525553 + 0.836762i
\(587\) 4831.23i 0.339704i 0.985470 + 0.169852i \(0.0543290\pi\)
−0.985470 + 0.169852i \(0.945671\pi\)
\(588\) 7981.99 + 11814.6i 0.559816 + 0.828617i
\(589\) 32177.6i 2.25103i
\(590\) −1102.97 + 692.750i −0.0769633 + 0.0483391i
\(591\) 1963.57 + 903.298i 0.136668 + 0.0628709i
\(592\) −8112.29 + 6459.38i −0.563198 + 0.448444i
\(593\) −637.576 −0.0441519 −0.0220760 0.999756i \(-0.507028\pi\)
−0.0220760 + 0.999756i \(0.507028\pi\)
\(594\) 9979.29 + 8978.81i 0.689319 + 0.620210i
\(595\) −806.072 887.687i −0.0555390 0.0611624i
\(596\) −4195.66 + 8704.02i −0.288357 + 0.598205i
\(597\) −2610.81 + 5675.33i −0.178984 + 0.389072i
\(598\) −8821.67 14045.5i −0.603252 0.960470i
\(599\) 10757.3i 0.733774i −0.930266 0.366887i \(-0.880424\pi\)
0.930266 0.366887i \(-0.119576\pi\)
\(600\) 4424.85 13373.7i 0.301073 0.909964i
\(601\) 594.275i 0.0403344i 0.999797 + 0.0201672i \(0.00641985\pi\)
−0.999797 + 0.0201672i \(0.993580\pi\)
\(602\) 3587.39 + 1003.41i 0.242876 + 0.0679336i
\(603\) 10903.4 9342.86i 0.736351 0.630963i
\(604\) −8877.36 + 18416.3i −0.598038 + 1.24065i
\(605\) 425.068i 0.0285644i
\(606\) −321.437 2465.38i −0.0215470 0.165262i
\(607\) 1028.34i 0.0687628i −0.999409 0.0343814i \(-0.989054\pi\)
0.999409 0.0343814i \(-0.0109461\pi\)
\(608\) −18729.5 6573.48i −1.24931 0.438470i
\(609\) 13548.9 4281.71i 0.901525 0.284900i
\(610\) −1246.63 1984.83i −0.0827454 0.131743i
\(611\) 15065.3 0.997507
\(612\) 5933.11 1573.88i 0.391882 0.103955i
\(613\) 20648.4i 1.36049i −0.732983 0.680247i \(-0.761873\pi\)
0.732983 0.680247i \(-0.238127\pi\)
\(614\) −14735.7 + 9255.22i −0.968544 + 0.608323i
\(615\) 712.472 1548.76i 0.0467149 0.101548i
\(616\) −10640.2 9368.24i −0.695954 0.612755i
\(617\) 8883.01i 0.579605i −0.957086 0.289803i \(-0.906410\pi\)
0.957086 0.289803i \(-0.0935897\pi\)
\(618\) 1785.82 + 13697.0i 0.116240 + 0.891543i
\(619\) −20038.9 −1.30118 −0.650589 0.759430i \(-0.725478\pi\)
−0.650589 + 0.759430i \(0.725478\pi\)
\(620\) 2322.35 4817.78i 0.150432 0.312075i
\(621\) −19284.8 + 5489.33i −1.24617 + 0.354717i
\(622\) 11281.6 7085.73i 0.727251 0.456771i
\(623\) −22465.7 + 20400.2i −1.44473 + 1.31190i
\(624\) −3260.49 13249.7i −0.209173 0.850021i
\(625\) 13705.6 0.877156
\(626\) −9036.55 14387.6i −0.576954 0.918600i
\(627\) 17511.2 + 8055.66i 1.11536 + 0.513097i
\(628\) −132.761 + 275.417i −0.00843591 + 0.0175005i
\(629\) 4604.54i 0.291884i
\(630\) 1360.03 + 2921.12i 0.0860076 + 0.184731i
\(631\) 24780.4 1.56338 0.781689 0.623669i \(-0.214359\pi\)
0.781689 + 0.623669i \(0.214359\pi\)
\(632\) −96.1727 857.898i −0.00605307 0.0539958i
\(633\) 8920.68 19391.6i 0.560134 1.21761i
\(634\) 20329.7 12768.7i 1.27350 0.799858i
\(635\) 106.258i 0.00664051i
\(636\) 16281.6 13450.4i 1.01511 0.838590i
\(637\) −1353.15 + 14008.4i −0.0841659 + 0.871323i
\(638\) −11964.0 + 7514.34i −0.742412 + 0.466294i
\(639\) 16334.5 13996.7i 1.01124 0.866511i
\(640\) 2329.84 + 2335.97i 0.143899 + 0.144277i
\(641\) 17191.8i 1.05934i 0.848205 + 0.529668i \(0.177684\pi\)
−0.848205 + 0.529668i \(0.822316\pi\)
\(642\) 29853.7 3892.34i 1.83525 0.239281i
\(643\) 6251.36 0.383405 0.191703 0.981453i \(-0.438599\pi\)
0.191703 + 0.981453i \(0.438599\pi\)
\(644\) 20302.4 6015.98i 1.24228 0.368110i
\(645\) 764.784 + 351.822i 0.0466874 + 0.0214775i
\(646\) 7463.80 4687.86i 0.454581 0.285513i
\(647\) −24046.1 −1.46113 −0.730565 0.682843i \(-0.760743\pi\)
−0.730565 + 0.682843i \(0.760743\pi\)
\(648\) −16480.7 696.122i −0.999109 0.0422010i
\(649\) 6837.84i 0.413573i
\(650\) 11774.5 7395.30i 0.710512 0.446258i
\(651\) −8509.43 26926.9i −0.512305 1.62112i
\(652\) −20812.0 10032.1i −1.25009 0.602590i
\(653\) 15862.2 0.950593 0.475296 0.879826i \(-0.342341\pi\)
0.475296 + 0.879826i \(0.342341\pi\)
\(654\) 453.807 + 3480.63i 0.0271334 + 0.208109i
\(655\) 5683.05 0.339016
\(656\) −5741.01 7210.10i −0.341690 0.429127i
\(657\) 10461.8 8964.49i 0.621240 0.532326i
\(658\) −5180.87 + 18522.6i −0.306948 + 1.09740i
\(659\) 16357.6 0.966922 0.483461 0.875366i \(-0.339380\pi\)
0.483461 + 0.875366i \(0.339380\pi\)
\(660\) −2040.46 2469.96i −0.120341 0.145672i
\(661\) −1599.08 −0.0940954 −0.0470477 0.998893i \(-0.514981\pi\)
−0.0470477 + 0.998893i \(0.514981\pi\)
\(662\) 16510.3 + 26287.0i 0.969324 + 1.54331i
\(663\) 5504.33 + 2532.14i 0.322429 + 0.148326i
\(664\) −21899.9 + 2455.04i −1.27994 + 0.143485i
\(665\) 3110.32 + 3425.24i 0.181373 + 0.199737i
\(666\) −3674.55 + 11815.5i −0.213793 + 0.687449i
\(667\) 21102.4i 1.22502i
\(668\) 1068.95 2217.56i 0.0619144 0.128443i
\(669\) −8439.50 + 18345.6i −0.487728 + 1.06021i
\(670\) −2901.93 + 1822.65i −0.167331 + 0.105097i
\(671\) 12305.0 0.707941
\(672\) 17411.6 + 547.769i 0.999506 + 0.0314444i
\(673\) 22120.1 1.26696 0.633481 0.773758i \(-0.281625\pi\)
0.633481 + 0.773758i \(0.281625\pi\)
\(674\) −3903.41 + 2451.65i −0.223077 + 0.140110i
\(675\) −4601.77 16166.6i −0.262403 0.921859i
\(676\) −1783.66 + 3700.25i −0.101483 + 0.210529i
\(677\) 1541.71i 0.0875227i 0.999042 + 0.0437613i \(0.0139341\pi\)
−0.999042 + 0.0437613i \(0.986066\pi\)
\(678\) −1.60739 12.3285i −9.10495e−5 0.000698336i
\(679\) −1661.79 1830.04i −0.0939227 0.103432i
\(680\) −1455.85 + 163.204i −0.0821018 + 0.00920383i
\(681\) 5559.93 12086.1i 0.312859 0.680087i
\(682\) 14933.9 + 23777.1i 0.838489 + 1.33500i
\(683\) −25827.4 −1.44694 −0.723468 0.690357i \(-0.757453\pi\)
−0.723468 + 0.690357i \(0.757453\pi\)
\(684\) −22893.6 + 6072.99i −1.27976 + 0.339483i
\(685\) −459.689 −0.0256406
\(686\) −16757.8 6481.09i −0.932677 0.360713i
\(687\) 5721.81 + 2632.19i 0.317759 + 0.146178i
\(688\) 3560.38 2834.94i 0.197294 0.157094i
\(689\) 20845.3 1.15260
\(690\) 4745.16 618.677i 0.261805 0.0341343i
\(691\) 21254.8 1.17015 0.585073 0.810981i \(-0.301066\pi\)
0.585073 + 0.810981i \(0.301066\pi\)
\(692\) −19755.4 9522.84i −1.08524 0.523127i
\(693\) −16784.1 2110.26i −0.920022 0.115674i
\(694\) −7403.00 + 4649.67i −0.404919 + 0.254322i
\(695\) 704.917i 0.0384734i
\(696\) 5453.20 16481.8i 0.296987 0.897615i
\(697\) 4092.45 0.222400
\(698\) 20162.9 12663.9i 1.09338 0.686729i
\(699\) −9660.81 + 21000.5i −0.522755 + 1.13635i
\(700\) 5043.26 + 17019.8i 0.272311 + 0.918981i
\(701\) 12172.2 0.655829 0.327914 0.944707i \(-0.393654\pi\)
0.327914 + 0.944707i \(0.393654\pi\)
\(702\) −12103.7 10890.2i −0.650747 0.585506i
\(703\) 17767.1i 0.953200i
\(704\) −16890.7 + 3835.18i −0.904249 + 0.205318i
\(705\) −1816.55 + 3948.77i −0.0970426 + 0.210950i
\(706\) 1662.96 1044.47i 0.0886489 0.0556786i
\(707\) 2106.19 + 2319.44i 0.112039 + 0.123383i
\(708\) 5351.35 + 6477.77i 0.284062 + 0.343855i
\(709\) 24941.7i 1.32117i −0.750753 0.660583i \(-0.770309\pi\)
0.750753 0.660583i \(-0.229691\pi\)
\(710\) −4347.44 + 2730.54i −0.229798 + 0.144331i
\(711\) −670.256 782.207i −0.0353538 0.0412589i
\(712\) 4130.40 + 36844.8i 0.217407 + 1.93935i
\(713\) −41938.6 −2.20282
\(714\) −5006.14 + 5896.71i −0.262395 + 0.309074i
\(715\) 3162.29i 0.165403i
\(716\) 2534.93 5258.79i 0.132311 0.274484i
\(717\) 1031.84 2242.99i 0.0537442 0.116828i
\(718\) −5019.22 7991.37i −0.260885 0.415370i
\(719\) 9926.70 0.514887 0.257443 0.966293i \(-0.417120\pi\)
0.257443 + 0.966293i \(0.417120\pi\)
\(720\) 3866.03 + 743.016i 0.200109 + 0.0384591i
\(721\) −11701.4 12886.2i −0.604416 0.665613i
\(722\) −12371.3 + 7770.19i −0.637692 + 0.400522i
\(723\) −15876.6 + 34512.4i −0.816679 + 1.77528i
\(724\) 7145.08 14822.7i 0.366775 0.760885i
\(725\) 17690.4 0.906212
\(726\) −2719.11 + 354.520i −0.139003 + 0.0181232i
\(727\) 18517.3i 0.944659i −0.881422 0.472330i \(-0.843413\pi\)
0.881422 0.472330i \(-0.156587\pi\)
\(728\) 12905.4 + 11362.6i 0.657011 + 0.578467i
\(729\) −16732.5 + 10365.5i −0.850099 + 0.526623i
\(730\) −2784.41 + 1748.83i −0.141172 + 0.0886675i
\(731\) 2020.87i 0.102250i
\(732\) −11657.0 + 9629.99i −0.588601 + 0.486249i
\(733\) −2791.96 −0.140687 −0.0703434 0.997523i \(-0.522409\pi\)
−0.0703434 + 0.997523i \(0.522409\pi\)
\(734\) 13352.7 + 21259.6i 0.671468 + 1.06908i
\(735\) −3508.59 2043.78i −0.176076 0.102566i
\(736\) 8567.53 24411.1i 0.429081 1.22256i
\(737\) 17990.6i 0.899174i
\(738\) −10501.5 3265.89i −0.523800 0.162899i
\(739\) 7989.50i 0.397698i −0.980030 0.198849i \(-0.936280\pi\)
0.980030 0.198849i \(-0.0637203\pi\)
\(740\) 1282.30 2660.17i 0.0637005 0.132148i
\(741\) −21239.1 9770.55i −1.05295 0.484386i
\(742\) −7168.59 + 25629.1i −0.354673 + 1.26802i
\(743\) 10189.8i 0.503131i −0.967840 0.251565i \(-0.919055\pi\)
0.967840 0.251565i \(-0.0809454\pi\)
\(744\) −32755.7 10837.6i −1.61409 0.534041i
\(745\) 2751.67i 0.135320i
\(746\) 2383.75 + 3795.30i 0.116991 + 0.186268i
\(747\) −19967.8 + 17109.9i −0.978022 + 0.838044i
\(748\) 3339.57 6928.03i 0.163244 0.338655i
\(749\) −28086.5 + 25504.2i −1.37017 + 1.24420i
\(750\) 1059.76 + 8128.17i 0.0515958 + 0.395732i
\(751\) −7615.28 −0.370020 −0.185010 0.982737i \(-0.559232\pi\)
−0.185010 + 0.982737i \(0.559232\pi\)
\(752\) 14637.5 + 18383.1i 0.709807 + 0.891442i
\(753\) 13022.8 28308.7i 0.630248 1.37002i
\(754\) 14510.9 9114.00i 0.700870 0.440202i
\(755\) 5822.10i 0.280646i
\(756\) 17551.8 11136.2i 0.844381 0.535743i
\(757\) 3586.57i 0.172201i 0.996286 + 0.0861004i \(0.0274406\pi\)
−0.996286 + 0.0861004i \(0.972559\pi\)
\(758\) −2188.22 3483.99i −0.104855 0.166945i
\(759\) −10499.3 + 22823.2i −0.502110 + 1.09148i
\(760\) 5617.55 629.743i 0.268118 0.0300568i
\(761\) −17846.0 −0.850089 −0.425045 0.905172i \(-0.639742\pi\)
−0.425045 + 0.905172i \(0.639742\pi\)
\(762\) 679.721 88.6226i 0.0323146 0.00421320i
\(763\) −2973.53 3274.60i −0.141086 0.155371i
\(764\) 16509.2 + 7958.03i 0.781780 + 0.376847i
\(765\) −1327.40 + 1137.42i −0.0627351 + 0.0537562i
\(766\) −34367.3 + 21585.4i −1.62107 + 1.01816i
\(767\) 8293.49i 0.390431i
\(768\) 12999.8 16852.0i 0.610794 0.791790i
\(769\) 16449.0i 0.771346i 0.922636 + 0.385673i \(0.126031\pi\)
−0.922636 + 0.385673i \(0.873969\pi\)
\(770\) 3888.00 + 1087.49i 0.181966 + 0.0508969i
\(771\) 11936.2 + 5490.99i 0.557552 + 0.256489i
\(772\) −10940.6 + 22696.6i −0.510053 + 1.05812i
\(773\) 34278.9i 1.59499i 0.603328 + 0.797493i \(0.293841\pi\)
−0.603328 + 0.797493i \(0.706159\pi\)
\(774\) 1612.71 5185.67i 0.0748937 0.240820i
\(775\) 35157.6i 1.62955i
\(776\) −3001.36 + 336.460i −0.138843 + 0.0155647i
\(777\) −4698.54 14867.9i −0.216936 0.686464i
\(778\) −6063.82 + 3808.56i −0.279432 + 0.175506i
\(779\) −15791.2 −0.726287
\(780\) 2474.84 + 2995.77i 0.113607 + 0.137520i
\(781\) 26952.0i 1.23485i
\(782\) 6109.91 + 9727.92i 0.279399 + 0.444846i
\(783\) −5671.24 19923.8i −0.258842 0.909349i
\(784\) −18408.2 + 11959.5i −0.838566 + 0.544800i
\(785\) 87.0698i 0.00395880i
\(786\) −4739.84 36353.9i −0.215095 1.64974i
\(787\) 17734.8 0.803273 0.401636 0.915799i \(-0.368442\pi\)
0.401636 + 0.915799i \(0.368442\pi\)
\(788\) −1444.94 + 2997.58i −0.0653224 + 0.135513i
\(789\) 14750.2 32063.8i 0.665554 1.44677i
\(790\) 130.757 + 208.185i 0.00588874 + 0.00937579i
\(791\) 10.5323 + 11.5987i 0.000473433 + 0.000521368i
\(792\) −14098.3 + 15112.6i −0.632526 + 0.678036i
\(793\) −14924.5 −0.668327
\(794\) −16677.1 + 10474.5i −0.745399 + 0.468170i
\(795\) −2513.49 + 5463.78i −0.112131 + 0.243749i
\(796\) −8663.93 4176.34i −0.385785 0.185963i
\(797\) 10674.8i 0.474428i −0.971457 0.237214i \(-0.923766\pi\)
0.971457 0.237214i \(-0.0762343\pi\)
\(798\) 19316.8 22753.1i 0.856900 1.00934i
\(799\) −10434.3 −0.462000
\(800\) 20464.1 + 7182.26i 0.904393 + 0.317414i
\(801\) 28786.0 + 33594.1i 1.26979 + 1.48188i
\(802\) 9659.20 + 15378.9i 0.425285 + 0.677119i
\(803\) 17262.0i 0.758608i
\(804\) 14079.6 + 17043.2i 0.617597 + 0.747597i
\(805\) −4464.27 + 4053.82i −0.195460 + 0.177489i
\(806\) −18113.1 28838.8i −0.791570 1.26030i
\(807\) −6006.79 + 13057.5i −0.262019 + 0.569572i
\(808\) 3803.99 426.438i 0.165624 0.0185669i
\(809\) 40808.4i 1.77348i 0.462265 + 0.886742i \(0.347037\pi\)
−0.462265 + 0.886742i \(0.652963\pi\)
\(810\) 4313.88 1859.38i 0.187129 0.0806568i
\(811\) 18140.2 0.785436 0.392718 0.919659i \(-0.371535\pi\)
0.392718 + 0.919659i \(0.371535\pi\)
\(812\) 6215.34 + 20975.2i 0.268615 + 0.906510i
\(813\) −2005.87 + 4360.32i −0.0865299 + 0.188097i
\(814\) 8245.87 + 13128.7i 0.355059 + 0.565308i
\(815\) 6579.45 0.282783
\(816\) 2258.22 + 9176.78i 0.0968795 + 0.393691i
\(817\) 7797.76i 0.333915i
\(818\) 977.849 + 1556.89i 0.0417967 + 0.0665468i
\(819\) 20357.1 + 2559.49i 0.868541 + 0.109201i
\(820\) 2364.33 + 1139.69i 0.100690 + 0.0485364i
\(821\) 7359.71 0.312857 0.156429 0.987689i \(-0.450002\pi\)
0.156429 + 0.987689i \(0.450002\pi\)
\(822\) 383.394 + 2940.58i 0.0162681 + 0.124774i
\(823\) 23969.6 1.01522 0.507611 0.861586i \(-0.330529\pi\)
0.507611 + 0.861586i \(0.330529\pi\)
\(824\) −21134.0 + 2369.18i −0.893492 + 0.100163i
\(825\) −19133.0 8801.70i −0.807424 0.371437i
\(826\) −10196.7 2852.08i −0.429528 0.120141i
\(827\) −35380.2 −1.48765 −0.743827 0.668373i \(-0.766991\pi\)
−0.743827 + 0.668373i \(0.766991\pi\)
\(828\) −7915.22 29838.3i −0.332214 1.25236i
\(829\) 29620.3 1.24096 0.620479 0.784223i \(-0.286938\pi\)
0.620479 + 0.784223i \(0.286938\pi\)
\(830\) 5314.42 3337.88i 0.222248 0.139590i
\(831\) 8064.67 17530.8i 0.336655 0.731815i
\(832\) 20486.4 4651.61i 0.853650 0.193829i
\(833\) 937.194 9702.25i 0.0389818 0.403557i
\(834\) 4509.27 587.922i 0.187222 0.0244102i
\(835\) 701.056i 0.0290551i
\(836\) −12886.1 + 26732.6i −0.533104 + 1.10594i
\(837\) −39596.4 + 11270.9i −1.63519 + 0.465449i
\(838\) −4124.30 6566.52i −0.170014 0.270688i
\(839\) 25895.0 1.06555 0.532774 0.846257i \(-0.321149\pi\)
0.532774 + 0.846257i \(0.321149\pi\)
\(840\) −4534.35 + 2012.55i −0.186250 + 0.0826663i
\(841\) −2587.32 −0.106085
\(842\) −8495.92 13526.8i −0.347730 0.553640i
\(843\) −10351.1 + 22501.1i −0.422908 + 0.919309i
\(844\) 29603.1 + 14269.8i 1.20732 + 0.581975i
\(845\) 1169.79i 0.0476237i
\(846\) 26774.9 + 8326.84i 1.08811 + 0.338396i
\(847\) 2558.16 2322.96i 0.103777 0.0942359i
\(848\) 20253.4 + 25436.1i 0.820170 + 1.03005i
\(849\) 38902.8 + 17896.3i 1.57260 + 0.723441i
\(850\) −8155.03 + 5122.01i −0.329077 + 0.206686i
\(851\) −23156.7 −0.932787
\(852\) 21092.8 + 25532.7i 0.848156 + 1.02669i
\(853\) 37192.4 1.49290 0.746449 0.665442i \(-0.231757\pi\)
0.746449 + 0.665442i \(0.231757\pi\)
\(854\) 5132.44 18349.5i 0.205654 0.735252i
\(855\) 5121.93 4388.86i 0.204873 0.175551i
\(856\) 5163.81 + 46063.2i 0.206186 + 1.83926i
\(857\) −16970.1 −0.676414 −0.338207 0.941072i \(-0.609820\pi\)
−0.338207 + 0.941072i \(0.609820\pi\)
\(858\) −20228.8 + 2637.45i −0.804896 + 0.104943i
\(859\) −31307.1 −1.24352 −0.621760 0.783208i \(-0.713582\pi\)
−0.621760 + 0.783208i \(0.713582\pi\)
\(860\) −562.786 + 1167.51i −0.0223149 + 0.0462929i
\(861\) 13214.4 4176.01i 0.523049 0.165294i
\(862\) −1909.11 3039.59i −0.0754343 0.120103i
\(863\) 35041.9i 1.38220i −0.722759 0.691101i \(-0.757126\pi\)
0.722759 0.691101i \(-0.242874\pi\)
\(864\) 1528.60 25350.3i 0.0601899 0.998187i
\(865\) 6245.43 0.245493
\(866\) −14992.0 23869.6i −0.588279 0.936631i
\(867\) 19380.0 + 8915.35i 0.759147 + 0.349228i
\(868\) 41685.9 12352.3i 1.63008 0.483023i
\(869\) −1290.64 −0.0503821
\(870\) 639.179 + 4902.41i 0.0249083 + 0.191043i
\(871\) 21820.4i 0.848859i
\(872\) −5370.50 + 602.047i −0.208564 + 0.0233806i
\(873\) −2736.55 + 2344.89i −0.106092 + 0.0909078i
\(874\) −23575.8 37536.2i −0.912428 1.45273i
\(875\) −6943.96 7647.03i −0.268284 0.295448i
\(876\) 13509.4 + 16353.0i 0.521050 + 0.630727i
\(877\) 19272.8i 0.742070i −0.928619 0.371035i \(-0.879003\pi\)
0.928619 0.371035i \(-0.120997\pi\)
\(878\) −25730.5 40966.9i −0.989023 1.57468i
\(879\) −10762.0 + 23394.2i −0.412961 + 0.897686i
\(880\) 3858.72 3072.49i 0.147815 0.117697i
\(881\) −40919.7 −1.56484 −0.782418 0.622754i \(-0.786014\pi\)
−0.782418 + 0.622754i \(0.786014\pi\)
\(882\) −10147.6 + 24148.6i −0.387399 + 0.921912i
\(883\) 31577.4i 1.20347i 0.798696 + 0.601735i \(0.205524\pi\)
−0.798696 + 0.601735i \(0.794476\pi\)
\(884\) −4050.50 + 8402.87i −0.154110 + 0.319705i
\(885\) −2173.81 1000.01i −0.0825670 0.0379831i
\(886\) 16179.8 10162.2i 0.613511 0.385334i
\(887\) 17298.4 0.654817 0.327409 0.944883i \(-0.393825\pi\)
0.327409 + 0.944883i \(0.393825\pi\)
\(888\) −18086.3 5984.07i −0.683487 0.226140i
\(889\) −639.486 + 580.691i −0.0241256 + 0.0219075i
\(890\) −5615.70 8941.07i −0.211504 0.336748i
\(891\) −3779.23 + 24370.3i −0.142098 + 0.916313i
\(892\) −28006.3 13500.1i −1.05126 0.506745i
\(893\) 40261.8 1.50875
\(894\) −17602.1 + 2294.98i −0.658505 + 0.0858563i
\(895\) 1662.50i 0.0620909i
\(896\) −1326.05 + 26787.4i −0.0494422 + 0.998777i
\(897\) 12734.4 27681.9i 0.474013 1.03040i
\(898\) 9864.81 + 15706.3i 0.366585 + 0.583659i
\(899\) 43328.4i 1.60743i
\(900\) 25013.8 6635.42i 0.926435 0.245756i
\(901\) −14437.5 −0.533833
\(902\) −11668.6 + 7328.83i −0.430735 + 0.270536i
\(903\) 2062.13 + 6525.32i 0.0759949 + 0.240475i
\(904\) 19.0224 2.13246i 0.000699863 7.84565e-5i
\(905\) 4686.01i 0.172120i
\(906\) −37243.4 + 4855.82i −1.36570 + 0.178061i
\(907\) 28199.6i 1.03236i −0.856480 0.516181i \(-0.827353\pi\)
0.856480 0.516181i \(-0.172647\pi\)
\(908\) 18450.5 + 8893.83i 0.674341 + 0.325058i
\(909\) 3468.37 2971.97i 0.126555 0.108442i
\(910\) −4715.68 1319.00i −0.171784 0.0480489i
\(911\) 37866.6i 1.37714i 0.725168 + 0.688571i \(0.241762\pi\)
−0.725168 + 0.688571i \(0.758238\pi\)
\(912\) −8713.61 35409.6i −0.316378 1.28567i
\(913\) 32946.8i 1.19428i
\(914\) −1026.64 + 644.815i −0.0371536 + 0.0233354i
\(915\) 1799.56 3911.86i 0.0650183 0.141336i
\(916\) −4210.54 + 8734.88i −0.151878 + 0.315075i
\(917\) 31057.4 + 34201.9i 1.11844 + 1.23168i
\(918\) 8383.05 + 7542.60i 0.301396 + 0.271180i
\(919\) −47333.4 −1.69901 −0.849503 0.527584i \(-0.823098\pi\)
−0.849503 + 0.527584i \(0.823098\pi\)
\(920\) 820.773 + 7321.62i 0.0294131 + 0.262377i
\(921\) −29042.3 13360.3i −1.03906 0.477998i
\(922\) 21412.0 + 34091.1i 0.764821 + 1.21771i
\(923\) 32689.5i 1.16575i
\(924\) 3713.87 25778.1i 0.132227 0.917789i
\(925\) 19412.5i 0.690033i
\(926\) 16539.4 10388.1i 0.586954 0.368654i
\(927\) −19269.4 + 16511.5i −0.682729 + 0.585015i
\(928\) 25220.0 + 8851.44i 0.892120 + 0.313107i
\(929\) −3499.09 −0.123575 −0.0617877 0.998089i \(-0.519680\pi\)
−0.0617877 + 0.998089i \(0.519680\pi\)
\(930\) 9742.98 1270.30i 0.343532 0.0447900i
\(931\) −3616.27 + 37437.2i −0.127302 + 1.31789i
\(932\) −32059.2 15453.7i −1.12675 0.543138i
\(933\) 22234.6 + 10228.5i 0.780201 + 0.358914i
\(934\) −13729.2 21859.0i −0.480977 0.765789i
\(935\) 2190.21i 0.0766070i
\(936\) 17099.5 18329.8i 0.597132 0.640095i
\(937\) 5794.61i 0.202029i 0.994885 + 0.101015i \(0.0322089\pi\)
−0.994885 + 0.101015i \(0.967791\pi\)
\(938\) −26827.9 7503.92i −0.933862 0.261206i
\(939\) 13044.6 28356.2i 0.453349 0.985483i
\(940\) −6028.17 2905.80i −0.209167 0.100826i
\(941\) 20620.2i 0.714345i −0.934038 0.357173i \(-0.883741\pi\)
0.934038 0.357173i \(-0.116259\pi\)
\(942\) −556.976 + 72.6189i −0.0192646 + 0.00251173i
\(943\) 20581.4i 0.710734i
\(944\) −10120.0 + 8057.98i −0.348916 + 0.277823i
\(945\) −3125.49 + 5027.19i −0.107590 + 0.173052i
\(946\) −3619.01 5762.02i −0.124381 0.198033i
\(947\) −2984.78 −0.102421 −0.0512103 0.998688i \(-0.516308\pi\)
−0.0512103 + 0.998688i \(0.516308\pi\)
\(948\) 1222.68 1010.07i 0.0418890 0.0346049i
\(949\) 20936.7i 0.716159i
\(950\) 31467.1 19763.8i 1.07466 0.674972i
\(951\) 40067.4 + 18432.1i 1.36622 + 0.628499i
\(952\) −8938.28 7869.73i −0.304298 0.267920i
\(953\) 1650.21i 0.0560920i −0.999607 0.0280460i \(-0.991072\pi\)
0.999607 0.0280460i \(-0.00892849\pi\)
\(954\) 37047.5 + 11521.6i 1.25729 + 0.391011i
\(955\) −5219.17 −0.176846
\(956\) 3424.13 + 1650.56i 0.115841 + 0.0558398i
\(957\) −23579.6 10847.3i −0.796467 0.366397i
\(958\) 42291.9 26562.7i 1.42629 0.895827i
\(959\) −2512.16 2766.51i −0.0845899 0.0931547i
\(960\) −1250.97 + 5930.57i −0.0420572 + 0.199384i
\(961\) −56319.3 −1.89048
\(962\) −10001.3 15923.5i −0.335191 0.533676i
\(963\) 35988.1 + 41999.2i 1.20426 + 1.40540i
\(964\) −52686.4 25396.8i −1.76028 0.848523i
\(965\) 7175.25i 0.239357i
\(966\) 29655.2 + 25176.5i 0.987723 + 0.838550i
\(967\) 19631.7 0.652858 0.326429 0.945222i \(-0.394155\pi\)
0.326429 + 0.945222i \(0.394155\pi\)
\(968\) −470.327 4195.50i −0.0156166 0.139306i
\(969\) 14710.2 + 6767.11i 0.487678 + 0.224346i
\(970\) 728.334 457.452i 0.0241087 0.0151422i
\(971\) 2477.59i 0.0818841i 0.999162 + 0.0409421i \(0.0130359\pi\)
−0.999162 + 0.0409421i \(0.986964\pi\)
\(972\) −15492.2 26044.6i −0.511226 0.859447i
\(973\) −4242.35 + 3852.31i −0.139778 + 0.126926i
\(974\) 22915.1 14392.5i 0.753848 0.473477i
\(975\) 23206.0 + 10675.4i 0.762244 + 0.350653i
\(976\) −14500.7 18211.3i −0.475569 0.597264i
\(977\) 27876.8i 0.912853i −0.889761 0.456427i \(-0.849129\pi\)
0.889761 0.456427i \(-0.150871\pi\)
\(978\) −5487.46 42088.0i −0.179417 1.37610i
\(979\) 55430.2 1.80956
\(980\) 3243.39 5344.27i 0.105721 0.174201i
\(981\) −4896.67 + 4195.84i −0.159367 + 0.136558i
\(982\) −17148.6 + 10770.7i −0.557263 + 0.350006i
\(983\) 55169.7 1.79007 0.895035 0.445996i \(-0.147150\pi\)
0.895035 + 0.445996i \(0.147150\pi\)
\(984\) 5318.57 16074.9i 0.172307 0.520781i
\(985\) 947.648i 0.0306544i
\(986\) −10050.3 + 6312.38i −0.324611 + 0.203882i
\(987\) −33691.9 + 10647.3i −1.08655 + 0.343371i
\(988\) 15629.3 32423.4i 0.503273 1.04405i
\(989\) 10163.2 0.326765
\(990\) 1747.85 5620.21i 0.0561114 0.180426i
\(991\) −24768.7 −0.793949 −0.396975 0.917830i \(-0.629940\pi\)
−0.396975 + 0.917830i \(0.629940\pi\)
\(992\) 17591.3 50122.0i 0.563027 1.60421i
\(993\) −23833.3 + 51808.4i −0.761659 + 1.65568i
\(994\) −40191.4 11241.7i −1.28249 0.358719i
\(995\) 2739.00 0.0872683
\(996\) −25784.4 31211.9i −0.820293 0.992958i
\(997\) −3203.48 −0.101760 −0.0508802 0.998705i \(-0.516203\pi\)
−0.0508802 + 0.998705i \(0.516203\pi\)
\(998\) −26806.3 42679.8i −0.850240 1.35371i
\(999\) −21863.5 + 6223.34i −0.692421 + 0.197095i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.15 yes 80
3.2 odd 2 inner 168.4.i.c.125.65 yes 80
4.3 odd 2 672.4.i.c.209.68 80
7.6 odd 2 inner 168.4.i.c.125.16 yes 80
8.3 odd 2 672.4.i.c.209.13 80
8.5 even 2 inner 168.4.i.c.125.68 yes 80
12.11 even 2 672.4.i.c.209.65 80
21.20 even 2 inner 168.4.i.c.125.66 yes 80
24.5 odd 2 inner 168.4.i.c.125.14 yes 80
24.11 even 2 672.4.i.c.209.16 80
28.27 even 2 672.4.i.c.209.14 80
56.13 odd 2 inner 168.4.i.c.125.67 yes 80
56.27 even 2 672.4.i.c.209.67 80
84.83 odd 2 672.4.i.c.209.15 80
168.83 odd 2 672.4.i.c.209.66 80
168.125 even 2 inner 168.4.i.c.125.13 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.13 80 168.125 even 2 inner
168.4.i.c.125.14 yes 80 24.5 odd 2 inner
168.4.i.c.125.15 yes 80 1.1 even 1 trivial
168.4.i.c.125.16 yes 80 7.6 odd 2 inner
168.4.i.c.125.65 yes 80 3.2 odd 2 inner
168.4.i.c.125.66 yes 80 21.20 even 2 inner
168.4.i.c.125.67 yes 80 56.13 odd 2 inner
168.4.i.c.125.68 yes 80 8.5 even 2 inner
672.4.i.c.209.13 80 8.3 odd 2
672.4.i.c.209.14 80 28.27 even 2
672.4.i.c.209.15 80 84.83 odd 2
672.4.i.c.209.16 80 24.11 even 2
672.4.i.c.209.65 80 12.11 even 2
672.4.i.c.209.66 80 168.83 odd 2
672.4.i.c.209.67 80 56.27 even 2
672.4.i.c.209.68 80 4.3 odd 2