Properties

Label 168.2.p.a.139.15
Level $168$
Weight $2$
Character 168.139
Analytic conductor $1.341$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,2,Mod(139,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.139"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 168.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.20457921756784916168704.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 4x^{12} - 4x^{10} + 16x^{8} - 16x^{6} - 64x^{4} + 64x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.15
Root \(-0.474920 - 1.33209i\) of defining polynomial
Character \(\chi\) \(=\) 168.139
Dual form 168.2.p.a.139.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33209 + 0.474920i) q^{2} -1.00000i q^{3} +(1.54890 + 1.26527i) q^{4} +1.58069 q^{5} +(0.474920 - 1.33209i) q^{6} +(-2.37995 - 1.15578i) q^{7} +(1.46237 + 2.42105i) q^{8} -1.00000 q^{9} +(2.10562 + 0.750703i) q^{10} -2.26057 q^{11} +(1.26527 - 1.54890i) q^{12} +0.548664 q^{13} +(-2.62140 - 2.66988i) q^{14} -1.58069i q^{15} +(0.798200 + 3.91955i) q^{16} -0.433635i q^{17} +(-1.33209 - 0.474920i) q^{18} +6.02255i q^{19} +(2.44834 + 2.00000i) q^{20} +(-1.15578 + 2.37995i) q^{21} +(-3.01127 - 1.07359i) q^{22} -8.24028i q^{23} +(2.42105 - 1.46237i) q^{24} -2.50141 q^{25} +(0.730867 + 0.260571i) q^{26} +1.00000i q^{27} +(-2.22394 - 4.80147i) q^{28} +0.548664i q^{29} +(0.750703 - 2.10562i) q^{30} -7.50941 q^{31} +(-0.798200 + 5.60026i) q^{32} +2.26057i q^{33} +(0.205942 - 0.577639i) q^{34} +(-3.76198 - 1.82694i) q^{35} +(-1.54890 - 1.26527i) q^{36} +4.21124i q^{37} +(-2.86023 + 8.02255i) q^{38} -0.548664i q^{39} +(2.31156 + 3.82694i) q^{40} -7.09032i q^{41} +(-2.66988 + 2.62140i) q^{42} -1.82694 q^{43} +(-3.50141 - 2.86023i) q^{44} -1.58069 q^{45} +(3.91347 - 10.9768i) q^{46} +11.5839 q^{47} +(3.91955 - 0.798200i) q^{48} +(4.32834 + 5.50141i) q^{49} +(-3.33209 - 1.18797i) q^{50} -0.433635 q^{51} +(0.849827 + 0.694206i) q^{52} +3.71005i q^{53} +(-0.474920 + 1.33209i) q^{54} -3.57327 q^{55} +(-0.682172 - 7.45216i) q^{56} +6.02255 q^{57} +(-0.260571 + 0.730867i) q^{58} -11.5240i q^{59} +(2.00000 - 2.44834i) q^{60} +12.1325 q^{61} +(-10.0032 - 3.56636i) q^{62} +(2.37995 + 1.15578i) q^{63} +(-3.72294 + 7.08094i) q^{64} +0.867270 q^{65} +(-1.07359 + 3.01127i) q^{66} +9.35089 q^{67} +(0.548664 - 0.671659i) q^{68} -8.24028 q^{69} +(-4.14363 - 4.22027i) q^{70} -1.27953i q^{71} +(-1.46237 - 2.42105i) q^{72} -0.867270i q^{73} +(-2.00000 + 5.60973i) q^{74} +2.50141i q^{75} +(-7.62013 + 9.32834i) q^{76} +(5.38005 + 2.61272i) q^{77} +(0.260571 - 0.730867i) q^{78} +10.3696i q^{79} +(1.26171 + 6.19561i) q^{80} +1.00000 q^{81} +(3.36733 - 9.44491i) q^{82} +6.13554i q^{83} +(-4.80147 + 2.22394i) q^{84} -0.685444i q^{85} +(-2.43364 - 0.867648i) q^{86} +0.548664 q^{87} +(-3.30579 - 5.47295i) q^{88} +7.95759i q^{89} +(-2.10562 - 0.750703i) q^{90} +(-1.30579 - 0.634135i) q^{91} +(10.4261 - 12.7634i) q^{92} +7.50941i q^{93} +(15.4307 + 5.50141i) q^{94} +9.51981i q^{95} +(5.60026 + 0.798200i) q^{96} -19.1778i q^{97} +(3.15300 + 9.38396i) q^{98} +2.26057 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 2 q^{4} - 10 q^{8} - 16 q^{9} - 8 q^{11} - 14 q^{14} + 18 q^{16} - 2 q^{18} + 8 q^{22} + 16 q^{25} - 10 q^{28} - 16 q^{30} - 18 q^{32} + 24 q^{35} - 2 q^{36} - 4 q^{42} - 8 q^{43} + 52 q^{46}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33209 + 0.474920i 0.941927 + 0.335819i
\(3\) 1.00000i 0.577350i
\(4\) 1.54890 + 1.26527i 0.774451 + 0.632633i
\(5\) 1.58069 0.706908 0.353454 0.935452i \(-0.385007\pi\)
0.353454 + 0.935452i \(0.385007\pi\)
\(6\) 0.474920 1.33209i 0.193885 0.543822i
\(7\) −2.37995 1.15578i −0.899537 0.436844i
\(8\) 1.46237 + 2.42105i 0.517026 + 0.855970i
\(9\) −1.00000 −0.333333
\(10\) 2.10562 + 0.750703i 0.665855 + 0.237393i
\(11\) −2.26057 −0.681588 −0.340794 0.940138i \(-0.610696\pi\)
−0.340794 + 0.940138i \(0.610696\pi\)
\(12\) 1.26527 1.54890i 0.365251 0.447130i
\(13\) 0.548664 0.152172 0.0760860 0.997101i \(-0.475758\pi\)
0.0760860 + 0.997101i \(0.475758\pi\)
\(14\) −2.62140 2.66988i −0.700598 0.713557i
\(15\) 1.58069i 0.408134i
\(16\) 0.798200 + 3.91955i 0.199550 + 0.979888i
\(17\) 0.433635i 0.105172i −0.998616 0.0525860i \(-0.983254\pi\)
0.998616 0.0525860i \(-0.0167464\pi\)
\(18\) −1.33209 0.474920i −0.313976 0.111940i
\(19\) 6.02255i 1.38167i 0.723014 + 0.690834i \(0.242756\pi\)
−0.723014 + 0.690834i \(0.757244\pi\)
\(20\) 2.44834 + 2.00000i 0.547466 + 0.447214i
\(21\) −1.15578 + 2.37995i −0.252212 + 0.519348i
\(22\) −3.01127 1.07359i −0.642006 0.228890i
\(23\) 8.24028i 1.71822i −0.511794 0.859108i \(-0.671019\pi\)
0.511794 0.859108i \(-0.328981\pi\)
\(24\) 2.42105 1.46237i 0.494194 0.298505i
\(25\) −2.50141 −0.500281
\(26\) 0.730867 + 0.260571i 0.143335 + 0.0511022i
\(27\) 1.00000i 0.192450i
\(28\) −2.22394 4.80147i −0.420286 0.907392i
\(29\) 0.548664i 0.101884i 0.998702 + 0.0509422i \(0.0162224\pi\)
−0.998702 + 0.0509422i \(0.983778\pi\)
\(30\) 0.750703 2.10562i 0.137059 0.384432i
\(31\) −7.50941 −1.34873 −0.674365 0.738398i \(-0.735582\pi\)
−0.674365 + 0.738398i \(0.735582\pi\)
\(32\) −0.798200 + 5.60026i −0.141103 + 0.989995i
\(33\) 2.26057i 0.393515i
\(34\) 0.205942 0.577639i 0.0353187 0.0990642i
\(35\) −3.76198 1.82694i −0.635890 0.308809i
\(36\) −1.54890 1.26527i −0.258150 0.210878i
\(37\) 4.21124i 0.692324i 0.938175 + 0.346162i \(0.112515\pi\)
−0.938175 + 0.346162i \(0.887485\pi\)
\(38\) −2.86023 + 8.02255i −0.463990 + 1.30143i
\(39\) 0.548664i 0.0878565i
\(40\) 2.31156 + 3.82694i 0.365490 + 0.605092i
\(41\) 7.09032i 1.10732i −0.832742 0.553661i \(-0.813230\pi\)
0.832742 0.553661i \(-0.186770\pi\)
\(42\) −2.66988 + 2.62140i −0.411972 + 0.404490i
\(43\) −1.82694 −0.278605 −0.139303 0.990250i \(-0.544486\pi\)
−0.139303 + 0.990250i \(0.544486\pi\)
\(44\) −3.50141 2.86023i −0.527857 0.431195i
\(45\) −1.58069 −0.235636
\(46\) 3.91347 10.9768i 0.577009 1.61843i
\(47\) 11.5839 1.68968 0.844840 0.535018i \(-0.179695\pi\)
0.844840 + 0.535018i \(0.179695\pi\)
\(48\) 3.91955 0.798200i 0.565738 0.115210i
\(49\) 4.32834 + 5.50141i 0.618334 + 0.785915i
\(50\) −3.33209 1.18797i −0.471228 0.168004i
\(51\) −0.433635 −0.0607210
\(52\) 0.849827 + 0.694206i 0.117850 + 0.0962691i
\(53\) 3.71005i 0.509615i 0.966992 + 0.254807i \(0.0820121\pi\)
−0.966992 + 0.254807i \(0.917988\pi\)
\(54\) −0.474920 + 1.33209i −0.0646284 + 0.181274i
\(55\) −3.57327 −0.481820
\(56\) −0.682172 7.45216i −0.0911591 0.995836i
\(57\) 6.02255 0.797706
\(58\) −0.260571 + 0.730867i −0.0342147 + 0.0959676i
\(59\) 11.5240i 1.50029i −0.661273 0.750145i \(-0.729983\pi\)
0.661273 0.750145i \(-0.270017\pi\)
\(60\) 2.00000 2.44834i 0.258199 0.316080i
\(61\) 12.1325 1.55341 0.776706 0.629864i \(-0.216889\pi\)
0.776706 + 0.629864i \(0.216889\pi\)
\(62\) −10.0032 3.56636i −1.27040 0.452929i
\(63\) 2.37995 + 1.15578i 0.299846 + 0.145615i
\(64\) −3.72294 + 7.08094i −0.465368 + 0.885117i
\(65\) 0.867270 0.107572
\(66\) −1.07359 + 3.01127i −0.132150 + 0.370662i
\(67\) 9.35089 1.14239 0.571196 0.820813i \(-0.306479\pi\)
0.571196 + 0.820813i \(0.306479\pi\)
\(68\) 0.548664 0.671659i 0.0665353 0.0814506i
\(69\) −8.24028 −0.992013
\(70\) −4.14363 4.22027i −0.495258 0.504419i
\(71\) 1.27953i 0.151852i −0.997113 0.0759262i \(-0.975809\pi\)
0.997113 0.0759262i \(-0.0241913\pi\)
\(72\) −1.46237 2.42105i −0.172342 0.285323i
\(73\) 0.867270i 0.101506i −0.998711 0.0507531i \(-0.983838\pi\)
0.998711 0.0507531i \(-0.0161622\pi\)
\(74\) −2.00000 + 5.60973i −0.232495 + 0.652118i
\(75\) 2.50141i 0.288837i
\(76\) −7.62013 + 9.32834i −0.874089 + 1.07003i
\(77\) 5.38005 + 2.61272i 0.613114 + 0.297748i
\(78\) 0.260571 0.730867i 0.0295039 0.0827544i
\(79\) 10.3696i 1.16668i 0.812230 + 0.583338i \(0.198253\pi\)
−0.812230 + 0.583338i \(0.801747\pi\)
\(80\) 1.26171 + 6.19561i 0.141064 + 0.692690i
\(81\) 1.00000 0.111111
\(82\) 3.36733 9.44491i 0.371859 1.04302i
\(83\) 6.13554i 0.673463i 0.941601 + 0.336732i \(0.109321\pi\)
−0.941601 + 0.336732i \(0.890679\pi\)
\(84\) −4.80147 + 2.22394i −0.523883 + 0.242652i
\(85\) 0.685444i 0.0743469i
\(86\) −2.43364 0.867648i −0.262426 0.0935609i
\(87\) 0.548664 0.0588229
\(88\) −3.30579 5.47295i −0.352399 0.583418i
\(89\) 7.95759i 0.843503i 0.906712 + 0.421751i \(0.138584\pi\)
−0.906712 + 0.421751i \(0.861416\pi\)
\(90\) −2.10562 0.750703i −0.221952 0.0791310i
\(91\) −1.30579 0.634135i −0.136884 0.0664754i
\(92\) 10.4261 12.7634i 1.08700 1.33068i
\(93\) 7.50941i 0.778689i
\(94\) 15.4307 + 5.50141i 1.59156 + 0.567427i
\(95\) 9.51981i 0.976712i
\(96\) 5.60026 + 0.798200i 0.571574 + 0.0814660i
\(97\) 19.1778i 1.94721i −0.228233 0.973607i \(-0.573295\pi\)
0.228233 0.973607i \(-0.426705\pi\)
\(98\) 3.15300 + 9.38396i 0.318501 + 0.947923i
\(99\) 2.26057 0.227196
\(100\) −3.87443 3.16494i −0.387443 0.316494i
\(101\) −4.74208 −0.471855 −0.235927 0.971771i \(-0.575813\pi\)
−0.235927 + 0.971771i \(0.575813\pi\)
\(102\) −0.577639 0.205942i −0.0571948 0.0203913i
\(103\) −2.01040 −0.198090 −0.0990452 0.995083i \(-0.531579\pi\)
−0.0990452 + 0.995083i \(0.531579\pi\)
\(104\) 0.802350 + 1.32834i 0.0786769 + 0.130255i
\(105\) −1.82694 + 3.76198i −0.178291 + 0.367131i
\(106\) −1.76198 + 4.94211i −0.171138 + 0.480020i
\(107\) 17.7845 1.71929 0.859647 0.510888i \(-0.170683\pi\)
0.859647 + 0.510888i \(0.170683\pi\)
\(108\) −1.26527 + 1.54890i −0.121750 + 0.149043i
\(109\) 12.0432i 1.15353i −0.816909 0.576766i \(-0.804314\pi\)
0.816909 0.576766i \(-0.195686\pi\)
\(110\) −4.75990 1.69702i −0.453839 0.161804i
\(111\) 4.21124 0.399713
\(112\) 2.63046 10.2509i 0.248555 0.968618i
\(113\) −2.86727 −0.269730 −0.134865 0.990864i \(-0.543060\pi\)
−0.134865 + 0.990864i \(0.543060\pi\)
\(114\) 8.02255 + 2.86023i 0.751380 + 0.267885i
\(115\) 13.0254i 1.21462i
\(116\) −0.694206 + 0.849827i −0.0644554 + 0.0789045i
\(117\) −0.548664 −0.0507240
\(118\) 5.47295 15.3509i 0.503826 1.41316i
\(119\) −0.501187 + 1.03203i −0.0459437 + 0.0946061i
\(120\) 3.82694 2.31156i 0.349350 0.211016i
\(121\) −5.88982 −0.535438
\(122\) 16.1616 + 5.76198i 1.46320 + 0.521665i
\(123\) −7.09032 −0.639312
\(124\) −11.6313 9.50141i −1.04453 0.853251i
\(125\) −11.8574 −1.06056
\(126\) 2.62140 + 2.66988i 0.233533 + 0.237852i
\(127\) 14.9928i 1.33039i 0.746669 + 0.665196i \(0.231652\pi\)
−0.746669 + 0.665196i \(0.768348\pi\)
\(128\) −8.32215 + 7.66432i −0.735581 + 0.677436i
\(129\) 1.82694i 0.160853i
\(130\) 1.15528 + 0.411883i 0.101325 + 0.0361246i
\(131\) 8.52114i 0.744496i 0.928133 + 0.372248i \(0.121413\pi\)
−0.928133 + 0.372248i \(0.878587\pi\)
\(132\) −2.86023 + 3.50141i −0.248951 + 0.304758i
\(133\) 6.96075 14.3334i 0.603573 1.24286i
\(134\) 12.4562 + 4.44092i 1.07605 + 0.383637i
\(135\) 1.58069i 0.136045i
\(136\) 1.04985 0.634135i 0.0900240 0.0543766i
\(137\) 5.00281 0.427419 0.213709 0.976897i \(-0.431445\pi\)
0.213709 + 0.976897i \(0.431445\pi\)
\(138\) −10.9768 3.91347i −0.934403 0.333137i
\(139\) 14.3106i 1.21381i 0.794776 + 0.606903i \(0.207588\pi\)
−0.794776 + 0.606903i \(0.792412\pi\)
\(140\) −3.51537 7.58965i −0.297103 0.641443i
\(141\) 11.5839i 0.975538i
\(142\) 0.607674 1.70444i 0.0509949 0.143034i
\(143\) −1.24029 −0.103719
\(144\) −0.798200 3.91955i −0.0665167 0.326629i
\(145\) 0.867270i 0.0720229i
\(146\) 0.411883 1.15528i 0.0340877 0.0956115i
\(147\) 5.50141 4.32834i 0.453748 0.356996i
\(148\) −5.32834 + 6.52280i −0.437987 + 0.536171i
\(149\) 18.4553i 1.51192i −0.654619 0.755959i \(-0.727171\pi\)
0.654619 0.755959i \(-0.272829\pi\)
\(150\) −1.18797 + 3.33209i −0.0969970 + 0.272064i
\(151\) 14.5334i 1.18271i −0.806411 0.591356i \(-0.798593\pi\)
0.806411 0.591356i \(-0.201407\pi\)
\(152\) −14.5809 + 8.80720i −1.18267 + 0.714358i
\(153\) 0.433635i 0.0350573i
\(154\) 5.92585 + 6.03546i 0.477519 + 0.486352i
\(155\) −11.8701 −0.953428
\(156\) 0.694206 0.849827i 0.0555810 0.0680406i
\(157\) 5.80975 0.463669 0.231834 0.972755i \(-0.425527\pi\)
0.231834 + 0.972755i \(0.425527\pi\)
\(158\) −4.92474 + 13.8132i −0.391791 + 1.09892i
\(159\) 3.71005 0.294226
\(160\) −1.26171 + 8.85229i −0.0997470 + 0.699835i
\(161\) −9.52395 + 19.6115i −0.750593 + 1.54560i
\(162\) 1.33209 + 0.474920i 0.104659 + 0.0373132i
\(163\) −17.3509 −1.35903 −0.679513 0.733663i \(-0.737809\pi\)
−0.679513 + 0.733663i \(0.737809\pi\)
\(164\) 8.97114 10.9822i 0.700529 0.857567i
\(165\) 3.57327i 0.278179i
\(166\) −2.91389 + 8.17306i −0.226162 + 0.634353i
\(167\) −0.823767 −0.0637450 −0.0318725 0.999492i \(-0.510147\pi\)
−0.0318725 + 0.999492i \(0.510147\pi\)
\(168\) −7.45216 + 0.682172i −0.574946 + 0.0526307i
\(169\) −12.6990 −0.976844
\(170\) 0.325531 0.913070i 0.0249671 0.0700293i
\(171\) 6.02255i 0.460556i
\(172\) −2.82975 2.31156i −0.215766 0.176255i
\(173\) −19.5230 −1.48430 −0.742152 0.670231i \(-0.766195\pi\)
−0.742152 + 0.670231i \(0.766195\pi\)
\(174\) 0.730867 + 0.260571i 0.0554069 + 0.0197539i
\(175\) 5.95322 + 2.89108i 0.450021 + 0.218545i
\(176\) −1.80439 8.86042i −0.136011 0.667880i
\(177\) −11.5240 −0.866193
\(178\) −3.77921 + 10.6002i −0.283264 + 0.794518i
\(179\) −4.39611 −0.328581 −0.164290 0.986412i \(-0.552533\pi\)
−0.164290 + 0.986412i \(0.552533\pi\)
\(180\) −2.44834 2.00000i −0.182489 0.149071i
\(181\) −8.14738 −0.605590 −0.302795 0.953056i \(-0.597920\pi\)
−0.302795 + 0.953056i \(0.597920\pi\)
\(182\) −1.43827 1.46487i −0.106611 0.108583i
\(183\) 12.1325i 0.896863i
\(184\) 19.9501 12.0503i 1.47074 0.888363i
\(185\) 6.65668i 0.489409i
\(186\) −3.56636 + 10.0032i −0.261499 + 0.733468i
\(187\) 0.980263i 0.0716839i
\(188\) 17.9423 + 14.6567i 1.30858 + 1.06895i
\(189\) 1.15578 2.37995i 0.0840707 0.173116i
\(190\) −4.52114 + 12.6812i −0.327998 + 0.919991i
\(191\) 0.420123i 0.0303990i −0.999884 0.0151995i \(-0.995162\pi\)
0.999884 0.0151995i \(-0.00483834\pi\)
\(192\) 7.08094 + 3.72294i 0.511023 + 0.268680i
\(193\) −11.1553 −0.802974 −0.401487 0.915865i \(-0.631507\pi\)
−0.401487 + 0.915865i \(0.631507\pi\)
\(194\) 9.10792 25.5465i 0.653911 1.83413i
\(195\) 0.867270i 0.0621065i
\(196\) −0.256564 + 13.9976i −0.0183260 + 0.999832i
\(197\) 4.95035i 0.352698i 0.984328 + 0.176349i \(0.0564287\pi\)
−0.984328 + 0.176349i \(0.943571\pi\)
\(198\) 3.01127 + 1.07359i 0.214002 + 0.0762967i
\(199\) −12.0851 −0.856687 −0.428343 0.903616i \(-0.640903\pi\)
−0.428343 + 0.903616i \(0.640903\pi\)
\(200\) −3.65798 6.05602i −0.258658 0.428225i
\(201\) 9.35089i 0.659561i
\(202\) −6.31686 2.25211i −0.444453 0.158458i
\(203\) 0.634135 1.30579i 0.0445076 0.0916488i
\(204\) −0.671659 0.548664i −0.0470255 0.0384142i
\(205\) 11.2076i 0.782775i
\(206\) −2.67802 0.954777i −0.186587 0.0665225i
\(207\) 8.24028i 0.572739i
\(208\) 0.437944 + 2.15052i 0.0303659 + 0.149111i
\(209\) 13.6144i 0.941728i
\(210\) −4.22027 + 4.14363i −0.291226 + 0.285937i
\(211\) 6.17306 0.424971 0.212486 0.977164i \(-0.431844\pi\)
0.212486 + 0.977164i \(0.431844\pi\)
\(212\) −4.69421 + 5.74651i −0.322399 + 0.394672i
\(213\) −1.27953 −0.0876720
\(214\) 23.6905 + 8.44622i 1.61945 + 0.577372i
\(215\) −2.88783 −0.196948
\(216\) −2.42105 + 1.46237i −0.164731 + 0.0995017i
\(217\) 17.8720 + 8.67923i 1.21323 + 0.589185i
\(218\) 5.71956 16.0426i 0.387378 1.08654i
\(219\) −0.867270 −0.0586047
\(220\) −5.53465 4.52114i −0.373146 0.304815i
\(221\) 0.237920i 0.0160042i
\(222\) 5.60973 + 2.00000i 0.376500 + 0.134231i
\(223\) 18.4078 1.23268 0.616340 0.787480i \(-0.288615\pi\)
0.616340 + 0.787480i \(0.288615\pi\)
\(224\) 8.37235 12.4058i 0.559401 0.828897i
\(225\) 2.50141 0.166760
\(226\) −3.81945 1.36172i −0.254066 0.0905804i
\(227\) 10.6567i 0.707309i −0.935376 0.353654i \(-0.884939\pi\)
0.935376 0.353654i \(-0.115061\pi\)
\(228\) 9.32834 + 7.62013i 0.617785 + 0.504655i
\(229\) −8.97114 −0.592830 −0.296415 0.955059i \(-0.595791\pi\)
−0.296415 + 0.955059i \(0.595791\pi\)
\(230\) 6.18600 17.3509i 0.407893 1.14408i
\(231\) 2.61272 5.38005i 0.171905 0.353981i
\(232\) −1.32834 + 0.802350i −0.0872099 + 0.0526769i
\(233\) 14.9124 0.976942 0.488471 0.872580i \(-0.337555\pi\)
0.488471 + 0.872580i \(0.337555\pi\)
\(234\) −0.730867 0.260571i −0.0477783 0.0170341i
\(235\) 18.3106 1.19445
\(236\) 14.5809 17.8495i 0.949134 1.16190i
\(237\) 10.3696 0.673580
\(238\) −1.15776 + 1.13673i −0.0750461 + 0.0736832i
\(239\) 13.1370i 0.849759i 0.905250 + 0.424880i \(0.139684\pi\)
−0.905250 + 0.424880i \(0.860316\pi\)
\(240\) 6.19561 1.26171i 0.399925 0.0814431i
\(241\) 10.1355i 0.652888i 0.945217 + 0.326444i \(0.105850\pi\)
−0.945217 + 0.326444i \(0.894150\pi\)
\(242\) −7.84574 2.79719i −0.504343 0.179810i
\(243\) 1.00000i 0.0641500i
\(244\) 18.7921 + 15.3509i 1.20304 + 0.982740i
\(245\) 6.84179 + 8.69604i 0.437106 + 0.555570i
\(246\) −9.44491 3.36733i −0.602185 0.214693i
\(247\) 3.30435i 0.210251i
\(248\) −10.9815 18.1806i −0.697329 1.15447i
\(249\) 6.13554 0.388824
\(250\) −15.7951 5.63132i −0.998970 0.356156i
\(251\) 22.7018i 1.43292i 0.697626 + 0.716462i \(0.254240\pi\)
−0.697626 + 0.716462i \(0.745760\pi\)
\(252\) 2.22394 + 4.80147i 0.140095 + 0.302464i
\(253\) 18.6277i 1.17112i
\(254\) −7.12035 + 19.9716i −0.446771 + 1.25313i
\(255\) −0.685444 −0.0429242
\(256\) −14.7258 + 6.25717i −0.920360 + 0.391073i
\(257\) 16.1326i 1.00632i −0.864192 0.503162i \(-0.832170\pi\)
0.864192 0.503162i \(-0.167830\pi\)
\(258\) −0.867648 + 2.43364i −0.0540174 + 0.151511i
\(259\) 4.86727 10.0225i 0.302437 0.622771i
\(260\) 1.34332 + 1.09733i 0.0833090 + 0.0680534i
\(261\) 0.548664i 0.0339614i
\(262\) −4.04686 + 11.3509i −0.250016 + 0.701260i
\(263\) 15.0581i 0.928519i −0.885699 0.464260i \(-0.846320\pi\)
0.885699 0.464260i \(-0.153680\pi\)
\(264\) −5.47295 + 3.30579i −0.336837 + 0.203458i
\(265\) 5.86446i 0.360251i
\(266\) 16.0795 15.7875i 0.985898 0.967993i
\(267\) 7.95759 0.486996
\(268\) 14.4836 + 11.8314i 0.884728 + 0.722716i
\(269\) −8.76288 −0.534282 −0.267141 0.963657i \(-0.586079\pi\)
−0.267141 + 0.963657i \(0.586079\pi\)
\(270\) −0.750703 + 2.10562i −0.0456863 + 0.128144i
\(271\) −4.31238 −0.261958 −0.130979 0.991385i \(-0.541812\pi\)
−0.130979 + 0.991385i \(0.541812\pi\)
\(272\) 1.69965 0.346128i 0.103057 0.0209871i
\(273\) −0.634135 + 1.30579i −0.0383796 + 0.0790302i
\(274\) 6.66417 + 2.37593i 0.402597 + 0.143535i
\(275\) 5.65460 0.340985
\(276\) −12.7634 10.4261i −0.768266 0.627580i
\(277\) 25.5528i 1.53532i 0.640857 + 0.767661i \(0.278579\pi\)
−0.640857 + 0.767661i \(0.721421\pi\)
\(278\) −6.79636 + 19.0629i −0.407619 + 1.14332i
\(279\) 7.50941 0.449577
\(280\) −1.07831 11.7796i −0.0644411 0.703965i
\(281\) 2.17501 0.129751 0.0648753 0.997893i \(-0.479335\pi\)
0.0648753 + 0.997893i \(0.479335\pi\)
\(282\) 5.50141 15.4307i 0.327604 0.918885i
\(283\) 12.2880i 0.730446i −0.930920 0.365223i \(-0.880993\pi\)
0.930920 0.365223i \(-0.119007\pi\)
\(284\) 1.61895 1.98187i 0.0960669 0.117602i
\(285\) 9.51981 0.563905
\(286\) −1.65218 0.589040i −0.0976953 0.0348307i
\(287\) −8.19485 + 16.8746i −0.483727 + 0.996077i
\(288\) 0.798200 5.60026i 0.0470344 0.329998i
\(289\) 16.8120 0.988939
\(290\) −0.411883 + 1.15528i −0.0241866 + 0.0678402i
\(291\) −19.1778 −1.12422
\(292\) 1.09733 1.34332i 0.0642163 0.0786117i
\(293\) 24.8790 1.45345 0.726724 0.686929i \(-0.241042\pi\)
0.726724 + 0.686929i \(0.241042\pi\)
\(294\) 9.38396 3.15300i 0.547283 0.183886i
\(295\) 18.2158i 1.06057i
\(296\) −10.1956 + 6.15839i −0.592608 + 0.357949i
\(297\) 2.26057i 0.131172i
\(298\) 8.76479 24.5840i 0.507730 1.42412i
\(299\) 4.52114i 0.261464i
\(300\) −3.16494 + 3.87443i −0.182728 + 0.223691i
\(301\) 4.34802 + 2.11154i 0.250616 + 0.121707i
\(302\) 6.90219 19.3597i 0.397177 1.11403i
\(303\) 4.74208i 0.272426i
\(304\) −23.6057 + 4.80720i −1.35388 + 0.275712i
\(305\) 19.1778 1.09812
\(306\) −0.205942 + 0.577639i −0.0117729 + 0.0330214i
\(307\) 17.0254i 0.971689i 0.874045 + 0.485844i \(0.161488\pi\)
−0.874045 + 0.485844i \(0.838512\pi\)
\(308\) 5.02738 + 10.8541i 0.286462 + 0.618467i
\(309\) 2.01040i 0.114368i
\(310\) −15.8120 5.63733i −0.898059 0.320179i
\(311\) −23.2983 −1.32113 −0.660564 0.750770i \(-0.729683\pi\)
−0.660564 + 0.750770i \(0.729683\pi\)
\(312\) 1.32834 0.802350i 0.0752025 0.0454241i
\(313\) 15.0479i 0.850558i −0.905062 0.425279i \(-0.860176\pi\)
0.905062 0.425279i \(-0.139824\pi\)
\(314\) 7.73909 + 2.75917i 0.436742 + 0.155709i
\(315\) 3.76198 + 1.82694i 0.211963 + 0.102936i
\(316\) −13.1204 + 16.0616i −0.738078 + 0.903533i
\(317\) 22.4761i 1.26238i 0.775627 + 0.631192i \(0.217434\pi\)
−0.775627 + 0.631192i \(0.782566\pi\)
\(318\) 4.94211 + 1.76198i 0.277140 + 0.0988067i
\(319\) 1.24029i 0.0694431i
\(320\) −5.88483 + 11.1928i −0.328972 + 0.625697i
\(321\) 17.7845i 0.992635i
\(322\) −22.0006 + 21.6010i −1.22604 + 1.20378i
\(323\) 2.61159 0.145313
\(324\) 1.54890 + 1.26527i 0.0860502 + 0.0702926i
\(325\) −1.37243 −0.0761288
\(326\) −23.1129 8.24028i −1.28010 0.456387i
\(327\) −12.0432 −0.665992
\(328\) 17.1660 10.3687i 0.947834 0.572514i
\(329\) −27.5690 13.3884i −1.51993 0.738127i
\(330\) −1.69702 + 4.75990i −0.0934177 + 0.262024i
\(331\) −23.5315 −1.29341 −0.646705 0.762740i \(-0.723853\pi\)
−0.646705 + 0.762740i \(0.723853\pi\)
\(332\) −7.76310 + 9.50336i −0.426055 + 0.521564i
\(333\) 4.21124i 0.230775i
\(334\) −1.09733 0.391223i −0.0600431 0.0214068i
\(335\) 14.7809 0.807567
\(336\) −10.2509 2.63046i −0.559232 0.143504i
\(337\) 8.77682 0.478104 0.239052 0.971007i \(-0.423163\pi\)
0.239052 + 0.971007i \(0.423163\pi\)
\(338\) −16.9161 6.03099i −0.920115 0.328042i
\(339\) 2.86727i 0.155729i
\(340\) 0.867270 1.06169i 0.0470343 0.0575781i
\(341\) 16.9756 0.919278
\(342\) 2.86023 8.02255i 0.154663 0.433810i
\(343\) −3.94283 18.0957i −0.212893 0.977076i
\(344\) −2.67166 4.42310i −0.144046 0.238478i
\(345\) −13.0254 −0.701262
\(346\) −26.0063 9.27185i −1.39811 0.498457i
\(347\) −4.00489 −0.214994 −0.107497 0.994205i \(-0.534284\pi\)
−0.107497 + 0.994205i \(0.534284\pi\)
\(348\) 0.849827 + 0.694206i 0.0455555 + 0.0372134i
\(349\) 3.43649 0.183951 0.0919756 0.995761i \(-0.470682\pi\)
0.0919756 + 0.995761i \(0.470682\pi\)
\(350\) 6.55717 + 6.67846i 0.350496 + 0.356979i
\(351\) 0.548664i 0.0292855i
\(352\) 1.80439 12.6598i 0.0961742 0.674769i
\(353\) 23.0903i 1.22897i 0.788927 + 0.614487i \(0.210637\pi\)
−0.788927 + 0.614487i \(0.789363\pi\)
\(354\) −15.3509 5.47295i −0.815891 0.290884i
\(355\) 2.02255i 0.107346i
\(356\) −10.0685 + 12.3255i −0.533628 + 0.653252i
\(357\) 1.03203 + 0.501187i 0.0546208 + 0.0265256i
\(358\) −5.85600 2.08780i −0.309499 0.110344i
\(359\) 21.8882i 1.15522i −0.816315 0.577608i \(-0.803986\pi\)
0.816315 0.577608i \(-0.196014\pi\)
\(360\) −2.31156 3.82694i −0.121830 0.201697i
\(361\) −17.2711 −0.909004
\(362\) −10.8530 3.86935i −0.570421 0.203368i
\(363\) 5.88982i 0.309135i
\(364\) −1.22020 2.63439i −0.0639557 0.138080i
\(365\) 1.37089i 0.0717556i
\(366\) 5.76198 16.1616i 0.301183 0.844779i
\(367\) 27.9276 1.45781 0.728905 0.684614i \(-0.240029\pi\)
0.728905 + 0.684614i \(0.240029\pi\)
\(368\) 32.2982 6.57739i 1.68366 0.342870i
\(369\) 7.09032i 0.369107i
\(370\) −3.16139 + 8.86727i −0.164353 + 0.460987i
\(371\) 4.28801 8.82975i 0.222622 0.458418i
\(372\) −9.50141 + 11.6313i −0.492625 + 0.603057i
\(373\) 15.2403i 0.789111i 0.918872 + 0.394555i \(0.129101\pi\)
−0.918872 + 0.394555i \(0.870899\pi\)
\(374\) −0.465546 + 1.30579i −0.0240728 + 0.0675210i
\(375\) 11.8574i 0.612315i
\(376\) 16.9399 + 28.0451i 0.873609 + 1.44632i
\(377\) 0.301032i 0.0155039i
\(378\) 2.66988 2.62140i 0.137324 0.134830i
\(379\) 11.4864 0.590018 0.295009 0.955494i \(-0.404677\pi\)
0.295009 + 0.955494i \(0.404677\pi\)
\(380\) −12.0451 + 14.7453i −0.617900 + 0.756416i
\(381\) 14.9928 0.768102
\(382\) 0.199525 0.559640i 0.0102086 0.0286337i
\(383\) −22.4746 −1.14840 −0.574198 0.818716i \(-0.694686\pi\)
−0.574198 + 0.818716i \(0.694686\pi\)
\(384\) 7.66432 + 8.32215i 0.391118 + 0.424688i
\(385\) 8.50422 + 4.12992i 0.433415 + 0.210480i
\(386\) −14.8598 5.29786i −0.756343 0.269654i
\(387\) 1.82694 0.0928684
\(388\) 24.2651 29.7046i 1.23187 1.50802i
\(389\) 20.5907i 1.04399i −0.852949 0.521994i \(-0.825188\pi\)
0.852949 0.521994i \(-0.174812\pi\)
\(390\) 0.411883 1.15528i 0.0208565 0.0584998i
\(391\) −3.57327 −0.180708
\(392\) −6.98952 + 18.5242i −0.353024 + 0.935614i
\(393\) 8.52114 0.429835
\(394\) −2.35102 + 6.59428i −0.118442 + 0.332215i
\(395\) 16.3912i 0.824732i
\(396\) 3.50141 + 2.86023i 0.175952 + 0.143732i
\(397\) −26.8778 −1.34896 −0.674479 0.738294i \(-0.735632\pi\)
−0.674479 + 0.738294i \(0.735632\pi\)
\(398\) −16.0983 5.73943i −0.806936 0.287692i
\(399\) −14.3334 6.96075i −0.717566 0.348473i
\(400\) −1.99662 9.80438i −0.0998311 0.490219i
\(401\) 9.00281 0.449579 0.224789 0.974407i \(-0.427831\pi\)
0.224789 + 0.974407i \(0.427831\pi\)
\(402\) 4.44092 12.4562i 0.221493 0.621258i
\(403\) −4.12014 −0.205239
\(404\) −7.34503 6.00000i −0.365429 0.298511i
\(405\) 1.58069 0.0785453
\(406\) 1.46487 1.43827i 0.0727002 0.0713799i
\(407\) 9.51981i 0.471879i
\(408\) −0.634135 1.04985i −0.0313944 0.0519754i
\(409\) 4.91237i 0.242901i 0.992597 + 0.121450i \(0.0387545\pi\)
−0.992597 + 0.121450i \(0.961245\pi\)
\(410\) 5.32272 14.9295i 0.262870 0.737316i
\(411\) 5.00281i 0.246770i
\(412\) −3.11391 2.54369i −0.153411 0.125319i
\(413\) −13.3192 + 27.4265i −0.655393 + 1.34957i
\(414\) −3.91347 + 10.9768i −0.192336 + 0.539478i
\(415\) 9.69841i 0.476076i
\(416\) −0.437944 + 3.07266i −0.0214720 + 0.150650i
\(417\) 14.3106 0.700791
\(418\) 6.46574 18.1355i 0.316250 0.887038i
\(419\) 4.17501i 0.203963i 0.994786 + 0.101981i \(0.0325182\pi\)
−0.994786 + 0.101981i \(0.967482\pi\)
\(420\) −7.58965 + 3.51537i −0.370337 + 0.171533i
\(421\) 3.11391i 0.151763i −0.997117 0.0758814i \(-0.975823\pi\)
0.997117 0.0758814i \(-0.0241770\pi\)
\(422\) 8.22305 + 2.93171i 0.400292 + 0.142713i
\(423\) −11.5839 −0.563227
\(424\) −8.98221 + 5.42547i −0.436215 + 0.263484i
\(425\) 1.08470i 0.0526155i
\(426\) −1.70444 0.607674i −0.0825806 0.0294419i
\(427\) −28.8748 14.0225i −1.39735 0.678599i
\(428\) 27.5465 + 22.5022i 1.33151 + 1.08768i
\(429\) 1.24029i 0.0598820i
\(430\) −3.84683 1.37149i −0.185511 0.0661389i
\(431\) 0.641564i 0.0309030i −0.999881 0.0154515i \(-0.995081\pi\)
0.999881 0.0154515i \(-0.00491857\pi\)
\(432\) −3.91955 + 0.798200i −0.188579 + 0.0384034i
\(433\) 6.95772i 0.334366i −0.985926 0.167183i \(-0.946533\pi\)
0.985926 0.167183i \(-0.0534671\pi\)
\(434\) 19.6851 + 20.0493i 0.944917 + 0.962395i
\(435\) 0.867270 0.0415824
\(436\) 15.2379 18.6538i 0.729763 0.893355i
\(437\) 49.6275 2.37400
\(438\) −1.15528 0.411883i −0.0552013 0.0196806i
\(439\) 17.4055 0.830717 0.415359 0.909658i \(-0.363656\pi\)
0.415359 + 0.909658i \(0.363656\pi\)
\(440\) −5.22545 8.65106i −0.249114 0.412423i
\(441\) −4.32834 5.50141i −0.206111 0.261972i
\(442\) 0.112993 0.316930i 0.00537452 0.0150748i
\(443\) 18.0856 0.859271 0.429635 0.903002i \(-0.358642\pi\)
0.429635 + 0.903002i \(0.358642\pi\)
\(444\) 6.52280 + 5.32834i 0.309558 + 0.252872i
\(445\) 12.5785i 0.596279i
\(446\) 24.5208 + 8.74224i 1.16109 + 0.413957i
\(447\) −18.4553 −0.872906
\(448\) 17.0444 12.5494i 0.805274 0.592903i
\(449\) −21.2229 −1.00157 −0.500786 0.865571i \(-0.666956\pi\)
−0.500786 + 0.865571i \(0.666956\pi\)
\(450\) 3.33209 + 1.18797i 0.157076 + 0.0560013i
\(451\) 16.0282i 0.754737i
\(452\) −4.44112 3.62786i −0.208893 0.170640i
\(453\) −14.5334 −0.682839
\(454\) 5.06107 14.1956i 0.237528 0.666233i
\(455\) −2.06406 1.00237i −0.0967647 0.0469920i
\(456\) 8.80720 + 14.5809i 0.412435 + 0.682812i
\(457\) 27.7046 1.29597 0.647983 0.761655i \(-0.275613\pi\)
0.647983 + 0.761655i \(0.275613\pi\)
\(458\) −11.9503 4.26057i −0.558402 0.199083i
\(459\) 0.433635 0.0202403
\(460\) 16.4806 20.1750i 0.768410 0.940665i
\(461\) −23.5438 −1.09654 −0.548272 0.836300i \(-0.684714\pi\)
−0.548272 + 0.836300i \(0.684714\pi\)
\(462\) 6.03546 5.92585i 0.280795 0.275696i
\(463\) 26.8145i 1.24618i −0.782151 0.623089i \(-0.785878\pi\)
0.782151 0.623089i \(-0.214122\pi\)
\(464\) −2.15052 + 0.437944i −0.0998352 + 0.0203310i
\(465\) 11.8701i 0.550462i
\(466\) 19.8645 + 7.08217i 0.920207 + 0.328075i
\(467\) 17.3884i 0.804640i −0.915499 0.402320i \(-0.868204\pi\)
0.915499 0.402320i \(-0.131796\pi\)
\(468\) −0.849827 0.694206i −0.0392833 0.0320897i
\(469\) −22.2547 10.8076i −1.02762 0.499048i
\(470\) 24.3912 + 8.69604i 1.12508 + 0.401118i
\(471\) 5.80975i 0.267699i
\(472\) 27.9000 16.8523i 1.28420 0.775690i
\(473\) 4.12992 0.189894
\(474\) 13.8132 + 4.92474i 0.634463 + 0.226201i
\(475\) 15.0648i 0.691222i
\(476\) −2.08208 + 0.964380i −0.0954322 + 0.0442023i
\(477\) 3.71005i 0.169872i
\(478\) −6.23900 + 17.4996i −0.285365 + 0.800411i
\(479\) 25.6003 1.16971 0.584854 0.811139i \(-0.301152\pi\)
0.584854 + 0.811139i \(0.301152\pi\)
\(480\) 8.85229 + 1.26171i 0.404050 + 0.0575889i
\(481\) 2.31056i 0.105352i
\(482\) −4.81357 + 13.5014i −0.219252 + 0.614972i
\(483\) 19.6115 + 9.52395i 0.892352 + 0.433355i
\(484\) −9.12276 7.45219i −0.414671 0.338736i
\(485\) 30.3143i 1.37650i
\(486\) 0.474920 1.33209i 0.0215428 0.0604246i
\(487\) 0.940673i 0.0426260i 0.999773 + 0.0213130i \(0.00678464\pi\)
−0.999773 + 0.0213130i \(0.993215\pi\)
\(488\) 17.7423 + 29.3734i 0.803155 + 1.32967i
\(489\) 17.3509i 0.784634i
\(490\) 4.98392 + 14.8332i 0.225151 + 0.670094i
\(491\) −24.0500 −1.08536 −0.542680 0.839939i \(-0.682590\pi\)
−0.542680 + 0.839939i \(0.682590\pi\)
\(492\) −10.9822 8.97114i −0.495116 0.404450i
\(493\) 0.237920 0.0107154
\(494\) −1.56930 + 4.40168i −0.0706063 + 0.198041i
\(495\) 3.57327 0.160607
\(496\) −5.99401 29.4335i −0.269139 1.32160i
\(497\) −1.47886 + 3.04522i −0.0663358 + 0.136597i
\(498\) 8.17306 + 2.91389i 0.366244 + 0.130574i
\(499\) −26.8354 −1.20132 −0.600658 0.799506i \(-0.705095\pi\)
−0.600658 + 0.799506i \(0.705095\pi\)
\(500\) −18.3660 15.0028i −0.821353 0.670946i
\(501\) 0.823767i 0.0368032i
\(502\) −10.7815 + 30.2407i −0.481203 + 1.34971i
\(503\) −1.13297 −0.0505166 −0.0252583 0.999681i \(-0.508041\pi\)
−0.0252583 + 0.999681i \(0.508041\pi\)
\(504\) 0.682172 + 7.45216i 0.0303864 + 0.331945i
\(505\) −7.49578 −0.333558
\(506\) −8.84667 + 24.8137i −0.393283 + 1.10310i
\(507\) 12.6990i 0.563981i
\(508\) −18.9698 + 23.2223i −0.841650 + 1.03032i
\(509\) 11.7937 0.522745 0.261373 0.965238i \(-0.415825\pi\)
0.261373 + 0.965238i \(0.415825\pi\)
\(510\) −0.913070 0.325531i −0.0404314 0.0144148i
\(511\) −1.00237 + 2.06406i −0.0443424 + 0.0913087i
\(512\) −22.5876 + 1.34154i −0.998241 + 0.0592883i
\(513\) −6.02255 −0.265902
\(514\) 7.66169 21.4900i 0.337943 0.947883i
\(515\) −3.17783 −0.140032
\(516\) −2.31156 + 2.82975i −0.101761 + 0.124573i
\(517\) −26.1862 −1.15167
\(518\) 11.2435 11.0393i 0.494012 0.485040i
\(519\) 19.5230i 0.856964i
\(520\) 1.26827 + 2.09970i 0.0556173 + 0.0920780i
\(521\) 14.6991i 0.643979i −0.946743 0.321990i \(-0.895648\pi\)
0.946743 0.321990i \(-0.104352\pi\)
\(522\) 0.260571 0.730867i 0.0114049 0.0319892i
\(523\) 7.69507i 0.336482i −0.985746 0.168241i \(-0.946191\pi\)
0.985746 0.168241i \(-0.0538086\pi\)
\(524\) −10.7815 + 13.1984i −0.470993 + 0.576576i
\(525\) 2.89108 5.95322i 0.126177 0.259820i
\(526\) 7.15136 20.0586i 0.311814 0.874597i
\(527\) 3.25634i 0.141849i
\(528\) −8.86042 + 1.80439i −0.385600 + 0.0785259i
\(529\) −44.9022 −1.95227
\(530\) −2.78515 + 7.81196i −0.120979 + 0.339330i
\(531\) 11.5240i 0.500097i
\(532\) 28.9171 13.3938i 1.25371 0.580695i
\(533\) 3.89020i 0.168503i
\(534\) 10.6002 + 3.77921i 0.458715 + 0.163543i
\(535\) 28.1119 1.21538
\(536\) 13.6745 + 22.6389i 0.590647 + 0.977854i
\(537\) 4.39611i 0.189706i
\(538\) −11.6729 4.16166i −0.503255 0.179422i
\(539\) −9.78452 12.4363i −0.421449 0.535670i
\(540\) −2.00000 + 2.44834i −0.0860663 + 0.105360i
\(541\) 11.6313i 0.500071i 0.968237 + 0.250035i \(0.0804422\pi\)
−0.968237 + 0.250035i \(0.919558\pi\)
\(542\) −5.74446 2.04803i −0.246746 0.0879706i
\(543\) 8.14738i 0.349637i
\(544\) 2.42847 + 0.346128i 0.104120 + 0.0148401i
\(545\) 19.0367i 0.815441i
\(546\) −1.46487 + 1.43827i −0.0626906 + 0.0615521i
\(547\) 21.0048 0.898099 0.449049 0.893507i \(-0.351763\pi\)
0.449049 + 0.893507i \(0.351763\pi\)
\(548\) 7.74887 + 6.32989i 0.331015 + 0.270399i
\(549\) −12.1325 −0.517804
\(550\) 7.53242 + 2.68548i 0.321183 + 0.114509i
\(551\) −3.30435 −0.140770
\(552\) −12.0503 19.9501i −0.512897 0.849133i
\(553\) 11.9850 24.6792i 0.509655 1.04947i
\(554\) −12.1355 + 34.0386i −0.515590 + 1.44616i
\(555\) 6.65668 0.282560
\(556\) −18.1067 + 22.1657i −0.767894 + 0.940033i
\(557\) 34.7501i 1.47241i −0.676760 0.736204i \(-0.736617\pi\)
0.676760 0.736204i \(-0.263383\pi\)
\(558\) 10.0032 + 3.56636i 0.423468 + 0.150976i
\(559\) −1.00237 −0.0423959
\(560\) 4.15796 16.2035i 0.175706 0.684724i
\(561\) 0.980263 0.0413867
\(562\) 2.89731 + 1.03296i 0.122215 + 0.0435727i
\(563\) 16.9124i 0.712771i 0.934339 + 0.356386i \(0.115991\pi\)
−0.934339 + 0.356386i \(0.884009\pi\)
\(564\) 14.6567 17.9423i 0.617158 0.755507i
\(565\) −4.53228 −0.190674
\(566\) 5.83581 16.3687i 0.245298 0.688027i
\(567\) −2.37995 1.15578i −0.0999486 0.0485382i
\(568\) 3.09781 1.87115i 0.129981 0.0785117i
\(569\) −20.4856 −0.858800 −0.429400 0.903114i \(-0.641275\pi\)
−0.429400 + 0.903114i \(0.641275\pi\)
\(570\) 12.6812 + 4.52114i 0.531157 + 0.189370i
\(571\) 46.0132 1.92559 0.962796 0.270229i \(-0.0870994\pi\)
0.962796 + 0.270229i \(0.0870994\pi\)
\(572\) −1.92109 1.56930i −0.0803250 0.0656158i
\(573\) −0.420123 −0.0175509
\(574\) −18.9303 + 18.5865i −0.790137 + 0.775787i
\(575\) 20.6123i 0.859591i
\(576\) 3.72294 7.08094i 0.155123 0.295039i
\(577\) 35.8191i 1.49117i 0.666411 + 0.745585i \(0.267830\pi\)
−0.666411 + 0.745585i \(0.732170\pi\)
\(578\) 22.3950 + 7.98433i 0.931508 + 0.332104i
\(579\) 11.1553i 0.463598i
\(580\) −1.09733 + 1.34332i −0.0455641 + 0.0557782i
\(581\) 7.09134 14.6023i 0.294198 0.605805i
\(582\) −25.5465 9.10792i −1.05894 0.377536i
\(583\) 8.38684i 0.347347i
\(584\) 2.09970 1.26827i 0.0868863 0.0524814i
\(585\) −0.867270 −0.0358572
\(586\) 33.1410 + 11.8155i 1.36904 + 0.488095i
\(587\) 30.4007i 1.25477i −0.778708 0.627387i \(-0.784125\pi\)
0.778708 0.627387i \(-0.215875\pi\)
\(588\) 13.9976 + 0.256564i 0.577253 + 0.0105805i
\(589\) 45.2258i 1.86350i
\(590\) 8.65106 24.2651i 0.356159 0.998977i
\(591\) 4.95035 0.203630
\(592\) −16.5062 + 3.36141i −0.678399 + 0.138153i
\(593\) 23.3065i 0.957084i −0.878065 0.478542i \(-0.841165\pi\)
0.878065 0.478542i \(-0.158835\pi\)
\(594\) 1.07359 3.01127i 0.0440499 0.123554i
\(595\) −0.792224 + 1.63132i −0.0324780 + 0.0668778i
\(596\) 23.3509 28.5855i 0.956490 1.17091i
\(597\) 12.0851i 0.494608i
\(598\) 2.14718 6.02255i 0.0878047 0.246280i
\(599\) 19.9547i 0.815329i 0.913132 + 0.407664i \(0.133657\pi\)
−0.913132 + 0.407664i \(0.866343\pi\)
\(600\) −6.05602 + 3.65798i −0.247236 + 0.149337i
\(601\) 27.0028i 1.10147i 0.834681 + 0.550734i \(0.185652\pi\)
−0.834681 + 0.550734i \(0.814348\pi\)
\(602\) 4.78912 + 4.87771i 0.195190 + 0.198801i
\(603\) −9.35089 −0.380798
\(604\) 18.3886 22.5108i 0.748222 0.915952i
\(605\) −9.31000 −0.378505
\(606\) −2.25211 + 6.31686i −0.0914856 + 0.256605i
\(607\) 1.63416 0.0663283 0.0331642 0.999450i \(-0.489442\pi\)
0.0331642 + 0.999450i \(0.489442\pi\)
\(608\) −33.7278 4.80720i −1.36784 0.194958i
\(609\) −1.30579 0.634135i −0.0529134 0.0256965i
\(610\) 25.5465 + 9.10792i 1.03435 + 0.368769i
\(611\) 6.35565 0.257122
\(612\) −0.548664 + 0.671659i −0.0221784 + 0.0271502i
\(613\) 16.3500i 0.660369i 0.943916 + 0.330184i \(0.107111\pi\)
−0.943916 + 0.330184i \(0.892889\pi\)
\(614\) −8.08568 + 22.6792i −0.326311 + 0.915259i
\(615\) −11.2076 −0.451935
\(616\) 1.54210 + 16.8461i 0.0621329 + 0.678750i
\(617\) 0.220365 0.00887154 0.00443577 0.999990i \(-0.498588\pi\)
0.00443577 + 0.999990i \(0.498588\pi\)
\(618\) −0.954777 + 2.67802i −0.0384068 + 0.107726i
\(619\) 16.9972i 0.683175i 0.939850 + 0.341587i \(0.110965\pi\)
−0.939850 + 0.341587i \(0.889035\pi\)
\(620\) −18.3856 15.0188i −0.738384 0.603170i
\(621\) 8.24028 0.330671
\(622\) −31.0354 11.0648i −1.24440 0.443659i
\(623\) 9.19723 18.9387i 0.368479 0.758762i
\(624\) 2.15052 0.437944i 0.0860895 0.0175318i
\(625\) −6.23595 −0.249438
\(626\) 7.14654 20.0451i 0.285633 0.801163i
\(627\) −13.6144 −0.543707
\(628\) 8.99875 + 7.35089i 0.359089 + 0.293332i
\(629\) 1.82614 0.0728130
\(630\) 4.14363 + 4.22027i 0.165086 + 0.168140i
\(631\) 13.8402i 0.550971i 0.961305 + 0.275485i \(0.0888386\pi\)
−0.961305 + 0.275485i \(0.911161\pi\)
\(632\) −25.1054 + 15.1643i −0.998638 + 0.603202i
\(633\) 6.17306i 0.245357i
\(634\) −10.6743 + 29.9401i −0.423932 + 1.18907i
\(635\) 23.6990i 0.940465i
\(636\) 5.74651 + 4.69421i 0.227864 + 0.186137i
\(637\) 2.37480 + 3.01842i 0.0940932 + 0.119594i
\(638\) 0.589040 1.65218i 0.0233203 0.0654103i
\(639\) 1.27953i 0.0506175i
\(640\) −13.1548 + 12.1149i −0.519988 + 0.478885i
\(641\) 13.0479 0.515361 0.257681 0.966230i \(-0.417042\pi\)
0.257681 + 0.966230i \(0.417042\pi\)
\(642\) 8.44622 23.6905i 0.333346 0.934990i
\(643\) 12.2880i 0.484592i −0.970202 0.242296i \(-0.922100\pi\)
0.970202 0.242296i \(-0.0779005\pi\)
\(644\) −39.5654 + 18.3259i −1.55910 + 0.722142i
\(645\) 2.88783i 0.113708i
\(646\) 3.47886 + 1.24029i 0.136874 + 0.0487987i
\(647\) 31.8638 1.25269 0.626347 0.779544i \(-0.284549\pi\)
0.626347 + 0.779544i \(0.284549\pi\)
\(648\) 1.46237 + 2.42105i 0.0574474 + 0.0951077i
\(649\) 26.0507i 1.02258i
\(650\) −1.82820 0.651794i −0.0717077 0.0255655i
\(651\) 8.67923 17.8720i 0.340166 0.700460i
\(652\) −26.8748 21.9535i −1.05250 0.859766i
\(653\) 14.6007i 0.571371i −0.958323 0.285686i \(-0.907779\pi\)
0.958323 0.285686i \(-0.0922213\pi\)
\(654\) −16.0426 5.71956i −0.627316 0.223653i
\(655\) 13.4693i 0.526290i
\(656\) 27.7909 5.65949i 1.08505 0.220966i
\(657\) 0.867270i 0.0338354i
\(658\) −30.3659 30.9276i −1.18379 1.20568i
\(659\) 7.25776 0.282722 0.141361 0.989958i \(-0.454852\pi\)
0.141361 + 0.989958i \(0.454852\pi\)
\(660\) −4.52114 + 5.53465i −0.175985 + 0.215436i
\(661\) −15.6031 −0.606891 −0.303446 0.952849i \(-0.598137\pi\)
−0.303446 + 0.952849i \(0.598137\pi\)
\(662\) −31.3460 11.1756i −1.21830 0.434351i
\(663\) −0.237920 −0.00924004
\(664\) −14.8544 + 8.97244i −0.576464 + 0.348198i
\(665\) 11.0028 22.6567i 0.426671 0.878588i
\(666\) 2.00000 5.60973i 0.0774984 0.217373i
\(667\) 4.52114 0.175059
\(668\) −1.27593 1.04228i −0.0493674 0.0403272i
\(669\) 18.4078i 0.711688i
\(670\) 19.6894 + 7.01974i 0.760669 + 0.271196i
\(671\) −27.4265 −1.05879
\(672\) −12.4058 8.37235i −0.478564 0.322970i
\(673\) 9.19475 0.354432 0.177216 0.984172i \(-0.443291\pi\)
0.177216 + 0.984172i \(0.443291\pi\)
\(674\) 11.6915 + 4.16829i 0.450339 + 0.160556i
\(675\) 2.50141i 0.0962791i
\(676\) −19.6695 16.0676i −0.756518 0.617984i
\(677\) 14.1669 0.544480 0.272240 0.962229i \(-0.412236\pi\)
0.272240 + 0.962229i \(0.412236\pi\)
\(678\) −1.36172 + 3.81945i −0.0522966 + 0.146685i
\(679\) −22.1654 + 45.6423i −0.850629 + 1.75159i
\(680\) 1.65949 1.00237i 0.0636387 0.0384393i
\(681\) −10.6567 −0.408365
\(682\) 22.6129 + 8.06202i 0.865892 + 0.308711i
\(683\) −35.9201 −1.37444 −0.687222 0.726448i \(-0.741170\pi\)
−0.687222 + 0.726448i \(0.741170\pi\)
\(684\) 7.62013 9.32834i 0.291363 0.356678i
\(685\) 7.90791 0.302146
\(686\) 3.34182 25.9775i 0.127591 0.991827i
\(687\) 8.97114i 0.342270i
\(688\) −1.45826 7.16077i −0.0555957 0.273002i
\(689\) 2.03557i 0.0775491i
\(690\) −17.3509 6.18600i −0.660537 0.235497i
\(691\) 24.0451i 0.914719i −0.889282 0.457359i \(-0.848795\pi\)
0.889282 0.457359i \(-0.151205\pi\)
\(692\) −30.2392 24.7018i −1.14952 0.939021i
\(693\) −5.38005 2.61272i −0.204371 0.0992492i
\(694\) −5.33485 1.90200i −0.202508 0.0721989i
\(695\) 22.6206i 0.858049i
\(696\) 0.802350 + 1.32834i 0.0304130 + 0.0503507i
\(697\) −3.07461 −0.116459
\(698\) 4.57770 + 1.63206i 0.173269 + 0.0617743i
\(699\) 14.9124i 0.564037i
\(700\) 5.56298 + 12.0104i 0.210261 + 0.453951i
\(701\) 39.3211i 1.48514i 0.669771 + 0.742568i \(0.266392\pi\)
−0.669771 + 0.742568i \(0.733608\pi\)
\(702\) −0.260571 + 0.730867i −0.00983463 + 0.0275848i
\(703\) −25.3624 −0.956561
\(704\) 8.41598 16.0070i 0.317189 0.603285i
\(705\) 18.3106i 0.689615i
\(706\) −10.9660 + 30.7583i −0.412712 + 1.15760i
\(707\) 11.2859 + 5.48081i 0.424451 + 0.206127i
\(708\) −17.8495 14.5809i −0.670825 0.547983i
\(709\) 37.8578i 1.42178i −0.703304 0.710890i \(-0.748293\pi\)
0.703304 0.710890i \(-0.251707\pi\)
\(710\) 0.960547 2.69421i 0.0360487 0.101112i
\(711\) 10.3696i 0.388892i
\(712\) −19.2657 + 11.6369i −0.722013 + 0.436113i
\(713\) 61.8796i 2.31741i
\(714\) 1.13673 + 1.15776i 0.0425410 + 0.0433279i
\(715\) −1.96053 −0.0733195
\(716\) −6.80915 5.56225i −0.254470 0.207871i
\(717\) 13.1370 0.490609
\(718\) 10.3951 29.1570i 0.387943 1.08813i
\(719\) 25.6003 0.954731 0.477365 0.878705i \(-0.341592\pi\)
0.477365 + 0.878705i \(0.341592\pi\)
\(720\) −1.26171 6.19561i −0.0470212 0.230897i
\(721\) 4.78465 + 2.32358i 0.178190 + 0.0865346i
\(722\) −23.0066 8.20237i −0.856215 0.305261i
\(723\) 10.1355 0.376945
\(724\) −12.6195 10.3086i −0.469000 0.383116i
\(725\) 1.37243i 0.0509708i
\(726\) −2.79719 + 7.84574i −0.103813 + 0.291183i
\(727\) −2.11772 −0.0785420 −0.0392710 0.999229i \(-0.512504\pi\)
−0.0392710 + 0.999229i \(0.512504\pi\)
\(728\) −0.374283 4.08873i −0.0138719 0.151538i
\(729\) −1.00000 −0.0370370
\(730\) 0.651062 1.82614i 0.0240969 0.0675885i
\(731\) 0.792224i 0.0293014i
\(732\) 15.3509 18.7921i 0.567385 0.694577i
\(733\) 20.4120 0.753936 0.376968 0.926226i \(-0.376967\pi\)
0.376968 + 0.926226i \(0.376967\pi\)
\(734\) 37.2020 + 13.2634i 1.37315 + 0.489560i
\(735\) 8.69604 6.84179i 0.320758 0.252363i
\(736\) 46.1477 + 6.57739i 1.70103 + 0.242446i
\(737\) −21.1384 −0.778641
\(738\) −3.36733 + 9.44491i −0.123953 + 0.347672i
\(739\) 18.3932 0.676604 0.338302 0.941038i \(-0.390147\pi\)
0.338302 + 0.941038i \(0.390147\pi\)
\(740\) −8.42248 + 10.3106i −0.309617 + 0.379024i
\(741\) 3.30435 0.121389
\(742\) 9.90541 9.72552i 0.363639 0.357035i
\(743\) 33.3812i 1.22464i 0.790611 + 0.612319i \(0.209763\pi\)
−0.790611 + 0.612319i \(0.790237\pi\)
\(744\) −18.1806 + 10.9815i −0.666534 + 0.402603i
\(745\) 29.1722i 1.06879i
\(746\) −7.23790 + 20.3013i −0.264998 + 0.743284i
\(747\) 6.13554i 0.224488i
\(748\) −1.24029 + 1.51833i −0.0453496 + 0.0555157i
\(749\) −42.3263 20.5550i −1.54657 0.751064i
\(750\) −5.63132 + 15.7951i −0.205627 + 0.576756i
\(751\) 9.83899i 0.359030i 0.983755 + 0.179515i \(0.0574528\pi\)
−0.983755 + 0.179515i \(0.942547\pi\)
\(752\) 9.24625 + 45.4036i 0.337176 + 1.65570i
\(753\) 22.7018 0.827299
\(754\) −0.142966 + 0.401000i −0.00520652 + 0.0146036i
\(755\) 22.9729i 0.836068i
\(756\) 4.80147 2.22394i 0.174628 0.0808840i
\(757\) 23.9363i 0.869980i 0.900435 + 0.434990i \(0.143248\pi\)
−0.900435 + 0.434990i \(0.856752\pi\)
\(758\) 15.3009 + 5.45513i 0.555754 + 0.198139i
\(759\) 18.6277 0.676144
\(760\) −23.0479 + 13.9215i −0.836035 + 0.504986i
\(761\) 14.6991i 0.532842i 0.963857 + 0.266421i \(0.0858411\pi\)
−0.963857 + 0.266421i \(0.914159\pi\)
\(762\) 19.9716 + 7.12035i 0.723496 + 0.257943i
\(763\) −13.9193 + 28.6623i −0.503914 + 1.03765i
\(764\) 0.531568 0.650730i 0.0192315 0.0235426i
\(765\) 0.685444i 0.0247823i
\(766\) −29.9380 10.6736i −1.08171 0.385653i
\(767\) 6.32278i 0.228302i
\(768\) 6.25717 + 14.7258i 0.225786 + 0.531370i
\(769\) 22.7317i 0.819727i −0.912147 0.409864i \(-0.865576\pi\)
0.912147 0.409864i \(-0.134424\pi\)
\(770\) 9.36696 + 9.54022i 0.337562 + 0.343806i
\(771\) −16.1326 −0.581002
\(772\) −17.2784 14.1144i −0.621865 0.507988i
\(773\) 8.21267 0.295389 0.147695 0.989033i \(-0.452815\pi\)
0.147695 + 0.989033i \(0.452815\pi\)
\(774\) 2.43364 + 0.867648i 0.0874752 + 0.0311870i
\(775\) 18.7841 0.674744
\(776\) 46.4304 28.0451i 1.66676 1.00676i
\(777\) −10.0225 4.86727i −0.359557 0.174612i
\(778\) 9.77890 27.4285i 0.350591 0.983360i
\(779\) 42.7018 1.52995
\(780\) 1.09733 1.34332i 0.0392906 0.0480985i
\(781\) 2.89247i 0.103501i
\(782\) −4.75990 1.69702i −0.170214 0.0606852i
\(783\) −0.548664 −0.0196076
\(784\) −18.1082 + 21.3564i −0.646720 + 0.762728i
\(785\) 9.18345 0.327771
\(786\) 11.3509 + 4.04686i 0.404873 + 0.144347i
\(787\) 25.3134i 0.902324i 0.892442 + 0.451162i \(0.148990\pi\)
−0.892442 + 0.451162i \(0.851010\pi\)
\(788\) −6.26351 + 7.66761i −0.223128 + 0.273147i
\(789\) −15.0581 −0.536081
\(790\) −7.78451 + 21.8345i −0.276961 + 0.776837i
\(791\) 6.82396 + 3.31394i 0.242632 + 0.117830i
\(792\) 3.30579 + 5.47295i 0.117466 + 0.194473i
\(793\) 6.65668 0.236386
\(794\) −35.8035 12.7648i −1.27062 0.453005i
\(795\) 5.86446 0.207991
\(796\) −18.7186 15.2908i −0.663462 0.541969i
\(797\) 10.2767 0.364021 0.182010 0.983297i \(-0.441740\pi\)
0.182010 + 0.983297i \(0.441740\pi\)
\(798\) −15.7875 16.0795i −0.558871 0.569208i
\(799\) 5.02317i 0.177707i
\(800\) 1.99662 14.0085i 0.0705913 0.495276i
\(801\) 7.95759i 0.281168i
\(802\) 11.9925 + 4.27561i 0.423470 + 0.150977i
\(803\) 1.96053i 0.0691854i
\(804\) 11.8314 14.4836i 0.417260 0.510798i
\(805\) −15.0545 + 30.9997i −0.530600 + 1.09260i
\(806\) −5.48838 1.95674i −0.193320 0.0689231i
\(807\) 8.76288i 0.308468i
\(808\) −6.93468 11.4808i −0.243961 0.403893i
\(809\) 28.4968 1.00189 0.500947 0.865478i \(-0.332985\pi\)
0.500947 + 0.865478i \(0.332985\pi\)
\(810\) 2.10562 + 0.750703i 0.0739839 + 0.0263770i
\(811\) 13.2683i 0.465912i −0.972487 0.232956i \(-0.925160\pi\)
0.972487 0.232956i \(-0.0748398\pi\)
\(812\) 2.63439 1.22020i 0.0924490 0.0428205i
\(813\) 4.31238i 0.151242i
\(814\) 4.52114 12.6812i 0.158466 0.444476i
\(815\) −27.4265 −0.960707
\(816\) −0.346128 1.69965i −0.0121169 0.0594998i
\(817\) 11.0028i 0.384940i
\(818\) −2.33298 + 6.54369i −0.0815707 + 0.228795i
\(819\) 1.30579 + 0.634135i 0.0456281 + 0.0221585i
\(820\) 14.1806 17.3595i 0.495209 0.606221i
\(821\) 50.5926i 1.76570i 0.469659 + 0.882848i \(0.344377\pi\)
−0.469659 + 0.882848i \(0.655623\pi\)
\(822\) 2.37593 6.66417i 0.0828702 0.232440i
\(823\) 19.5730i 0.682274i −0.940014 0.341137i \(-0.889188\pi\)
0.940014 0.341137i \(-0.110812\pi\)
\(824\) −2.93995 4.86727i −0.102418 0.169559i
\(825\) 5.65460i 0.196868i
\(826\) −30.7676 + 30.2088i −1.07054 + 1.05110i
\(827\) −4.64617 −0.161563 −0.0807816 0.996732i \(-0.525742\pi\)
−0.0807816 + 0.996732i \(0.525742\pi\)
\(828\) −10.4261 + 12.7634i −0.362334 + 0.443558i
\(829\) 22.2382 0.772364 0.386182 0.922423i \(-0.373794\pi\)
0.386182 + 0.922423i \(0.373794\pi\)
\(830\) −4.60597 + 12.9191i −0.159875 + 0.448429i
\(831\) 25.5528 0.886418
\(832\) −2.04264 + 3.88506i −0.0708159 + 0.134690i
\(833\) 2.38560 1.87692i 0.0826562 0.0650314i
\(834\) 19.0629 + 6.79636i 0.660094 + 0.235339i
\(835\) −1.30212 −0.0450619
\(836\) 17.2258 21.0874i 0.595768 0.729322i
\(837\) 7.50941i 0.259563i
\(838\) −1.98280 + 5.56148i −0.0684946 + 0.192118i
\(839\) 36.5297 1.26115 0.630573 0.776130i \(-0.282820\pi\)
0.630573 + 0.776130i \(0.282820\pi\)
\(840\) −11.7796 + 1.07831i −0.406434 + 0.0372051i
\(841\) 28.6990 0.989620
\(842\) 1.47886 4.14800i 0.0509648 0.142949i
\(843\) 2.17501i 0.0749115i
\(844\) 9.56148 + 7.81057i 0.329120 + 0.268851i
\(845\) −20.0732 −0.690539
\(846\) −15.4307 5.50141i −0.530518 0.189142i
\(847\) 14.0175 + 6.80734i 0.481646 + 0.233903i
\(848\) −14.5417 + 2.96136i −0.499365 + 0.101694i
\(849\) −12.2880 −0.421723
\(850\) −0.515144 + 1.44491i −0.0176693 + 0.0495600i
\(851\) 34.7018 1.18956
\(852\) −1.98187 1.61895i −0.0678977 0.0554643i
\(853\) 42.1702 1.44388 0.721940 0.691956i \(-0.243251\pi\)
0.721940 + 0.691956i \(0.243251\pi\)
\(854\) −31.8042 32.3925i −1.08832 1.10845i
\(855\) 9.51981i 0.325571i
\(856\) 26.0076 + 43.0572i 0.888921 + 1.47166i
\(857\) 37.5720i 1.28343i −0.766941 0.641717i \(-0.778222\pi\)
0.766941 0.641717i \(-0.221778\pi\)
\(858\) −0.589040 + 1.65218i −0.0201095 + 0.0564044i
\(859\) 12.7543i 0.435170i 0.976041 + 0.217585i \(0.0698180\pi\)
−0.976041 + 0.217585i \(0.930182\pi\)
\(860\) −4.47296 3.65387i −0.152527 0.124596i
\(861\) 16.8746 + 8.19485i 0.575085 + 0.279280i
\(862\) 0.304691 0.854618i 0.0103778 0.0291084i
\(863\) 51.1449i 1.74099i −0.492175 0.870496i \(-0.663798\pi\)
0.492175 0.870496i \(-0.336202\pi\)
\(864\) −5.60026 0.798200i −0.190525 0.0271553i
\(865\) −30.8599 −1.04927
\(866\) 3.30435 9.26827i 0.112287 0.314949i
\(867\) 16.8120i 0.570964i
\(868\) 16.7005 + 36.0562i 0.566852 + 1.22383i
\(869\) 23.4413i 0.795192i
\(870\) 1.15528 + 0.411883i 0.0391676 + 0.0139642i
\(871\) 5.13050 0.173840
\(872\) 29.1572 17.6117i 0.987388 0.596406i
\(873\) 19.1778i 0.649071i
\(874\) 66.1080 + 23.5690i 2.23614 + 0.797235i
\(875\) 28.2201 + 13.7046i 0.954014 + 0.463300i
\(876\) −1.34332 1.09733i −0.0453865 0.0370753i
\(877\) 13.8694i 0.468335i −0.972196 0.234168i \(-0.924764\pi\)
0.972196 0.234168i \(-0.0752365\pi\)
\(878\) 23.1856 + 8.26619i 0.782475 + 0.278970i
\(879\) 24.8790i 0.839149i
\(880\) −2.85219 14.0056i −0.0961472 0.472129i
\(881\) 5.92202i 0.199518i 0.995012 + 0.0997589i \(0.0318071\pi\)
−0.995012 + 0.0997589i \(0.968193\pi\)
\(882\) −3.15300 9.38396i −0.106167 0.315974i
\(883\) −3.17025 −0.106688 −0.0533438 0.998576i \(-0.516988\pi\)
−0.0533438 + 0.998576i \(0.516988\pi\)
\(884\) 0.301032 0.368515i 0.0101248 0.0123945i
\(885\) −18.2158 −0.612319
\(886\) 24.0915 + 8.58918i 0.809370 + 0.288559i
\(887\) −49.9010 −1.67551 −0.837756 0.546045i \(-0.816133\pi\)
−0.837756 + 0.546045i \(0.816133\pi\)
\(888\) 6.15839 + 10.1956i 0.206662 + 0.342142i
\(889\) 17.3283 35.6820i 0.581174 1.19674i
\(890\) −5.97378 + 16.7557i −0.200242 + 0.561651i
\(891\) −2.26057 −0.0757320
\(892\) 28.5119 + 23.2908i 0.954651 + 0.779834i
\(893\) 69.7644i 2.33458i
\(894\) −24.5840 8.76479i −0.822214 0.293138i
\(895\) −6.94891 −0.232276
\(896\) 28.6646 8.62212i 0.957617 0.288045i
\(897\) −4.52114 −0.150957
\(898\) −28.2707 10.0792i −0.943407 0.336347i
\(899\) 4.12014i 0.137414i
\(900\) 3.87443 + 3.16494i 0.129148 + 0.105498i
\(901\) 1.60881 0.0535972
\(902\) −7.61209 + 21.3509i −0.253455 + 0.710907i
\(903\) 2.11154 4.34802i 0.0702676 0.144693i
\(904\) −4.19301 6.94180i −0.139458 0.230881i
\(905\) −12.8785 −0.428096
\(906\) −19.3597 6.90219i −0.643184 0.229310i
\(907\) −2.60938 −0.0866431 −0.0433216 0.999061i \(-0.513794\pi\)
−0.0433216 + 0.999061i \(0.513794\pi\)
\(908\) 13.4835 16.5062i 0.447467 0.547776i
\(909\) 4.74208 0.157285
\(910\) −2.27346 2.31551i −0.0753644 0.0767584i
\(911\) 42.9082i 1.42161i −0.703388 0.710807i \(-0.748330\pi\)
0.703388 0.710807i \(-0.251670\pi\)
\(912\) 4.80720 + 23.6057i 0.159182 + 0.781662i
\(913\) 13.8698i 0.459024i
\(914\) 36.9049 + 13.1575i 1.22070 + 0.435210i
\(915\) 19.1778i 0.633999i
\(916\) −13.8954 11.3509i −0.459118 0.375044i
\(917\) 9.84857 20.2799i 0.325229 0.669702i
\(918\) 0.577639 + 0.205942i 0.0190649 + 0.00679709i
\(919\) 24.4217i 0.805598i 0.915288 + 0.402799i \(0.131963\pi\)
−0.915288 + 0.402799i \(0.868037\pi\)
\(920\) 31.5350 19.0479i 1.03968 0.627991i
\(921\) 17.0254 0.561005
\(922\) −31.3623 11.1814i −1.03286 0.368240i
\(923\) 0.702033i 0.0231077i
\(924\) 10.8541 5.02738i 0.357072 0.165389i
\(925\) 10.5340i 0.346356i
\(926\) 12.7348 35.7193i 0.418490 1.17381i
\(927\) 2.01040 0.0660301
\(928\) −3.07266 0.437944i −0.100865 0.0143762i
\(929\) 32.9150i 1.07991i 0.841695 + 0.539954i \(0.181558\pi\)
−0.841695 + 0.539954i \(0.818442\pi\)
\(930\) −5.63733 + 15.8120i −0.184855 + 0.518495i
\(931\) −33.1325 + 26.0676i −1.08587 + 0.854332i
\(932\) 23.0978 + 18.8681i 0.756594 + 0.618046i
\(933\) 23.2983i 0.762753i
\(934\) 8.25810 23.1628i 0.270213 0.757912i
\(935\) 1.54950i 0.0506739i
\(936\) −0.802350 1.32834i −0.0262256 0.0434182i
\(937\) 41.2683i 1.34818i 0.738651 + 0.674088i \(0.235463\pi\)
−0.738651 + 0.674088i \(0.764537\pi\)
\(938\) −24.5124 24.9658i −0.800358 0.815162i
\(939\) −15.0479 −0.491070
\(940\) 28.3613 + 23.1677i 0.925043 + 0.755648i
\(941\) −53.4508 −1.74245 −0.871223 0.490887i \(-0.836673\pi\)
−0.871223 + 0.490887i \(0.836673\pi\)
\(942\) 2.75917 7.73909i 0.0898985 0.252153i
\(943\) −58.4262 −1.90262
\(944\) 45.1687 9.19842i 1.47012 0.299383i
\(945\) 1.82694 3.76198i 0.0594302 0.122377i
\(946\) 5.50141 + 1.96138i 0.178866 + 0.0637699i
\(947\) −55.2631 −1.79581 −0.897905 0.440189i \(-0.854911\pi\)
−0.897905 + 0.440189i \(0.854911\pi\)
\(948\) 16.0616 + 13.1204i 0.521655 + 0.426129i
\(949\) 0.475840i 0.0154464i
\(950\) 7.15458 20.0676i 0.232125 0.651080i
\(951\) 22.4761 0.728838
\(952\) −3.23152 + 0.295814i −0.104734 + 0.00958738i
\(953\) −22.5760 −0.731309 −0.365654 0.930751i \(-0.619155\pi\)
−0.365654 + 0.930751i \(0.619155\pi\)
\(954\) 1.76198 4.94211i 0.0570461 0.160007i
\(955\) 0.664086i 0.0214893i
\(956\) −16.6218 + 20.3479i −0.537586 + 0.658097i
\(957\) −1.24029 −0.0400930
\(958\) 34.1018 + 12.1581i 1.10178 + 0.392810i
\(959\) −11.9064 5.78215i −0.384479 0.186715i
\(960\) 11.1928 + 5.88483i 0.361246 + 0.189932i
\(961\) 25.3912 0.819072
\(962\) −1.09733 + 3.07786i −0.0353793 + 0.0992341i
\(963\) −17.7845 −0.573098
\(964\) −12.8242 + 15.6990i −0.413038 + 0.505630i
\(965\) −17.6331 −0.567629
\(966\) 21.6010 + 22.0006i 0.695002 + 0.707857i
\(967\) 24.2911i 0.781150i −0.920571 0.390575i \(-0.872276\pi\)
0.920571 0.390575i \(-0.127724\pi\)
\(968\) −8.61310 14.2595i −0.276835 0.458319i
\(969\) 2.61159i 0.0838963i
\(970\) 14.3968 40.3812i 0.462255 1.29656i
\(971\) 24.9221i 0.799790i −0.916561 0.399895i \(-0.869047\pi\)
0.916561 0.399895i \(-0.130953\pi\)
\(972\) 1.26527 1.54890i 0.0405834 0.0496811i
\(973\) 16.5399 34.0584i 0.530244 1.09186i
\(974\) −0.446744 + 1.25306i −0.0143146 + 0.0401505i
\(975\) 1.37243i 0.0439530i
\(976\) 9.68419 + 47.5541i 0.309983 + 1.52217i
\(977\) 1.13273 0.0362392 0.0181196 0.999836i \(-0.494232\pi\)
0.0181196 + 0.999836i \(0.494232\pi\)
\(978\) −8.24028 + 23.1129i −0.263495 + 0.739068i
\(979\) 17.9887i 0.574921i
\(980\) −0.405550 + 22.1260i −0.0129548 + 0.706789i
\(981\) 12.0432i 0.384511i
\(982\) −32.0366 11.4218i −1.02233 0.364485i
\(983\) −11.8218 −0.377056 −0.188528 0.982068i \(-0.560372\pi\)
−0.188528 + 0.982068i \(0.560372\pi\)
\(984\) −10.3687 17.1660i −0.330541 0.547232i
\(985\) 7.82499i 0.249325i
\(986\) 0.316930 + 0.112993i 0.0100931 + 0.00359842i
\(987\) −13.3884 + 27.5690i −0.426158 + 0.877532i
\(988\) −4.18089 + 5.11812i −0.133012 + 0.162829i
\(989\) 15.0545i 0.478704i
\(990\) 4.75990 + 1.69702i 0.151280 + 0.0539347i
\(991\) 52.1176i 1.65557i −0.561045 0.827785i \(-0.689600\pi\)
0.561045 0.827785i \(-0.310400\pi\)
\(992\) 5.99401 42.0546i 0.190310 1.33524i
\(993\) 23.5315i 0.746750i
\(994\) −3.41620 + 3.35416i −0.108355 + 0.106387i
\(995\) −19.1028 −0.605599
\(996\) 9.50336 + 7.76310i 0.301125 + 0.245983i
\(997\) −26.2326 −0.830796 −0.415398 0.909640i \(-0.636358\pi\)
−0.415398 + 0.909640i \(0.636358\pi\)
\(998\) −35.7470 12.7446i −1.13155 0.403425i
\(999\) −4.21124 −0.133238
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.2.p.a.139.15 yes 16
3.2 odd 2 504.2.p.g.307.1 16
4.3 odd 2 672.2.p.a.559.14 16
7.6 odd 2 inner 168.2.p.a.139.16 yes 16
8.3 odd 2 inner 168.2.p.a.139.13 16
8.5 even 2 672.2.p.a.559.11 16
12.11 even 2 2016.2.p.g.559.6 16
21.20 even 2 504.2.p.g.307.2 16
24.5 odd 2 2016.2.p.g.559.11 16
24.11 even 2 504.2.p.g.307.4 16
28.27 even 2 672.2.p.a.559.3 16
56.13 odd 2 672.2.p.a.559.6 16
56.27 even 2 inner 168.2.p.a.139.14 yes 16
84.83 odd 2 2016.2.p.g.559.12 16
168.83 odd 2 504.2.p.g.307.3 16
168.125 even 2 2016.2.p.g.559.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.p.a.139.13 16 8.3 odd 2 inner
168.2.p.a.139.14 yes 16 56.27 even 2 inner
168.2.p.a.139.15 yes 16 1.1 even 1 trivial
168.2.p.a.139.16 yes 16 7.6 odd 2 inner
504.2.p.g.307.1 16 3.2 odd 2
504.2.p.g.307.2 16 21.20 even 2
504.2.p.g.307.3 16 168.83 odd 2
504.2.p.g.307.4 16 24.11 even 2
672.2.p.a.559.3 16 28.27 even 2
672.2.p.a.559.6 16 56.13 odd 2
672.2.p.a.559.11 16 8.5 even 2
672.2.p.a.559.14 16 4.3 odd 2
2016.2.p.g.559.5 16 168.125 even 2
2016.2.p.g.559.6 16 12.11 even 2
2016.2.p.g.559.11 16 24.5 odd 2
2016.2.p.g.559.12 16 84.83 odd 2