Properties

Label 672.4.i.c.209.15
Level $672$
Weight $4$
Character 672.209
Analytic conductor $39.649$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(209,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.209"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.15
Character \(\chi\) \(=\) 672.209
Dual form 672.4.i.c.209.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.72061 + 2.17161i) q^{3} +2.27823i q^{5} +(13.7109 + 12.4503i) q^{7} +(17.5682 - 20.5026i) q^{9} +33.8293 q^{11} +41.0309 q^{13} +(-4.94743 - 10.7546i) q^{15} +28.4181 q^{17} -109.654 q^{19} +(-91.7611 - 28.9983i) q^{21} -142.918i q^{23} +119.810 q^{25} +(-38.4090 + 134.936i) q^{27} -147.654 q^{29} -293.446i q^{31} +(-159.695 + 73.4640i) q^{33} +(-28.3647 + 31.2366i) q^{35} -162.028i q^{37} +(-193.691 + 89.1031i) q^{39} +144.009 q^{41} -71.1121i q^{43} +(46.7097 + 40.0245i) q^{45} +367.170 q^{47} +(32.9788 + 341.411i) q^{49} +(-134.151 + 61.7130i) q^{51} +508.040 q^{53} +77.0710i q^{55} +(517.635 - 238.127i) q^{57} +202.128i q^{59} -363.737 q^{61} +(496.141 - 62.3797i) q^{63} +93.4779i q^{65} +531.804i q^{67} +(310.362 + 674.659i) q^{69} -796.705i q^{71} +510.267i q^{73} +(-565.574 + 260.180i) q^{75} +(463.831 + 421.186i) q^{77} +38.1516 q^{79} +(-111.715 - 720.389i) q^{81} -973.913i q^{83} +64.7430i q^{85} +(697.016 - 320.647i) q^{87} +1638.53 q^{89} +(562.572 + 510.848i) q^{91} +(637.249 + 1385.24i) q^{93} -249.818i q^{95} -133.473i q^{97} +(594.321 - 693.589i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 64 q^{7} + 104 q^{9} + 8 q^{15} - 976 q^{25} - 568 q^{39} - 4048 q^{49} - 1448 q^{57} + 2152 q^{63} - 4992 q^{79} + 1568 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.72061 + 2.17161i −0.908481 + 0.417926i
\(4\) 0 0
\(5\) 2.27823i 0.203771i 0.994796 + 0.101886i \(0.0324876\pi\)
−0.994796 + 0.101886i \(0.967512\pi\)
\(6\) 0 0
\(7\) 13.7109 + 12.4503i 0.740320 + 0.672254i
\(8\) 0 0
\(9\) 17.5682 20.5026i 0.650675 0.759356i
\(10\) 0 0
\(11\) 33.8293 0.927265 0.463633 0.886028i \(-0.346546\pi\)
0.463633 + 0.886028i \(0.346546\pi\)
\(12\) 0 0
\(13\) 41.0309 0.875379 0.437689 0.899126i \(-0.355797\pi\)
0.437689 + 0.899126i \(0.355797\pi\)
\(14\) 0 0
\(15\) −4.94743 10.7546i −0.0851614 0.185122i
\(16\) 0 0
\(17\) 28.4181 0.405436 0.202718 0.979237i \(-0.435023\pi\)
0.202718 + 0.979237i \(0.435023\pi\)
\(18\) 0 0
\(19\) −109.654 −1.32402 −0.662012 0.749493i \(-0.730297\pi\)
−0.662012 + 0.749493i \(0.730297\pi\)
\(20\) 0 0
\(21\) −91.7611 28.9983i −0.953520 0.301331i
\(22\) 0 0
\(23\) 142.918i 1.29567i −0.761780 0.647835i \(-0.775674\pi\)
0.761780 0.647835i \(-0.224326\pi\)
\(24\) 0 0
\(25\) 119.810 0.958477
\(26\) 0 0
\(27\) −38.4090 + 134.936i −0.273771 + 0.961795i
\(28\) 0 0
\(29\) −147.654 −0.945471 −0.472735 0.881204i \(-0.656733\pi\)
−0.472735 + 0.881204i \(0.656733\pi\)
\(30\) 0 0
\(31\) 293.446i 1.70014i −0.526669 0.850071i \(-0.676559\pi\)
0.526669 0.850071i \(-0.323441\pi\)
\(32\) 0 0
\(33\) −159.695 + 73.4640i −0.842403 + 0.387529i
\(34\) 0 0
\(35\) −28.3647 + 31.2366i −0.136986 + 0.150856i
\(36\) 0 0
\(37\) 162.028i 0.719926i −0.932967 0.359963i \(-0.882789\pi\)
0.932967 0.359963i \(-0.117211\pi\)
\(38\) 0 0
\(39\) −193.691 + 89.1031i −0.795265 + 0.365844i
\(40\) 0 0
\(41\) 144.009 0.548545 0.274273 0.961652i \(-0.411563\pi\)
0.274273 + 0.961652i \(0.411563\pi\)
\(42\) 0 0
\(43\) 71.1121i 0.252197i −0.992018 0.126099i \(-0.959754\pi\)
0.992018 0.126099i \(-0.0402456\pi\)
\(44\) 0 0
\(45\) 46.7097 + 40.0245i 0.154735 + 0.132589i
\(46\) 0 0
\(47\) 367.170 1.13951 0.569757 0.821813i \(-0.307037\pi\)
0.569757 + 0.821813i \(0.307037\pi\)
\(48\) 0 0
\(49\) 32.9788 + 341.411i 0.0961480 + 0.995367i
\(50\) 0 0
\(51\) −134.151 + 61.7130i −0.368331 + 0.169442i
\(52\) 0 0
\(53\) 508.040 1.31669 0.658345 0.752716i \(-0.271257\pi\)
0.658345 + 0.752716i \(0.271257\pi\)
\(54\) 0 0
\(55\) 77.0710i 0.188950i
\(56\) 0 0
\(57\) 517.635 238.127i 1.20285 0.553345i
\(58\) 0 0
\(59\) 202.128i 0.446013i 0.974817 + 0.223007i \(0.0715872\pi\)
−0.974817 + 0.223007i \(0.928413\pi\)
\(60\) 0 0
\(61\) −363.737 −0.763472 −0.381736 0.924271i \(-0.624674\pi\)
−0.381736 + 0.924271i \(0.624674\pi\)
\(62\) 0 0
\(63\) 496.141 62.3797i 0.992189 0.124748i
\(64\) 0 0
\(65\) 93.4779i 0.178377i
\(66\) 0 0
\(67\) 531.804i 0.969705i 0.874596 + 0.484852i \(0.161127\pi\)
−0.874596 + 0.484852i \(0.838873\pi\)
\(68\) 0 0
\(69\) 310.362 + 674.659i 0.541495 + 1.17709i
\(70\) 0 0
\(71\) 796.705i 1.33171i −0.746081 0.665855i \(-0.768067\pi\)
0.746081 0.665855i \(-0.231933\pi\)
\(72\) 0 0
\(73\) 510.267i 0.818114i 0.912509 + 0.409057i \(0.134142\pi\)
−0.912509 + 0.409057i \(0.865858\pi\)
\(74\) 0 0
\(75\) −565.574 + 260.180i −0.870758 + 0.400573i
\(76\) 0 0
\(77\) 463.831 + 421.186i 0.686473 + 0.623358i
\(78\) 0 0
\(79\) 38.1516 0.0543340 0.0271670 0.999631i \(-0.491351\pi\)
0.0271670 + 0.999631i \(0.491351\pi\)
\(80\) 0 0
\(81\) −111.715 720.389i −0.153244 0.988188i
\(82\) 0 0
\(83\) 973.913i 1.28796i −0.765042 0.643981i \(-0.777282\pi\)
0.765042 0.643981i \(-0.222718\pi\)
\(84\) 0 0
\(85\) 64.7430i 0.0826161i
\(86\) 0 0
\(87\) 697.016 320.647i 0.858942 0.395137i
\(88\) 0 0
\(89\) 1638.53 1.95150 0.975750 0.218889i \(-0.0702433\pi\)
0.975750 + 0.218889i \(0.0702433\pi\)
\(90\) 0 0
\(91\) 562.572 + 510.848i 0.648061 + 0.588477i
\(92\) 0 0
\(93\) 637.249 + 1385.24i 0.710534 + 1.54455i
\(94\) 0 0
\(95\) 249.818i 0.269798i
\(96\) 0 0
\(97\) 133.473i 0.139713i −0.997557 0.0698565i \(-0.977746\pi\)
0.997557 0.0698565i \(-0.0222541\pi\)
\(98\) 0 0
\(99\) 594.321 693.589i 0.603348 0.704125i
\(100\) 0 0
\(101\) 169.167i 0.166661i −0.996522 0.0833306i \(-0.973444\pi\)
0.996522 0.0833306i \(-0.0265557\pi\)
\(102\) 0 0
\(103\) 939.850i 0.899089i 0.893258 + 0.449544i \(0.148414\pi\)
−0.893258 + 0.449544i \(0.851586\pi\)
\(104\) 0 0
\(105\) 66.0649 209.053i 0.0614026 0.194300i
\(106\) 0 0
\(107\) 2048.48 1.85078 0.925392 0.379012i \(-0.123736\pi\)
0.925392 + 0.379012i \(0.123736\pi\)
\(108\) 0 0
\(109\) 238.831i 0.209871i 0.994479 + 0.104935i \(0.0334635\pi\)
−0.994479 + 0.104935i \(0.966536\pi\)
\(110\) 0 0
\(111\) 351.862 + 764.871i 0.300876 + 0.654039i
\(112\) 0 0
\(113\) 0.845945i 0.000704246i 1.00000 0.000352123i \(0.000112084\pi\)
−1.00000 0.000352123i \(0.999888\pi\)
\(114\) 0 0
\(115\) 325.600 0.264020
\(116\) 0 0
\(117\) 720.840 841.241i 0.569587 0.664725i
\(118\) 0 0
\(119\) 389.639 + 353.815i 0.300152 + 0.272556i
\(120\) 0 0
\(121\) −186.578 −0.140179
\(122\) 0 0
\(123\) −679.808 + 312.730i −0.498343 + 0.229252i
\(124\) 0 0
\(125\) 557.733i 0.399081i
\(126\) 0 0
\(127\) −46.6406 −0.0325881 −0.0162940 0.999867i \(-0.505187\pi\)
−0.0162940 + 0.999867i \(0.505187\pi\)
\(128\) 0 0
\(129\) 154.428 + 335.692i 0.105400 + 0.229117i
\(130\) 0 0
\(131\) 2494.50i 1.66371i 0.554995 + 0.831854i \(0.312720\pi\)
−0.554995 + 0.831854i \(0.687280\pi\)
\(132\) 0 0
\(133\) −1503.46 1365.23i −0.980202 0.890081i
\(134\) 0 0
\(135\) −307.416 87.5046i −0.195986 0.0557866i
\(136\) 0 0
\(137\) 201.774i 0.125830i −0.998019 0.0629151i \(-0.979960\pi\)
0.998019 0.0629151i \(-0.0200397\pi\)
\(138\) 0 0
\(139\) 309.414 0.188807 0.0944034 0.995534i \(-0.469906\pi\)
0.0944034 + 0.995534i \(0.469906\pi\)
\(140\) 0 0
\(141\) −1733.26 + 797.349i −1.03523 + 0.476233i
\(142\) 0 0
\(143\) 1388.05 0.811709
\(144\) 0 0
\(145\) 336.390i 0.192660i
\(146\) 0 0
\(147\) −897.091 1540.05i −0.503339 0.864089i
\(148\) 0 0
\(149\) 1207.81 0.664078 0.332039 0.943266i \(-0.392263\pi\)
0.332039 + 0.943266i \(0.392263\pi\)
\(150\) 0 0
\(151\) 2555.54 1.37726 0.688631 0.725112i \(-0.258212\pi\)
0.688631 + 0.725112i \(0.258212\pi\)
\(152\) 0 0
\(153\) 499.256 582.646i 0.263807 0.307870i
\(154\) 0 0
\(155\) 668.537 0.346440
\(156\) 0 0
\(157\) 38.2182 0.0194276 0.00971382 0.999953i \(-0.496908\pi\)
0.00971382 + 0.999953i \(0.496908\pi\)
\(158\) 0 0
\(159\) −2398.25 + 1103.26i −1.19619 + 0.550280i
\(160\) 0 0
\(161\) 1779.37 1959.54i 0.871020 0.959211i
\(162\) 0 0
\(163\) 2887.96i 1.38775i 0.720097 + 0.693873i \(0.244097\pi\)
−0.720097 + 0.693873i \(0.755903\pi\)
\(164\) 0 0
\(165\) −167.368 363.822i −0.0789672 0.171657i
\(166\) 0 0
\(167\) −307.719 −0.142587 −0.0712935 0.997455i \(-0.522713\pi\)
−0.0712935 + 0.997455i \(0.522713\pi\)
\(168\) 0 0
\(169\) −513.464 −0.233712
\(170\) 0 0
\(171\) −1926.43 + 2248.20i −0.861509 + 1.00541i
\(172\) 0 0
\(173\) 2741.35i 1.20475i −0.798215 0.602373i \(-0.794222\pi\)
0.798215 0.602373i \(-0.205778\pi\)
\(174\) 0 0
\(175\) 1642.70 + 1491.67i 0.709580 + 0.644341i
\(176\) 0 0
\(177\) −438.942 954.165i −0.186401 0.405195i
\(178\) 0 0
\(179\) 729.734 0.304709 0.152354 0.988326i \(-0.451314\pi\)
0.152354 + 0.988326i \(0.451314\pi\)
\(180\) 0 0
\(181\) −2056.86 −0.844671 −0.422336 0.906440i \(-0.638790\pi\)
−0.422336 + 0.906440i \(0.638790\pi\)
\(182\) 0 0
\(183\) 1717.06 789.895i 0.693600 0.319075i
\(184\) 0 0
\(185\) 369.138 0.146700
\(186\) 0 0
\(187\) 961.365 0.375946
\(188\) 0 0
\(189\) −2206.62 + 1371.89i −0.849249 + 0.527993i
\(190\) 0 0
\(191\) 2290.89i 0.867868i 0.900945 + 0.433934i \(0.142875\pi\)
−0.900945 + 0.433934i \(0.857125\pi\)
\(192\) 0 0
\(193\) −3149.48 −1.17464 −0.587318 0.809356i \(-0.699816\pi\)
−0.587318 + 0.809356i \(0.699816\pi\)
\(194\) 0 0
\(195\) −202.997 441.272i −0.0745485 0.162052i
\(196\) 0 0
\(197\) 415.958 0.150435 0.0752177 0.997167i \(-0.476035\pi\)
0.0752177 + 0.997167i \(0.476035\pi\)
\(198\) 0 0
\(199\) 1202.25i 0.428266i −0.976804 0.214133i \(-0.931307\pi\)
0.976804 0.214133i \(-0.0686927\pi\)
\(200\) 0 0
\(201\) −1154.87 2510.44i −0.405265 0.880958i
\(202\) 0 0
\(203\) −2024.47 1838.34i −0.699951 0.635597i
\(204\) 0 0
\(205\) 328.085i 0.111778i
\(206\) 0 0
\(207\) −2930.19 2510.81i −0.983876 0.843061i
\(208\) 0 0
\(209\) −3709.53 −1.22772
\(210\) 0 0
\(211\) 4107.87i 1.34027i −0.742239 0.670135i \(-0.766236\pi\)
0.742239 0.670135i \(-0.233764\pi\)
\(212\) 0 0
\(213\) 1730.13 + 3760.93i 0.556557 + 1.20983i
\(214\) 0 0
\(215\) 162.010 0.0513906
\(216\) 0 0
\(217\) 3653.49 4023.41i 1.14293 1.25865i
\(218\) 0 0
\(219\) −1108.10 2408.77i −0.341911 0.743240i
\(220\) 0 0
\(221\) 1166.02 0.354910
\(222\) 0 0
\(223\) 3886.29i 1.16702i −0.812106 0.583509i \(-0.801679\pi\)
0.812106 0.583509i \(-0.198321\pi\)
\(224\) 0 0
\(225\) 2104.84 2456.41i 0.623657 0.727826i
\(226\) 0 0
\(227\) 2560.28i 0.748598i −0.927308 0.374299i \(-0.877883\pi\)
0.927308 0.374299i \(-0.122117\pi\)
\(228\) 0 0
\(229\) 1212.09 0.349770 0.174885 0.984589i \(-0.444045\pi\)
0.174885 + 0.984589i \(0.444045\pi\)
\(230\) 0 0
\(231\) −3104.21 980.993i −0.884166 0.279414i
\(232\) 0 0
\(233\) 4448.69i 1.25083i 0.780292 + 0.625415i \(0.215070\pi\)
−0.780292 + 0.625415i \(0.784930\pi\)
\(234\) 0 0
\(235\) 836.497i 0.232200i
\(236\) 0 0
\(237\) −180.099 + 82.8503i −0.0493614 + 0.0227076i
\(238\) 0 0
\(239\) 475.148i 0.128597i 0.997931 + 0.0642987i \(0.0204810\pi\)
−0.997931 + 0.0642987i \(0.979519\pi\)
\(240\) 0 0
\(241\) 7311.01i 1.95412i 0.212960 + 0.977061i \(0.431690\pi\)
−0.212960 + 0.977061i \(0.568310\pi\)
\(242\) 0 0
\(243\) 2091.77 + 3158.07i 0.552209 + 0.833706i
\(244\) 0 0
\(245\) −777.813 + 75.1332i −0.202827 + 0.0195922i
\(246\) 0 0
\(247\) −4499.22 −1.15902
\(248\) 0 0
\(249\) 2114.96 + 4597.46i 0.538273 + 1.17009i
\(250\) 0 0
\(251\) 5996.84i 1.50804i −0.656853 0.754018i \(-0.728113\pi\)
0.656853 0.754018i \(-0.271887\pi\)
\(252\) 0 0
\(253\) 4834.81i 1.20143i
\(254\) 0 0
\(255\) −140.597 305.626i −0.0345274 0.0750551i
\(256\) 0 0
\(257\) −2528.53 −0.613719 −0.306859 0.951755i \(-0.599278\pi\)
−0.306859 + 0.951755i \(0.599278\pi\)
\(258\) 0 0
\(259\) 2017.30 2221.56i 0.483974 0.532976i
\(260\) 0 0
\(261\) −2594.02 + 3027.29i −0.615194 + 0.717949i
\(262\) 0 0
\(263\) 6792.30i 1.59251i 0.604958 + 0.796257i \(0.293190\pi\)
−0.604958 + 0.796257i \(0.706810\pi\)
\(264\) 0 0
\(265\) 1157.43i 0.268304i
\(266\) 0 0
\(267\) −7734.84 + 3558.24i −1.77290 + 0.815583i
\(268\) 0 0
\(269\) 2766.06i 0.626950i −0.949597 0.313475i \(-0.898507\pi\)
0.949597 0.313475i \(-0.101493\pi\)
\(270\) 0 0
\(271\) 923.677i 0.207046i −0.994627 0.103523i \(-0.966989\pi\)
0.994627 0.103523i \(-0.0330115\pi\)
\(272\) 0 0
\(273\) −3765.04 1189.83i −0.834691 0.263779i
\(274\) 0 0
\(275\) 4053.08 0.888763
\(276\) 0 0
\(277\) 3713.69i 0.805537i 0.915302 + 0.402768i \(0.131952\pi\)
−0.915302 + 0.402768i \(0.868048\pi\)
\(278\) 0 0
\(279\) −6016.40 5155.32i −1.29101 1.10624i
\(280\) 0 0
\(281\) 4766.56i 1.01192i 0.862557 + 0.505960i \(0.168862\pi\)
−0.862557 + 0.505960i \(0.831138\pi\)
\(282\) 0 0
\(283\) −8241.05 −1.73102 −0.865512 0.500888i \(-0.833007\pi\)
−0.865512 + 0.500888i \(0.833007\pi\)
\(284\) 0 0
\(285\) 542.507 + 1179.29i 0.112756 + 0.245106i
\(286\) 0 0
\(287\) 1974.49 + 1792.95i 0.406099 + 0.368762i
\(288\) 0 0
\(289\) −4105.41 −0.835622
\(290\) 0 0
\(291\) 289.852 + 630.075i 0.0583898 + 0.126927i
\(292\) 0 0
\(293\) 4955.76i 0.988118i −0.869428 0.494059i \(-0.835513\pi\)
0.869428 0.494059i \(-0.164487\pi\)
\(294\) 0 0
\(295\) −460.494 −0.0908847
\(296\) 0 0
\(297\) −1299.35 + 4564.79i −0.253858 + 0.891839i
\(298\) 0 0
\(299\) 5864.05i 1.13420i
\(300\) 0 0
\(301\) 885.369 975.012i 0.169541 0.186707i
\(302\) 0 0
\(303\) 367.365 + 798.572i 0.0696521 + 0.151408i
\(304\) 0 0
\(305\) 828.678i 0.155574i
\(306\) 0 0
\(307\) 6152.25 1.14374 0.571869 0.820345i \(-0.306219\pi\)
0.571869 + 0.820345i \(0.306219\pi\)
\(308\) 0 0
\(309\) −2040.99 4436.66i −0.375753 0.816805i
\(310\) 0 0
\(311\) 4710.11 0.858798 0.429399 0.903115i \(-0.358725\pi\)
0.429399 + 0.903115i \(0.358725\pi\)
\(312\) 0 0
\(313\) 6006.89i 1.08476i −0.840134 0.542379i \(-0.817524\pi\)
0.840134 0.542379i \(-0.182476\pi\)
\(314\) 0 0
\(315\) 142.115 + 1130.32i 0.0254200 + 0.202179i
\(316\) 0 0
\(317\) 8487.77 1.50385 0.751926 0.659248i \(-0.229125\pi\)
0.751926 + 0.659248i \(0.229125\pi\)
\(318\) 0 0
\(319\) −4995.03 −0.876702
\(320\) 0 0
\(321\) −9670.06 + 4448.49i −1.68140 + 0.773491i
\(322\) 0 0
\(323\) −3116.17 −0.536806
\(324\) 0 0
\(325\) 4915.90 0.839031
\(326\) 0 0
\(327\) −518.648 1127.43i −0.0877104 0.190663i
\(328\) 0 0
\(329\) 5034.23 + 4571.38i 0.843606 + 0.766044i
\(330\) 0 0
\(331\) 10975.0i 1.82247i 0.411885 + 0.911236i \(0.364870\pi\)
−0.411885 + 0.911236i \(0.635130\pi\)
\(332\) 0 0
\(333\) −3322.00 2846.55i −0.546680 0.468438i
\(334\) 0 0
\(335\) −1211.57 −0.197598
\(336\) 0 0
\(337\) 1629.69 0.263427 0.131714 0.991288i \(-0.457952\pi\)
0.131714 + 0.991288i \(0.457952\pi\)
\(338\) 0 0
\(339\) −1.83706 3.99337i −0.000294323 0.000639794i
\(340\) 0 0
\(341\) 9927.06i 1.57648i
\(342\) 0 0
\(343\) −3798.51 + 5091.65i −0.597960 + 0.801526i
\(344\) 0 0
\(345\) −1537.03 + 707.076i −0.239857 + 0.110341i
\(346\) 0 0
\(347\) 3090.79 0.478162 0.239081 0.971000i \(-0.423154\pi\)
0.239081 + 0.971000i \(0.423154\pi\)
\(348\) 0 0
\(349\) 8418.13 1.29115 0.645576 0.763696i \(-0.276617\pi\)
0.645576 + 0.763696i \(0.276617\pi\)
\(350\) 0 0
\(351\) −1575.96 + 5536.55i −0.239653 + 0.841935i
\(352\) 0 0
\(353\) −694.292 −0.104684 −0.0523420 0.998629i \(-0.516669\pi\)
−0.0523420 + 0.998629i \(0.516669\pi\)
\(354\) 0 0
\(355\) 1815.08 0.271364
\(356\) 0 0
\(357\) −2607.68 824.077i −0.386591 0.122170i
\(358\) 0 0
\(359\) 3336.44i 0.490503i 0.969460 + 0.245251i \(0.0788705\pi\)
−0.969460 + 0.245251i \(0.921129\pi\)
\(360\) 0 0
\(361\) 5165.10 0.753040
\(362\) 0 0
\(363\) 880.762 405.175i 0.127350 0.0585845i
\(364\) 0 0
\(365\) −1162.51 −0.166708
\(366\) 0 0
\(367\) 8875.98i 1.26246i −0.775596 0.631229i \(-0.782551\pi\)
0.775596 0.631229i \(-0.217449\pi\)
\(368\) 0 0
\(369\) 2529.98 2952.55i 0.356925 0.416541i
\(370\) 0 0
\(371\) 6965.69 + 6325.26i 0.974773 + 0.885151i
\(372\) 0 0
\(373\) 1584.56i 0.219960i −0.993934 0.109980i \(-0.964921\pi\)
0.993934 0.109980i \(-0.0350788\pi\)
\(374\) 0 0
\(375\) −1211.18 2632.84i −0.166787 0.362558i
\(376\) 0 0
\(377\) −6058.37 −0.827645
\(378\) 0 0
\(379\) 1454.58i 0.197142i −0.995130 0.0985711i \(-0.968573\pi\)
0.995130 0.0985711i \(-0.0314272\pi\)
\(380\) 0 0
\(381\) 220.172 101.285i 0.0296056 0.0136194i
\(382\) 0 0
\(383\) −14348.5 −1.91429 −0.957147 0.289603i \(-0.906477\pi\)
−0.957147 + 0.289603i \(0.906477\pi\)
\(384\) 0 0
\(385\) −959.559 + 1056.71i −0.127022 + 0.139883i
\(386\) 0 0
\(387\) −1457.98 1249.31i −0.191508 0.164099i
\(388\) 0 0
\(389\) −2531.67 −0.329977 −0.164988 0.986296i \(-0.552759\pi\)
−0.164988 + 0.986296i \(0.552759\pi\)
\(390\) 0 0
\(391\) 4061.46i 0.525311i
\(392\) 0 0
\(393\) −5417.09 11775.6i −0.695307 1.51145i
\(394\) 0 0
\(395\) 86.9181i 0.0110717i
\(396\) 0 0
\(397\) −6962.76 −0.880229 −0.440115 0.897942i \(-0.645062\pi\)
−0.440115 + 0.897942i \(0.645062\pi\)
\(398\) 0 0
\(399\) 10062.0 + 3179.79i 1.26248 + 0.398969i
\(400\) 0 0
\(401\) 6420.79i 0.799598i 0.916603 + 0.399799i \(0.130920\pi\)
−0.916603 + 0.399799i \(0.869080\pi\)
\(402\) 0 0
\(403\) 12040.3i 1.48827i
\(404\) 0 0
\(405\) 1641.21 254.512i 0.201364 0.0312267i
\(406\) 0 0
\(407\) 5481.30i 0.667563i
\(408\) 0 0
\(409\) 650.008i 0.0785840i 0.999228 + 0.0392920i \(0.0125102\pi\)
−0.999228 + 0.0392920i \(0.987490\pi\)
\(410\) 0 0
\(411\) 438.175 + 952.497i 0.0525878 + 0.114314i
\(412\) 0 0
\(413\) −2516.56 + 2771.36i −0.299834 + 0.330193i
\(414\) 0 0
\(415\) 2218.80 0.262449
\(416\) 0 0
\(417\) −1460.62 + 671.926i −0.171527 + 0.0789074i
\(418\) 0 0
\(419\) 2741.55i 0.319651i −0.987145 0.159825i \(-0.948907\pi\)
0.987145 0.159825i \(-0.0510931\pi\)
\(420\) 0 0
\(421\) 5647.52i 0.653784i 0.945062 + 0.326892i \(0.106001\pi\)
−0.945062 + 0.326892i \(0.893999\pi\)
\(422\) 0 0
\(423\) 6450.52 7527.94i 0.741454 0.865298i
\(424\) 0 0
\(425\) 3404.76 0.388601
\(426\) 0 0
\(427\) −4987.17 4528.65i −0.565214 0.513247i
\(428\) 0 0
\(429\) −6552.42 + 3014.30i −0.737422 + 0.339234i
\(430\) 0 0
\(431\) 1269.04i 0.141828i 0.997482 + 0.0709139i \(0.0225915\pi\)
−0.997482 + 0.0709139i \(0.977408\pi\)
\(432\) 0 0
\(433\) 9965.68i 1.10605i −0.833164 0.553026i \(-0.813473\pi\)
0.833164 0.553026i \(-0.186527\pi\)
\(434\) 0 0
\(435\) 730.507 + 1587.96i 0.0805176 + 0.175028i
\(436\) 0 0
\(437\) 15671.6i 1.71550i
\(438\) 0 0
\(439\) 17103.9i 1.85951i 0.368180 + 0.929754i \(0.379981\pi\)
−0.368180 + 0.929754i \(0.620019\pi\)
\(440\) 0 0
\(441\) 7579.20 + 5321.83i 0.818399 + 0.574650i
\(442\) 0 0
\(443\) −6755.15 −0.724485 −0.362242 0.932084i \(-0.617989\pi\)
−0.362242 + 0.932084i \(0.617989\pi\)
\(444\) 0 0
\(445\) 3732.94i 0.397659i
\(446\) 0 0
\(447\) −5701.59 + 2622.89i −0.603302 + 0.277536i
\(448\) 0 0
\(449\) 6557.46i 0.689233i 0.938744 + 0.344617i \(0.111991\pi\)
−0.938744 + 0.344617i \(0.888009\pi\)
\(450\) 0 0
\(451\) 4871.71 0.508647
\(452\) 0 0
\(453\) −12063.7 + 5549.63i −1.25122 + 0.575594i
\(454\) 0 0
\(455\) −1163.83 + 1281.67i −0.119915 + 0.132056i
\(456\) 0 0
\(457\) 428.629 0.0438740 0.0219370 0.999759i \(-0.493017\pi\)
0.0219370 + 0.999759i \(0.493017\pi\)
\(458\) 0 0
\(459\) −1091.51 + 3834.63i −0.110996 + 0.389946i
\(460\) 0 0
\(461\) 14233.2i 1.43798i −0.695022 0.718988i \(-0.744605\pi\)
0.695022 0.718988i \(-0.255395\pi\)
\(462\) 0 0
\(463\) 6905.29 0.693123 0.346562 0.938027i \(-0.387349\pi\)
0.346562 + 0.938027i \(0.387349\pi\)
\(464\) 0 0
\(465\) −3155.90 + 1451.80i −0.314734 + 0.144786i
\(466\) 0 0
\(467\) 9126.22i 0.904307i −0.891940 0.452153i \(-0.850656\pi\)
0.891940 0.452153i \(-0.149344\pi\)
\(468\) 0 0
\(469\) −6621.13 + 7291.52i −0.651888 + 0.717892i
\(470\) 0 0
\(471\) −180.413 + 82.9949i −0.0176496 + 0.00811933i
\(472\) 0 0
\(473\) 2405.67i 0.233854i
\(474\) 0 0
\(475\) −13137.7 −1.26905
\(476\) 0 0
\(477\) 8925.36 10416.1i 0.856738 0.999837i
\(478\) 0 0
\(479\) 17657.1 1.68429 0.842143 0.539254i \(-0.181294\pi\)
0.842143 + 0.539254i \(0.181294\pi\)
\(480\) 0 0
\(481\) 6648.16i 0.630208i
\(482\) 0 0
\(483\) −4144.38 + 13114.3i −0.390426 + 1.23545i
\(484\) 0 0
\(485\) 304.083 0.0284695
\(486\) 0 0
\(487\) 9567.19 0.890206 0.445103 0.895479i \(-0.353167\pi\)
0.445103 + 0.895479i \(0.353167\pi\)
\(488\) 0 0
\(489\) −6271.53 13632.9i −0.579976 1.26074i
\(490\) 0 0
\(491\) 7159.61 0.658063 0.329031 0.944319i \(-0.393278\pi\)
0.329031 + 0.944319i \(0.393278\pi\)
\(492\) 0 0
\(493\) −4196.05 −0.383327
\(494\) 0 0
\(495\) 1580.16 + 1354.00i 0.143480 + 0.122945i
\(496\) 0 0
\(497\) 9919.23 10923.6i 0.895248 0.985892i
\(498\) 0 0
\(499\) 17819.0i 1.59858i −0.600947 0.799289i \(-0.705210\pi\)
0.600947 0.799289i \(-0.294790\pi\)
\(500\) 0 0
\(501\) 1452.62 668.246i 0.129538 0.0595909i
\(502\) 0 0
\(503\) −20477.4 −1.81520 −0.907599 0.419839i \(-0.862087\pi\)
−0.907599 + 0.419839i \(0.862087\pi\)
\(504\) 0 0
\(505\) 385.402 0.0339607
\(506\) 0 0
\(507\) 2423.86 1115.04i 0.212323 0.0976742i
\(508\) 0 0
\(509\) 18659.8i 1.62491i 0.583022 + 0.812457i \(0.301870\pi\)
−0.583022 + 0.812457i \(0.698130\pi\)
\(510\) 0 0
\(511\) −6353.00 + 6996.24i −0.549980 + 0.605666i
\(512\) 0 0
\(513\) 4211.72 14796.3i 0.362479 1.27344i
\(514\) 0 0
\(515\) −2141.19 −0.183208
\(516\) 0 0
\(517\) 12421.1 1.05663
\(518\) 0 0
\(519\) 5953.15 + 12940.8i 0.503495 + 1.09449i
\(520\) 0 0
\(521\) 17496.1 1.47125 0.735623 0.677391i \(-0.236890\pi\)
0.735623 + 0.677391i \(0.236890\pi\)
\(522\) 0 0
\(523\) −1593.34 −0.133216 −0.0666079 0.997779i \(-0.521218\pi\)
−0.0666079 + 0.997779i \(0.521218\pi\)
\(524\) 0 0
\(525\) −10993.9 3474.28i −0.913927 0.288819i
\(526\) 0 0
\(527\) 8339.17i 0.689298i
\(528\) 0 0
\(529\) −8258.51 −0.678763
\(530\) 0 0
\(531\) 4144.15 + 3551.03i 0.338683 + 0.290210i
\(532\) 0 0
\(533\) 5908.80 0.480185
\(534\) 0 0
\(535\) 4666.91i 0.377136i
\(536\) 0 0
\(537\) −3444.79 + 1584.70i −0.276822 + 0.127346i
\(538\) 0 0
\(539\) 1115.65 + 11549.7i 0.0891547 + 0.922969i
\(540\) 0 0
\(541\) 8592.00i 0.682807i −0.939917 0.341404i \(-0.889098\pi\)
0.939917 0.341404i \(-0.110902\pi\)
\(542\) 0 0
\(543\) 9709.64 4466.70i 0.767368 0.353010i
\(544\) 0 0
\(545\) −544.113 −0.0427656
\(546\) 0 0
\(547\) 468.066i 0.0365870i 0.999833 + 0.0182935i \(0.00582332\pi\)
−0.999833 + 0.0182935i \(0.994177\pi\)
\(548\) 0 0
\(549\) −6390.22 + 7457.57i −0.496772 + 0.579747i
\(550\) 0 0
\(551\) 16190.9 1.25183
\(552\) 0 0
\(553\) 523.093 + 475.000i 0.0402246 + 0.0365263i
\(554\) 0 0
\(555\) −1742.55 + 801.623i −0.133274 + 0.0613099i
\(556\) 0 0
\(557\) 7441.55 0.566084 0.283042 0.959108i \(-0.408656\pi\)
0.283042 + 0.959108i \(0.408656\pi\)
\(558\) 0 0
\(559\) 2917.79i 0.220768i
\(560\) 0 0
\(561\) −4538.22 + 2087.71i −0.341540 + 0.157118i
\(562\) 0 0
\(563\) 14562.5i 1.09012i 0.838397 + 0.545059i \(0.183493\pi\)
−0.838397 + 0.545059i \(0.816507\pi\)
\(564\) 0 0
\(565\) −1.92726 −0.000143505
\(566\) 0 0
\(567\) 7437.37 11268.1i 0.550864 0.834595i
\(568\) 0 0
\(569\) 19130.4i 1.40947i −0.709470 0.704735i \(-0.751066\pi\)
0.709470 0.704735i \(-0.248934\pi\)
\(570\) 0 0
\(571\) 13903.0i 1.01896i 0.860483 + 0.509479i \(0.170162\pi\)
−0.860483 + 0.509479i \(0.829838\pi\)
\(572\) 0 0
\(573\) −4974.91 10814.4i −0.362705 0.788441i
\(574\) 0 0
\(575\) 17122.9i 1.24187i
\(576\) 0 0
\(577\) 20711.2i 1.49431i 0.664648 + 0.747157i \(0.268582\pi\)
−0.664648 + 0.747157i \(0.731418\pi\)
\(578\) 0 0
\(579\) 14867.5 6839.45i 1.06713 0.490911i
\(580\) 0 0
\(581\) 12125.5 13353.2i 0.865838 0.953504i
\(582\) 0 0
\(583\) 17186.6 1.22092
\(584\) 0 0
\(585\) 1916.54 + 1642.24i 0.135452 + 0.116065i
\(586\) 0 0
\(587\) 4831.23i 0.339704i −0.985470 0.169852i \(-0.945671\pi\)
0.985470 0.169852i \(-0.0543290\pi\)
\(588\) 0 0
\(589\) 32177.6i 2.25103i
\(590\) 0 0
\(591\) −1963.57 + 903.298i −0.136668 + 0.0628709i
\(592\) 0 0
\(593\) −637.576 −0.0441519 −0.0220760 0.999756i \(-0.507028\pi\)
−0.0220760 + 0.999756i \(0.507028\pi\)
\(594\) 0 0
\(595\) −806.072 + 887.687i −0.0555390 + 0.0611624i
\(596\) 0 0
\(597\) 2610.81 + 5675.33i 0.178984 + 0.389072i
\(598\) 0 0
\(599\) 10757.3i 0.733774i −0.930266 0.366887i \(-0.880424\pi\)
0.930266 0.366887i \(-0.119576\pi\)
\(600\) 0 0
\(601\) 594.275i 0.0403344i −0.999797 0.0201672i \(-0.993580\pi\)
0.999797 0.0201672i \(-0.00641985\pi\)
\(602\) 0 0
\(603\) 10903.4 + 9342.86i 0.736351 + 0.630963i
\(604\) 0 0
\(605\) 425.068i 0.0285644i
\(606\) 0 0
\(607\) 1028.34i 0.0687628i −0.999409 0.0343814i \(-0.989054\pi\)
0.999409 0.0343814i \(-0.0109461\pi\)
\(608\) 0 0
\(609\) 13548.9 + 4281.71i 0.901525 + 0.284900i
\(610\) 0 0
\(611\) 15065.3 0.997507
\(612\) 0 0
\(613\) 20648.4i 1.36049i −0.732983 0.680247i \(-0.761873\pi\)
0.732983 0.680247i \(-0.238127\pi\)
\(614\) 0 0
\(615\) −712.472 1548.76i −0.0467149 0.101548i
\(616\) 0 0
\(617\) 8883.01i 0.579605i 0.957086 + 0.289803i \(0.0935897\pi\)
−0.957086 + 0.289803i \(0.906410\pi\)
\(618\) 0 0
\(619\) −20038.9 −1.30118 −0.650589 0.759430i \(-0.725478\pi\)
−0.650589 + 0.759430i \(0.725478\pi\)
\(620\) 0 0
\(621\) 19284.8 + 5489.33i 1.24617 + 0.354717i
\(622\) 0 0
\(623\) 22465.7 + 20400.2i 1.44473 + 1.31190i
\(624\) 0 0
\(625\) 13705.6 0.877156
\(626\) 0 0
\(627\) 17511.2 8055.66i 1.11536 0.513097i
\(628\) 0 0
\(629\) 4604.54i 0.291884i
\(630\) 0 0
\(631\) −24780.4 −1.56338 −0.781689 0.623669i \(-0.785641\pi\)
−0.781689 + 0.623669i \(0.785641\pi\)
\(632\) 0 0
\(633\) 8920.68 + 19391.6i 0.560134 + 1.21761i
\(634\) 0 0
\(635\) 106.258i 0.00664051i
\(636\) 0 0
\(637\) 1353.15 + 14008.4i 0.0841659 + 0.871323i
\(638\) 0 0
\(639\) −16334.5 13996.7i −1.01124 0.866511i
\(640\) 0 0
\(641\) 17191.8i 1.05934i −0.848205 0.529668i \(-0.822316\pi\)
0.848205 0.529668i \(-0.177684\pi\)
\(642\) 0 0
\(643\) 6251.36 0.383405 0.191703 0.981453i \(-0.438599\pi\)
0.191703 + 0.981453i \(0.438599\pi\)
\(644\) 0 0
\(645\) −764.784 + 351.822i −0.0466874 + 0.0214775i
\(646\) 0 0
\(647\) 24046.1 1.46113 0.730565 0.682843i \(-0.239257\pi\)
0.730565 + 0.682843i \(0.239257\pi\)
\(648\) 0 0
\(649\) 6837.84i 0.413573i
\(650\) 0 0
\(651\) −8509.43 + 26926.9i −0.512305 + 1.62112i
\(652\) 0 0
\(653\) −15862.2 −0.950593 −0.475296 0.879826i \(-0.657659\pi\)
−0.475296 + 0.879826i \(0.657659\pi\)
\(654\) 0 0
\(655\) −5683.05 −0.339016
\(656\) 0 0
\(657\) 10461.8 + 8964.49i 0.621240 + 0.532326i
\(658\) 0 0
\(659\) 16357.6 0.966922 0.483461 0.875366i \(-0.339380\pi\)
0.483461 + 0.875366i \(0.339380\pi\)
\(660\) 0 0
\(661\) 1599.08 0.0940954 0.0470477 0.998893i \(-0.485019\pi\)
0.0470477 + 0.998893i \(0.485019\pi\)
\(662\) 0 0
\(663\) −5504.33 + 2532.14i −0.322429 + 0.148326i
\(664\) 0 0
\(665\) 3110.32 3425.24i 0.181373 0.199737i
\(666\) 0 0
\(667\) 21102.4i 1.22502i
\(668\) 0 0
\(669\) 8439.50 + 18345.6i 0.487728 + 1.06021i
\(670\) 0 0
\(671\) −12305.0 −0.707941
\(672\) 0 0
\(673\) 22120.1 1.26696 0.633481 0.773758i \(-0.281625\pi\)
0.633481 + 0.773758i \(0.281625\pi\)
\(674\) 0 0
\(675\) −4601.77 + 16166.6i −0.262403 + 0.921859i
\(676\) 0 0
\(677\) 1541.71i 0.0875227i 0.999042 + 0.0437613i \(0.0139341\pi\)
−0.999042 + 0.0437613i \(0.986066\pi\)
\(678\) 0 0
\(679\) 1661.79 1830.04i 0.0939227 0.103432i
\(680\) 0 0
\(681\) 5559.93 + 12086.1i 0.312859 + 0.680087i
\(682\) 0 0
\(683\) −25827.4 −1.44694 −0.723468 0.690357i \(-0.757453\pi\)
−0.723468 + 0.690357i \(0.757453\pi\)
\(684\) 0 0
\(685\) 459.689 0.0256406
\(686\) 0 0
\(687\) −5721.81 + 2632.19i −0.317759 + 0.146178i
\(688\) 0 0
\(689\) 20845.3 1.15260
\(690\) 0 0
\(691\) 21254.8 1.17015 0.585073 0.810981i \(-0.301066\pi\)
0.585073 + 0.810981i \(0.301066\pi\)
\(692\) 0 0
\(693\) 16784.1 2110.26i 0.920022 0.115674i
\(694\) 0 0
\(695\) 704.917i 0.0384734i
\(696\) 0 0
\(697\) 4092.45 0.222400
\(698\) 0 0
\(699\) −9660.81 21000.5i −0.522755 1.13635i
\(700\) 0 0
\(701\) −12172.2 −0.655829 −0.327914 0.944707i \(-0.606346\pi\)
−0.327914 + 0.944707i \(0.606346\pi\)
\(702\) 0 0
\(703\) 17767.1i 0.953200i
\(704\) 0 0
\(705\) −1816.55 3948.77i −0.0970426 0.210950i
\(706\) 0 0
\(707\) 2106.19 2319.44i 0.112039 0.123383i
\(708\) 0 0
\(709\) 24941.7i 1.32117i −0.750753 0.660583i \(-0.770309\pi\)
0.750753 0.660583i \(-0.229691\pi\)
\(710\) 0 0
\(711\) 670.256 782.207i 0.0353538 0.0412589i
\(712\) 0 0
\(713\) −41938.6 −2.20282
\(714\) 0 0
\(715\) 3162.29i 0.165403i
\(716\) 0 0
\(717\) −1031.84 2242.99i −0.0537442 0.116828i
\(718\) 0 0
\(719\) −9926.70 −0.514887 −0.257443 0.966293i \(-0.582880\pi\)
−0.257443 + 0.966293i \(0.582880\pi\)
\(720\) 0 0
\(721\) −11701.4 + 12886.2i −0.604416 + 0.665613i
\(722\) 0 0
\(723\) −15876.6 34512.4i −0.816679 1.77528i
\(724\) 0 0
\(725\) −17690.4 −0.906212
\(726\) 0 0
\(727\) 18517.3i 0.944659i −0.881422 0.472330i \(-0.843413\pi\)
0.881422 0.472330i \(-0.156587\pi\)
\(728\) 0 0
\(729\) −16732.5 10365.5i −0.850099 0.526623i
\(730\) 0 0
\(731\) 2020.87i 0.102250i
\(732\) 0 0
\(733\) 2791.96 0.140687 0.0703434 0.997523i \(-0.477591\pi\)
0.0703434 + 0.997523i \(0.477591\pi\)
\(734\) 0 0
\(735\) 3508.59 2043.78i 0.176076 0.102566i
\(736\) 0 0
\(737\) 17990.6i 0.899174i
\(738\) 0 0
\(739\) 7989.50i 0.397698i 0.980030 + 0.198849i \(0.0637203\pi\)
−0.980030 + 0.198849i \(0.936280\pi\)
\(740\) 0 0
\(741\) 21239.1 9770.55i 1.05295 0.484386i
\(742\) 0 0
\(743\) 10189.8i 0.503131i −0.967840 0.251565i \(-0.919055\pi\)
0.967840 0.251565i \(-0.0809454\pi\)
\(744\) 0 0
\(745\) 2751.67i 0.135320i
\(746\) 0 0
\(747\) −19967.8 17109.9i −0.978022 0.838044i
\(748\) 0 0
\(749\) 28086.5 + 25504.2i 1.37017 + 1.24420i
\(750\) 0 0
\(751\) 7615.28 0.370020 0.185010 0.982737i \(-0.440768\pi\)
0.185010 + 0.982737i \(0.440768\pi\)
\(752\) 0 0
\(753\) 13022.8 + 28308.7i 0.630248 + 1.37002i
\(754\) 0 0
\(755\) 5822.10i 0.280646i
\(756\) 0 0
\(757\) 3586.57i 0.172201i 0.996286 + 0.0861004i \(0.0274406\pi\)
−0.996286 + 0.0861004i \(0.972559\pi\)
\(758\) 0 0
\(759\) 10499.3 + 22823.2i 0.502110 + 1.09148i
\(760\) 0 0
\(761\) −17846.0 −0.850089 −0.425045 0.905172i \(-0.639742\pi\)
−0.425045 + 0.905172i \(0.639742\pi\)
\(762\) 0 0
\(763\) −2973.53 + 3274.60i −0.141086 + 0.155371i
\(764\) 0 0
\(765\) 1327.40 + 1137.42i 0.0627351 + 0.0537562i
\(766\) 0 0
\(767\) 8293.49i 0.390431i
\(768\) 0 0
\(769\) 16449.0i 0.771346i −0.922636 0.385673i \(-0.873969\pi\)
0.922636 0.385673i \(-0.126031\pi\)
\(770\) 0 0
\(771\) 11936.2 5490.99i 0.557552 0.256489i
\(772\) 0 0
\(773\) 34278.9i 1.59499i 0.603328 + 0.797493i \(0.293841\pi\)
−0.603328 + 0.797493i \(0.706159\pi\)
\(774\) 0 0
\(775\) 35157.6i 1.62955i
\(776\) 0 0
\(777\) −4698.54 + 14867.9i −0.216936 + 0.686464i
\(778\) 0 0
\(779\) −15791.2 −0.726287
\(780\) 0 0
\(781\) 26952.0i 1.23485i
\(782\) 0 0
\(783\) 5671.24 19923.8i 0.258842 0.909349i
\(784\) 0 0
\(785\) 87.0698i 0.00395880i
\(786\) 0 0
\(787\) 17734.8 0.803273 0.401636 0.915799i \(-0.368442\pi\)
0.401636 + 0.915799i \(0.368442\pi\)
\(788\) 0 0
\(789\) −14750.2 32063.8i −0.665554 1.44677i
\(790\) 0 0
\(791\) −10.5323 + 11.5987i −0.000473433 + 0.000521368i
\(792\) 0 0
\(793\) −14924.5 −0.668327
\(794\) 0 0
\(795\) −2513.49 5463.78i −0.112131 0.243749i
\(796\) 0 0
\(797\) 10674.8i 0.474428i −0.971457 0.237214i \(-0.923766\pi\)
0.971457 0.237214i \(-0.0762343\pi\)
\(798\) 0 0
\(799\) 10434.3 0.462000
\(800\) 0 0
\(801\) 28786.0 33594.1i 1.26979 1.48188i
\(802\) 0 0
\(803\) 17262.0i 0.758608i
\(804\) 0 0
\(805\) 4464.27 + 4053.82i 0.195460 + 0.177489i
\(806\) 0 0
\(807\) 6006.79 + 13057.5i 0.262019 + 0.569572i
\(808\) 0 0
\(809\) 40808.4i 1.77348i −0.462265 0.886742i \(-0.652963\pi\)
0.462265 0.886742i \(-0.347037\pi\)
\(810\) 0 0
\(811\) 18140.2 0.785436 0.392718 0.919659i \(-0.371535\pi\)
0.392718 + 0.919659i \(0.371535\pi\)
\(812\) 0 0
\(813\) 2005.87 + 4360.32i 0.0865299 + 0.188097i
\(814\) 0 0
\(815\) −6579.45 −0.282783
\(816\) 0 0
\(817\) 7797.76i 0.333915i
\(818\) 0 0
\(819\) 20357.1 2559.49i 0.868541 0.109201i
\(820\) 0 0
\(821\) −7359.71 −0.312857 −0.156429 0.987689i \(-0.549998\pi\)
−0.156429 + 0.987689i \(0.549998\pi\)
\(822\) 0 0
\(823\) −23969.6 −1.01522 −0.507611 0.861586i \(-0.669471\pi\)
−0.507611 + 0.861586i \(0.669471\pi\)
\(824\) 0 0
\(825\) −19133.0 + 8801.70i −0.807424 + 0.371437i
\(826\) 0 0
\(827\) −35380.2 −1.48765 −0.743827 0.668373i \(-0.766991\pi\)
−0.743827 + 0.668373i \(0.766991\pi\)
\(828\) 0 0
\(829\) −29620.3 −1.24096 −0.620479 0.784223i \(-0.713062\pi\)
−0.620479 + 0.784223i \(0.713062\pi\)
\(830\) 0 0
\(831\) −8064.67 17530.8i −0.336655 0.731815i
\(832\) 0 0
\(833\) 937.194 + 9702.25i 0.0389818 + 0.403557i
\(834\) 0 0
\(835\) 701.056i 0.0290551i
\(836\) 0 0
\(837\) 39596.4 + 11270.9i 1.63519 + 0.465449i
\(838\) 0 0
\(839\) −25895.0 −1.06555 −0.532774 0.846257i \(-0.678851\pi\)
−0.532774 + 0.846257i \(0.678851\pi\)
\(840\) 0 0
\(841\) −2587.32 −0.106085
\(842\) 0 0
\(843\) −10351.1 22501.1i −0.422908 0.919309i
\(844\) 0 0
\(845\) 1169.79i 0.0476237i
\(846\) 0 0
\(847\) −2558.16 2322.96i −0.103777 0.0942359i
\(848\) 0 0
\(849\) 38902.8 17896.3i 1.57260 0.723441i
\(850\) 0 0
\(851\) −23156.7 −0.932787
\(852\) 0 0
\(853\) −37192.4 −1.49290 −0.746449 0.665442i \(-0.768243\pi\)
−0.746449 + 0.665442i \(0.768243\pi\)
\(854\) 0 0
\(855\) −5121.93 4388.86i −0.204873 0.175551i
\(856\) 0 0
\(857\) −16970.1 −0.676414 −0.338207 0.941072i \(-0.609820\pi\)
−0.338207 + 0.941072i \(0.609820\pi\)
\(858\) 0 0
\(859\) −31307.1 −1.24352 −0.621760 0.783208i \(-0.713582\pi\)
−0.621760 + 0.783208i \(0.713582\pi\)
\(860\) 0 0
\(861\) −13214.4 4176.01i −0.523049 0.165294i
\(862\) 0 0
\(863\) 35041.9i 1.38220i −0.722759 0.691101i \(-0.757126\pi\)
0.722759 0.691101i \(-0.242874\pi\)
\(864\) 0 0
\(865\) 6245.43 0.245493
\(866\) 0 0
\(867\) 19380.0 8915.35i 0.759147 0.349228i
\(868\) 0 0
\(869\) 1290.64 0.0503821
\(870\) 0 0
\(871\) 21820.4i 0.848859i
\(872\) 0 0
\(873\) −2736.55 2344.89i −0.106092 0.0909078i
\(874\) 0 0
\(875\) −6943.96 + 7647.03i −0.268284 + 0.295448i
\(876\) 0 0
\(877\) 19272.8i 0.742070i −0.928619 0.371035i \(-0.879003\pi\)
0.928619 0.371035i \(-0.120997\pi\)
\(878\) 0 0
\(879\) 10762.0 + 23394.2i 0.412961 + 0.897686i
\(880\) 0 0
\(881\) −40919.7 −1.56484 −0.782418 0.622754i \(-0.786014\pi\)
−0.782418 + 0.622754i \(0.786014\pi\)
\(882\) 0 0
\(883\) 31577.4i 1.20347i −0.798696 0.601735i \(-0.794476\pi\)
0.798696 0.601735i \(-0.205524\pi\)
\(884\) 0 0
\(885\) 2173.81 1000.01i 0.0825670 0.0379831i
\(886\) 0 0
\(887\) −17298.4 −0.654817 −0.327409 0.944883i \(-0.606175\pi\)
−0.327409 + 0.944883i \(0.606175\pi\)
\(888\) 0 0
\(889\) −639.486 580.691i −0.0241256 0.0219075i
\(890\) 0 0
\(891\) −3779.23 24370.3i −0.142098 0.916313i
\(892\) 0 0
\(893\) −40261.8 −1.50875
\(894\) 0 0
\(895\) 1662.50i 0.0620909i
\(896\) 0 0
\(897\) 12734.4 + 27681.9i 0.474013 + 1.03040i
\(898\) 0 0
\(899\) 43328.4i 1.60743i
\(900\) 0 0
\(901\) 14437.5 0.533833
\(902\) 0 0
\(903\) −2062.13 + 6525.32i −0.0759949 + 0.240475i
\(904\) 0 0
\(905\) 4686.01i 0.172120i
\(906\) 0 0
\(907\) 28199.6i 1.03236i 0.856480 + 0.516181i \(0.172647\pi\)
−0.856480 + 0.516181i \(0.827353\pi\)
\(908\) 0 0
\(909\) −3468.37 2971.97i −0.126555 0.108442i
\(910\) 0 0
\(911\) 37866.6i 1.37714i 0.725168 + 0.688571i \(0.241762\pi\)
−0.725168 + 0.688571i \(0.758238\pi\)
\(912\) 0 0
\(913\) 32946.8i 1.19428i
\(914\) 0 0
\(915\) 1799.56 + 3911.86i 0.0650183 + 0.141336i
\(916\) 0 0
\(917\) −31057.4 + 34201.9i −1.11844 + 1.23168i
\(918\) 0 0
\(919\) 47333.4 1.69901 0.849503 0.527584i \(-0.176902\pi\)
0.849503 + 0.527584i \(0.176902\pi\)
\(920\) 0 0
\(921\) −29042.3 + 13360.3i −1.03906 + 0.477998i
\(922\) 0 0
\(923\) 32689.5i 1.16575i
\(924\) 0 0
\(925\) 19412.5i 0.690033i
\(926\) 0 0
\(927\) 19269.4 + 16511.5i 0.682729 + 0.585015i
\(928\) 0 0
\(929\) −3499.09 −0.123575 −0.0617877 0.998089i \(-0.519680\pi\)
−0.0617877 + 0.998089i \(0.519680\pi\)
\(930\) 0 0
\(931\) −3616.27 37437.2i −0.127302 1.31789i
\(932\) 0 0
\(933\) −22234.6 + 10228.5i −0.780201 + 0.358914i
\(934\) 0 0
\(935\) 2190.21i 0.0766070i
\(936\) 0 0
\(937\) 5794.61i 0.202029i −0.994885 0.101015i \(-0.967791\pi\)
0.994885 0.101015i \(-0.0322089\pi\)
\(938\) 0 0
\(939\) 13044.6 + 28356.2i 0.453349 + 0.985483i
\(940\) 0 0
\(941\) 20620.2i 0.714345i −0.934038 0.357173i \(-0.883741\pi\)
0.934038 0.357173i \(-0.116259\pi\)
\(942\) 0 0
\(943\) 20581.4i 0.710734i
\(944\) 0 0
\(945\) −3125.49 5027.19i −0.107590 0.173052i
\(946\) 0 0
\(947\) −2984.78 −0.102421 −0.0512103 0.998688i \(-0.516308\pi\)
−0.0512103 + 0.998688i \(0.516308\pi\)
\(948\) 0 0
\(949\) 20936.7i 0.716159i
\(950\) 0 0
\(951\) −40067.4 + 18432.1i −1.36622 + 0.628499i
\(952\) 0 0
\(953\) 1650.21i 0.0560920i 0.999607 + 0.0280460i \(0.00892849\pi\)
−0.999607 + 0.0280460i \(0.991072\pi\)
\(954\) 0 0
\(955\) −5219.17 −0.176846
\(956\) 0 0
\(957\) 23579.6 10847.3i 0.796467 0.366397i
\(958\) 0 0
\(959\) 2512.16 2766.51i 0.0845899 0.0931547i
\(960\) 0 0
\(961\) −56319.3 −1.89048
\(962\) 0 0
\(963\) 35988.1 41999.2i 1.20426 1.40540i
\(964\) 0 0
\(965\) 7175.25i 0.239357i
\(966\) 0 0
\(967\) −19631.7 −0.652858 −0.326429 0.945222i \(-0.605845\pi\)
−0.326429 + 0.945222i \(0.605845\pi\)
\(968\) 0 0
\(969\) 14710.2 6767.11i 0.487678 0.224346i
\(970\) 0 0
\(971\) 2477.59i 0.0818841i −0.999162 0.0409421i \(-0.986964\pi\)
0.999162 0.0409421i \(-0.0130359\pi\)
\(972\) 0 0
\(973\) 4242.35 + 3852.31i 0.139778 + 0.126926i
\(974\) 0 0
\(975\) −23206.0 + 10675.4i −0.762244 + 0.350653i
\(976\) 0 0
\(977\) 27876.8i 0.912853i 0.889761 + 0.456427i \(0.150871\pi\)
−0.889761 + 0.456427i \(0.849129\pi\)
\(978\) 0 0
\(979\) 55430.2 1.80956
\(980\) 0 0
\(981\) 4896.67 + 4195.84i 0.159367 + 0.136558i
\(982\) 0 0
\(983\) −55169.7 −1.79007 −0.895035 0.445996i \(-0.852850\pi\)
−0.895035 + 0.445996i \(0.852850\pi\)
\(984\) 0 0
\(985\) 947.648i 0.0306544i
\(986\) 0 0
\(987\) −33691.9 10647.3i −1.08655 0.343371i
\(988\) 0 0
\(989\) −10163.2 −0.326765
\(990\) 0 0
\(991\) 24768.7 0.793949 0.396975 0.917830i \(-0.370060\pi\)
0.396975 + 0.917830i \(0.370060\pi\)
\(992\) 0 0
\(993\) −23833.3 51808.4i −0.761659 1.65568i
\(994\) 0 0
\(995\) 2739.00 0.0872683
\(996\) 0 0
\(997\) 3203.48 0.101760 0.0508802 0.998705i \(-0.483797\pi\)
0.0508802 + 0.998705i \(0.483797\pi\)
\(998\) 0 0
\(999\) 21863.5 + 6223.34i 0.692421 + 0.197095i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.i.c.209.15 80
3.2 odd 2 inner 672.4.i.c.209.14 80
4.3 odd 2 168.4.i.c.125.66 yes 80
7.6 odd 2 inner 672.4.i.c.209.65 80
8.3 odd 2 168.4.i.c.125.13 80
8.5 even 2 inner 672.4.i.c.209.66 80
12.11 even 2 168.4.i.c.125.16 yes 80
21.20 even 2 inner 672.4.i.c.209.68 80
24.5 odd 2 inner 672.4.i.c.209.67 80
24.11 even 2 168.4.i.c.125.67 yes 80
28.27 even 2 168.4.i.c.125.65 yes 80
56.13 odd 2 inner 672.4.i.c.209.16 80
56.27 even 2 168.4.i.c.125.14 yes 80
84.83 odd 2 168.4.i.c.125.15 yes 80
168.83 odd 2 168.4.i.c.125.68 yes 80
168.125 even 2 inner 672.4.i.c.209.13 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.13 80 8.3 odd 2
168.4.i.c.125.14 yes 80 56.27 even 2
168.4.i.c.125.15 yes 80 84.83 odd 2
168.4.i.c.125.16 yes 80 12.11 even 2
168.4.i.c.125.65 yes 80 28.27 even 2
168.4.i.c.125.66 yes 80 4.3 odd 2
168.4.i.c.125.67 yes 80 24.11 even 2
168.4.i.c.125.68 yes 80 168.83 odd 2
672.4.i.c.209.13 80 168.125 even 2 inner
672.4.i.c.209.14 80 3.2 odd 2 inner
672.4.i.c.209.15 80 1.1 even 1 trivial
672.4.i.c.209.16 80 56.13 odd 2 inner
672.4.i.c.209.65 80 7.6 odd 2 inner
672.4.i.c.209.66 80 8.5 even 2 inner
672.4.i.c.209.67 80 24.5 odd 2 inner
672.4.i.c.209.68 80 21.20 even 2 inner