Properties

Label 168.2.p.a.139.13
Level $168$
Weight $2$
Character 168.139
Analytic conductor $1.341$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,2,Mod(139,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.139"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 168.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.20457921756784916168704.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 4x^{12} - 4x^{10} + 16x^{8} - 16x^{6} - 64x^{4} + 64x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.13
Root \(0.474920 - 1.33209i\) of defining polynomial
Character \(\chi\) \(=\) 168.139
Dual form 168.2.p.a.139.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33209 - 0.474920i) q^{2} -1.00000i q^{3} +(1.54890 - 1.26527i) q^{4} -1.58069 q^{5} +(-0.474920 - 1.33209i) q^{6} +(2.37995 + 1.15578i) q^{7} +(1.46237 - 2.42105i) q^{8} -1.00000 q^{9} +(-2.10562 + 0.750703i) q^{10} -2.26057 q^{11} +(-1.26527 - 1.54890i) q^{12} -0.548664 q^{13} +(3.71920 + 0.409313i) q^{14} +1.58069i q^{15} +(0.798200 - 3.91955i) q^{16} -0.433635i q^{17} +(-1.33209 + 0.474920i) q^{18} +6.02255i q^{19} +(-2.44834 + 2.00000i) q^{20} +(1.15578 - 2.37995i) q^{21} +(-3.01127 + 1.07359i) q^{22} +8.24028i q^{23} +(-2.42105 - 1.46237i) q^{24} -2.50141 q^{25} +(-0.730867 + 0.260571i) q^{26} +1.00000i q^{27} +(5.14869 - 1.22108i) q^{28} -0.548664i q^{29} +(0.750703 + 2.10562i) q^{30} +7.50941 q^{31} +(-0.798200 - 5.60026i) q^{32} +2.26057i q^{33} +(-0.205942 - 0.577639i) q^{34} +(-3.76198 - 1.82694i) q^{35} +(-1.54890 + 1.26527i) q^{36} -4.21124i q^{37} +(2.86023 + 8.02255i) q^{38} +0.548664i q^{39} +(-2.31156 + 3.82694i) q^{40} -7.09032i q^{41} +(0.409313 - 3.71920i) q^{42} -1.82694 q^{43} +(-3.50141 + 2.86023i) q^{44} +1.58069 q^{45} +(3.91347 + 10.9768i) q^{46} -11.5839 q^{47} +(-3.91955 - 0.798200i) q^{48} +(4.32834 + 5.50141i) q^{49} +(-3.33209 + 1.18797i) q^{50} -0.433635 q^{51} +(-0.849827 + 0.694206i) q^{52} -3.71005i q^{53} +(0.474920 + 1.33209i) q^{54} +3.57327 q^{55} +(6.27857 - 4.07180i) q^{56} +6.02255 q^{57} +(-0.260571 - 0.730867i) q^{58} -11.5240i q^{59} +(2.00000 + 2.44834i) q^{60} -12.1325 q^{61} +(10.0032 - 3.56636i) q^{62} +(-2.37995 - 1.15578i) q^{63} +(-3.72294 - 7.08094i) q^{64} +0.867270 q^{65} +(1.07359 + 3.01127i) q^{66} +9.35089 q^{67} +(-0.548664 - 0.671659i) q^{68} +8.24028 q^{69} +(-5.87892 - 0.646999i) q^{70} +1.27953i q^{71} +(-1.46237 + 2.42105i) q^{72} -0.867270i q^{73} +(-2.00000 - 5.60973i) q^{74} +2.50141i q^{75} +(7.62013 + 9.32834i) q^{76} +(-5.38005 - 2.61272i) q^{77} +(0.260571 + 0.730867i) q^{78} -10.3696i q^{79} +(-1.26171 + 6.19561i) q^{80} +1.00000 q^{81} +(-3.36733 - 9.44491i) q^{82} +6.13554i q^{83} +(-1.22108 - 5.14869i) q^{84} +0.685444i q^{85} +(-2.43364 + 0.867648i) q^{86} -0.548664 q^{87} +(-3.30579 + 5.47295i) q^{88} +7.95759i q^{89} +(2.10562 - 0.750703i) q^{90} +(-1.30579 - 0.634135i) q^{91} +(10.4261 + 12.7634i) q^{92} -7.50941i q^{93} +(-15.4307 + 5.50141i) q^{94} -9.51981i q^{95} +(-5.60026 + 0.798200i) q^{96} -19.1778i q^{97} +(8.37845 + 5.27273i) q^{98} +2.26057 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 2 q^{4} - 10 q^{8} - 16 q^{9} - 8 q^{11} - 14 q^{14} + 18 q^{16} - 2 q^{18} + 8 q^{22} + 16 q^{25} - 10 q^{28} - 16 q^{30} - 18 q^{32} + 24 q^{35} - 2 q^{36} - 4 q^{42} - 8 q^{43} + 52 q^{46}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33209 0.474920i 0.941927 0.335819i
\(3\) 1.00000i 0.577350i
\(4\) 1.54890 1.26527i 0.774451 0.632633i
\(5\) −1.58069 −0.706908 −0.353454 0.935452i \(-0.614993\pi\)
−0.353454 + 0.935452i \(0.614993\pi\)
\(6\) −0.474920 1.33209i −0.193885 0.543822i
\(7\) 2.37995 + 1.15578i 0.899537 + 0.436844i
\(8\) 1.46237 2.42105i 0.517026 0.855970i
\(9\) −1.00000 −0.333333
\(10\) −2.10562 + 0.750703i −0.665855 + 0.237393i
\(11\) −2.26057 −0.681588 −0.340794 0.940138i \(-0.610696\pi\)
−0.340794 + 0.940138i \(0.610696\pi\)
\(12\) −1.26527 1.54890i −0.365251 0.447130i
\(13\) −0.548664 −0.152172 −0.0760860 0.997101i \(-0.524242\pi\)
−0.0760860 + 0.997101i \(0.524242\pi\)
\(14\) 3.71920 + 0.409313i 0.993999 + 0.109394i
\(15\) 1.58069i 0.408134i
\(16\) 0.798200 3.91955i 0.199550 0.979888i
\(17\) 0.433635i 0.105172i −0.998616 0.0525860i \(-0.983254\pi\)
0.998616 0.0525860i \(-0.0167464\pi\)
\(18\) −1.33209 + 0.474920i −0.313976 + 0.111940i
\(19\) 6.02255i 1.38167i 0.723014 + 0.690834i \(0.242756\pi\)
−0.723014 + 0.690834i \(0.757244\pi\)
\(20\) −2.44834 + 2.00000i −0.547466 + 0.447214i
\(21\) 1.15578 2.37995i 0.252212 0.519348i
\(22\) −3.01127 + 1.07359i −0.642006 + 0.228890i
\(23\) 8.24028i 1.71822i 0.511794 + 0.859108i \(0.328981\pi\)
−0.511794 + 0.859108i \(0.671019\pi\)
\(24\) −2.42105 1.46237i −0.494194 0.298505i
\(25\) −2.50141 −0.500281
\(26\) −0.730867 + 0.260571i −0.143335 + 0.0511022i
\(27\) 1.00000i 0.192450i
\(28\) 5.14869 1.22108i 0.973010 0.230763i
\(29\) 0.548664i 0.101884i −0.998702 0.0509422i \(-0.983778\pi\)
0.998702 0.0509422i \(-0.0162224\pi\)
\(30\) 0.750703 + 2.10562i 0.137059 + 0.384432i
\(31\) 7.50941 1.34873 0.674365 0.738398i \(-0.264418\pi\)
0.674365 + 0.738398i \(0.264418\pi\)
\(32\) −0.798200 5.60026i −0.141103 0.989995i
\(33\) 2.26057i 0.393515i
\(34\) −0.205942 0.577639i −0.0353187 0.0990642i
\(35\) −3.76198 1.82694i −0.635890 0.308809i
\(36\) −1.54890 + 1.26527i −0.258150 + 0.210878i
\(37\) 4.21124i 0.692324i −0.938175 0.346162i \(-0.887485\pi\)
0.938175 0.346162i \(-0.112515\pi\)
\(38\) 2.86023 + 8.02255i 0.463990 + 1.30143i
\(39\) 0.548664i 0.0878565i
\(40\) −2.31156 + 3.82694i −0.365490 + 0.605092i
\(41\) 7.09032i 1.10732i −0.832742 0.553661i \(-0.813230\pi\)
0.832742 0.553661i \(-0.186770\pi\)
\(42\) 0.409313 3.71920i 0.0631584 0.573885i
\(43\) −1.82694 −0.278605 −0.139303 0.990250i \(-0.544486\pi\)
−0.139303 + 0.990250i \(0.544486\pi\)
\(44\) −3.50141 + 2.86023i −0.527857 + 0.431195i
\(45\) 1.58069 0.235636
\(46\) 3.91347 + 10.9768i 0.577009 + 1.61843i
\(47\) −11.5839 −1.68968 −0.844840 0.535018i \(-0.820305\pi\)
−0.844840 + 0.535018i \(0.820305\pi\)
\(48\) −3.91955 0.798200i −0.565738 0.115210i
\(49\) 4.32834 + 5.50141i 0.618334 + 0.785915i
\(50\) −3.33209 + 1.18797i −0.471228 + 0.168004i
\(51\) −0.433635 −0.0607210
\(52\) −0.849827 + 0.694206i −0.117850 + 0.0962691i
\(53\) 3.71005i 0.509615i −0.966992 0.254807i \(-0.917988\pi\)
0.966992 0.254807i \(-0.0820121\pi\)
\(54\) 0.474920 + 1.33209i 0.0646284 + 0.181274i
\(55\) 3.57327 0.481820
\(56\) 6.27857 4.07180i 0.839010 0.544117i
\(57\) 6.02255 0.797706
\(58\) −0.260571 0.730867i −0.0342147 0.0959676i
\(59\) 11.5240i 1.50029i −0.661273 0.750145i \(-0.729983\pi\)
0.661273 0.750145i \(-0.270017\pi\)
\(60\) 2.00000 + 2.44834i 0.258199 + 0.316080i
\(61\) −12.1325 −1.55341 −0.776706 0.629864i \(-0.783111\pi\)
−0.776706 + 0.629864i \(0.783111\pi\)
\(62\) 10.0032 3.56636i 1.27040 0.452929i
\(63\) −2.37995 1.15578i −0.299846 0.145615i
\(64\) −3.72294 7.08094i −0.465368 0.885117i
\(65\) 0.867270 0.107572
\(66\) 1.07359 + 3.01127i 0.132150 + 0.370662i
\(67\) 9.35089 1.14239 0.571196 0.820813i \(-0.306479\pi\)
0.571196 + 0.820813i \(0.306479\pi\)
\(68\) −0.548664 0.671659i −0.0665353 0.0814506i
\(69\) 8.24028 0.992013
\(70\) −5.87892 0.646999i −0.702666 0.0773312i
\(71\) 1.27953i 0.151852i 0.997113 + 0.0759262i \(0.0241913\pi\)
−0.997113 + 0.0759262i \(0.975809\pi\)
\(72\) −1.46237 + 2.42105i −0.172342 + 0.285323i
\(73\) 0.867270i 0.101506i −0.998711 0.0507531i \(-0.983838\pi\)
0.998711 0.0507531i \(-0.0161622\pi\)
\(74\) −2.00000 5.60973i −0.232495 0.652118i
\(75\) 2.50141i 0.288837i
\(76\) 7.62013 + 9.32834i 0.874089 + 1.07003i
\(77\) −5.38005 2.61272i −0.613114 0.297748i
\(78\) 0.260571 + 0.730867i 0.0295039 + 0.0827544i
\(79\) 10.3696i 1.16668i −0.812230 0.583338i \(-0.801747\pi\)
0.812230 0.583338i \(-0.198253\pi\)
\(80\) −1.26171 + 6.19561i −0.141064 + 0.692690i
\(81\) 1.00000 0.111111
\(82\) −3.36733 9.44491i −0.371859 1.04302i
\(83\) 6.13554i 0.673463i 0.941601 + 0.336732i \(0.109321\pi\)
−0.941601 + 0.336732i \(0.890679\pi\)
\(84\) −1.22108 5.14869i −0.133231 0.561768i
\(85\) 0.685444i 0.0743469i
\(86\) −2.43364 + 0.867648i −0.262426 + 0.0935609i
\(87\) −0.548664 −0.0588229
\(88\) −3.30579 + 5.47295i −0.352399 + 0.583418i
\(89\) 7.95759i 0.843503i 0.906712 + 0.421751i \(0.138584\pi\)
−0.906712 + 0.421751i \(0.861416\pi\)
\(90\) 2.10562 0.750703i 0.221952 0.0791310i
\(91\) −1.30579 0.634135i −0.136884 0.0664754i
\(92\) 10.4261 + 12.7634i 1.08700 + 1.33068i
\(93\) 7.50941i 0.778689i
\(94\) −15.4307 + 5.50141i −1.59156 + 0.567427i
\(95\) 9.51981i 0.976712i
\(96\) −5.60026 + 0.798200i −0.571574 + 0.0814660i
\(97\) 19.1778i 1.94721i −0.228233 0.973607i \(-0.573295\pi\)
0.228233 0.973607i \(-0.426705\pi\)
\(98\) 8.37845 + 5.27273i 0.846351 + 0.532626i
\(99\) 2.26057 0.227196
\(100\) −3.87443 + 3.16494i −0.387443 + 0.316494i
\(101\) 4.74208 0.471855 0.235927 0.971771i \(-0.424187\pi\)
0.235927 + 0.971771i \(0.424187\pi\)
\(102\) −0.577639 + 0.205942i −0.0571948 + 0.0203913i
\(103\) 2.01040 0.198090 0.0990452 0.995083i \(-0.468421\pi\)
0.0990452 + 0.995083i \(0.468421\pi\)
\(104\) −0.802350 + 1.32834i −0.0786769 + 0.130255i
\(105\) −1.82694 + 3.76198i −0.178291 + 0.367131i
\(106\) −1.76198 4.94211i −0.171138 0.480020i
\(107\) 17.7845 1.71929 0.859647 0.510888i \(-0.170683\pi\)
0.859647 + 0.510888i \(0.170683\pi\)
\(108\) 1.26527 + 1.54890i 0.121750 + 0.149043i
\(109\) 12.0432i 1.15353i 0.816909 + 0.576766i \(0.195686\pi\)
−0.816909 + 0.576766i \(0.804314\pi\)
\(110\) 4.75990 1.69702i 0.453839 0.161804i
\(111\) −4.21124 −0.399713
\(112\) 6.42982 8.40580i 0.607561 0.794273i
\(113\) −2.86727 −0.269730 −0.134865 0.990864i \(-0.543060\pi\)
−0.134865 + 0.990864i \(0.543060\pi\)
\(114\) 8.02255 2.86023i 0.751380 0.267885i
\(115\) 13.0254i 1.21462i
\(116\) −0.694206 0.849827i −0.0644554 0.0789045i
\(117\) 0.548664 0.0507240
\(118\) −5.47295 15.3509i −0.503826 1.41316i
\(119\) 0.501187 1.03203i 0.0459437 0.0946061i
\(120\) 3.82694 + 2.31156i 0.349350 + 0.211016i
\(121\) −5.88982 −0.535438
\(122\) −16.1616 + 5.76198i −1.46320 + 0.521665i
\(123\) −7.09032 −0.639312
\(124\) 11.6313 9.50141i 1.04453 0.853251i
\(125\) 11.8574 1.06056
\(126\) −3.71920 0.409313i −0.331333 0.0364645i
\(127\) 14.9928i 1.33039i −0.746669 0.665196i \(-0.768348\pi\)
0.746669 0.665196i \(-0.231652\pi\)
\(128\) −8.32215 7.66432i −0.735581 0.677436i
\(129\) 1.82694i 0.160853i
\(130\) 1.15528 0.411883i 0.101325 0.0361246i
\(131\) 8.52114i 0.744496i 0.928133 + 0.372248i \(0.121413\pi\)
−0.928133 + 0.372248i \(0.878587\pi\)
\(132\) 2.86023 + 3.50141i 0.248951 + 0.304758i
\(133\) −6.96075 + 14.3334i −0.603573 + 1.24286i
\(134\) 12.4562 4.44092i 1.07605 0.383637i
\(135\) 1.58069i 0.136045i
\(136\) −1.04985 0.634135i −0.0900240 0.0543766i
\(137\) 5.00281 0.427419 0.213709 0.976897i \(-0.431445\pi\)
0.213709 + 0.976897i \(0.431445\pi\)
\(138\) 10.9768 3.91347i 0.934403 0.333137i
\(139\) 14.3106i 1.21381i 0.794776 + 0.606903i \(0.207588\pi\)
−0.794776 + 0.606903i \(0.792412\pi\)
\(140\) −8.13850 + 1.93016i −0.687829 + 0.163128i
\(141\) 11.5839i 0.975538i
\(142\) 0.607674 + 1.70444i 0.0509949 + 0.143034i
\(143\) 1.24029 0.103719
\(144\) −0.798200 + 3.91955i −0.0665167 + 0.326629i
\(145\) 0.867270i 0.0720229i
\(146\) −0.411883 1.15528i −0.0340877 0.0956115i
\(147\) 5.50141 4.32834i 0.453748 0.356996i
\(148\) −5.32834 6.52280i −0.437987 0.536171i
\(149\) 18.4553i 1.51192i 0.654619 + 0.755959i \(0.272829\pi\)
−0.654619 + 0.755959i \(0.727171\pi\)
\(150\) 1.18797 + 3.33209i 0.0969970 + 0.272064i
\(151\) 14.5334i 1.18271i 0.806411 + 0.591356i \(0.201407\pi\)
−0.806411 + 0.591356i \(0.798593\pi\)
\(152\) 14.5809 + 8.80720i 1.18267 + 0.714358i
\(153\) 0.433635i 0.0350573i
\(154\) −8.40752 0.925281i −0.677497 0.0745613i
\(155\) −11.8701 −0.953428
\(156\) 0.694206 + 0.849827i 0.0555810 + 0.0680406i
\(157\) −5.80975 −0.463669 −0.231834 0.972755i \(-0.574473\pi\)
−0.231834 + 0.972755i \(0.574473\pi\)
\(158\) −4.92474 13.8132i −0.391791 1.09892i
\(159\) −3.71005 −0.294226
\(160\) 1.26171 + 8.85229i 0.0997470 + 0.699835i
\(161\) −9.52395 + 19.6115i −0.750593 + 1.54560i
\(162\) 1.33209 0.474920i 0.104659 0.0373132i
\(163\) −17.3509 −1.35903 −0.679513 0.733663i \(-0.737809\pi\)
−0.679513 + 0.733663i \(0.737809\pi\)
\(164\) −8.97114 10.9822i −0.700529 0.857567i
\(165\) 3.57327i 0.278179i
\(166\) 2.91389 + 8.17306i 0.226162 + 0.634353i
\(167\) 0.823767 0.0637450 0.0318725 0.999492i \(-0.489853\pi\)
0.0318725 + 0.999492i \(0.489853\pi\)
\(168\) −4.07180 6.27857i −0.314146 0.484402i
\(169\) −12.6990 −0.976844
\(170\) 0.325531 + 0.913070i 0.0249671 + 0.0700293i
\(171\) 6.02255i 0.460556i
\(172\) −2.82975 + 2.31156i −0.215766 + 0.176255i
\(173\) 19.5230 1.48430 0.742152 0.670231i \(-0.233805\pi\)
0.742152 + 0.670231i \(0.233805\pi\)
\(174\) −0.730867 + 0.260571i −0.0554069 + 0.0197539i
\(175\) −5.95322 2.89108i −0.450021 0.218545i
\(176\) −1.80439 + 8.86042i −0.136011 + 0.667880i
\(177\) −11.5240 −0.866193
\(178\) 3.77921 + 10.6002i 0.283264 + 0.794518i
\(179\) −4.39611 −0.328581 −0.164290 0.986412i \(-0.552533\pi\)
−0.164290 + 0.986412i \(0.552533\pi\)
\(180\) 2.44834 2.00000i 0.182489 0.149071i
\(181\) 8.14738 0.605590 0.302795 0.953056i \(-0.402080\pi\)
0.302795 + 0.953056i \(0.402080\pi\)
\(182\) −2.04059 0.224575i −0.151259 0.0166466i
\(183\) 12.1325i 0.896863i
\(184\) 19.9501 + 12.0503i 1.47074 + 0.888363i
\(185\) 6.65668i 0.489409i
\(186\) −3.56636 10.0032i −0.261499 0.733468i
\(187\) 0.980263i 0.0716839i
\(188\) −17.9423 + 14.6567i −1.30858 + 1.06895i
\(189\) −1.15578 + 2.37995i −0.0840707 + 0.173116i
\(190\) −4.52114 12.6812i −0.327998 0.919991i
\(191\) 0.420123i 0.0303990i 0.999884 + 0.0151995i \(0.00483834\pi\)
−0.999884 + 0.0151995i \(0.995162\pi\)
\(192\) −7.08094 + 3.72294i −0.511023 + 0.268680i
\(193\) −11.1553 −0.802974 −0.401487 0.915865i \(-0.631507\pi\)
−0.401487 + 0.915865i \(0.631507\pi\)
\(194\) −9.10792 25.5465i −0.653911 1.83413i
\(195\) 0.867270i 0.0621065i
\(196\) 13.6649 + 3.04464i 0.976066 + 0.217474i
\(197\) 4.95035i 0.352698i −0.984328 0.176349i \(-0.943571\pi\)
0.984328 0.176349i \(-0.0564287\pi\)
\(198\) 3.01127 1.07359i 0.214002 0.0762967i
\(199\) 12.0851 0.856687 0.428343 0.903616i \(-0.359097\pi\)
0.428343 + 0.903616i \(0.359097\pi\)
\(200\) −3.65798 + 6.05602i −0.258658 + 0.428225i
\(201\) 9.35089i 0.659561i
\(202\) 6.31686 2.25211i 0.444453 0.158458i
\(203\) 0.634135 1.30579i 0.0445076 0.0916488i
\(204\) −0.671659 + 0.548664i −0.0470255 + 0.0384142i
\(205\) 11.2076i 0.782775i
\(206\) 2.67802 0.954777i 0.186587 0.0665225i
\(207\) 8.24028i 0.572739i
\(208\) −0.437944 + 2.15052i −0.0303659 + 0.149111i
\(209\) 13.6144i 0.941728i
\(210\) −0.646999 + 5.87892i −0.0446472 + 0.405684i
\(211\) 6.17306 0.424971 0.212486 0.977164i \(-0.431844\pi\)
0.212486 + 0.977164i \(0.431844\pi\)
\(212\) −4.69421 5.74651i −0.322399 0.394672i
\(213\) 1.27953 0.0876720
\(214\) 23.6905 8.44622i 1.61945 0.577372i
\(215\) 2.88783 0.196948
\(216\) 2.42105 + 1.46237i 0.164731 + 0.0995017i
\(217\) 17.8720 + 8.67923i 1.21323 + 0.589185i
\(218\) 5.71956 + 16.0426i 0.387378 + 1.08654i
\(219\) −0.867270 −0.0586047
\(220\) 5.53465 4.52114i 0.373146 0.304815i
\(221\) 0.237920i 0.0160042i
\(222\) −5.60973 + 2.00000i −0.376500 + 0.134231i
\(223\) −18.4078 −1.23268 −0.616340 0.787480i \(-0.711385\pi\)
−0.616340 + 0.787480i \(0.711385\pi\)
\(224\) 4.57299 14.2509i 0.305546 0.952177i
\(225\) 2.50141 0.166760
\(226\) −3.81945 + 1.36172i −0.254066 + 0.0905804i
\(227\) 10.6567i 0.707309i −0.935376 0.353654i \(-0.884939\pi\)
0.935376 0.353654i \(-0.115061\pi\)
\(228\) 9.32834 7.62013i 0.617785 0.504655i
\(229\) 8.97114 0.592830 0.296415 0.955059i \(-0.404209\pi\)
0.296415 + 0.955059i \(0.404209\pi\)
\(230\) −6.18600 17.3509i −0.407893 1.14408i
\(231\) −2.61272 + 5.38005i −0.171905 + 0.353981i
\(232\) −1.32834 0.802350i −0.0872099 0.0526769i
\(233\) 14.9124 0.976942 0.488471 0.872580i \(-0.337555\pi\)
0.488471 + 0.872580i \(0.337555\pi\)
\(234\) 0.730867 0.260571i 0.0477783 0.0170341i
\(235\) 18.3106 1.19445
\(236\) −14.5809 17.8495i −0.949134 1.16190i
\(237\) −10.3696 −0.673580
\(238\) 0.177492 1.61278i 0.0115051 0.104541i
\(239\) 13.1370i 0.849759i −0.905250 0.424880i \(-0.860316\pi\)
0.905250 0.424880i \(-0.139684\pi\)
\(240\) 6.19561 + 1.26171i 0.399925 + 0.0814431i
\(241\) 10.1355i 0.652888i 0.945217 + 0.326444i \(0.105850\pi\)
−0.945217 + 0.326444i \(0.894150\pi\)
\(242\) −7.84574 + 2.79719i −0.504343 + 0.179810i
\(243\) 1.00000i 0.0641500i
\(244\) −18.7921 + 15.3509i −1.20304 + 0.982740i
\(245\) −6.84179 8.69604i −0.437106 0.555570i
\(246\) −9.44491 + 3.36733i −0.602185 + 0.214693i
\(247\) 3.30435i 0.210251i
\(248\) 10.9815 18.1806i 0.697329 1.15447i
\(249\) 6.13554 0.388824
\(250\) 15.7951 5.63132i 0.998970 0.356156i
\(251\) 22.7018i 1.43292i 0.697626 + 0.716462i \(0.254240\pi\)
−0.697626 + 0.716462i \(0.745760\pi\)
\(252\) −5.14869 + 1.22108i −0.324337 + 0.0769209i
\(253\) 18.6277i 1.17112i
\(254\) −7.12035 19.9716i −0.446771 1.25313i
\(255\) 0.685444 0.0429242
\(256\) −14.7258 6.25717i −0.920360 0.391073i
\(257\) 16.1326i 1.00632i −0.864192 0.503162i \(-0.832170\pi\)
0.864192 0.503162i \(-0.167830\pi\)
\(258\) 0.867648 + 2.43364i 0.0540174 + 0.151511i
\(259\) 4.86727 10.0225i 0.302437 0.622771i
\(260\) 1.34332 1.09733i 0.0833090 0.0680534i
\(261\) 0.548664i 0.0339614i
\(262\) 4.04686 + 11.3509i 0.250016 + 0.701260i
\(263\) 15.0581i 0.928519i 0.885699 + 0.464260i \(0.153680\pi\)
−0.885699 + 0.464260i \(0.846320\pi\)
\(264\) 5.47295 + 3.30579i 0.336837 + 0.203458i
\(265\) 5.86446i 0.360251i
\(266\) −2.46511 + 22.3991i −0.151145 + 1.37338i
\(267\) 7.95759 0.486996
\(268\) 14.4836 11.8314i 0.884728 0.722716i
\(269\) 8.76288 0.534282 0.267141 0.963657i \(-0.413921\pi\)
0.267141 + 0.963657i \(0.413921\pi\)
\(270\) −0.750703 2.10562i −0.0456863 0.128144i
\(271\) 4.31238 0.261958 0.130979 0.991385i \(-0.458188\pi\)
0.130979 + 0.991385i \(0.458188\pi\)
\(272\) −1.69965 0.346128i −0.103057 0.0209871i
\(273\) −0.634135 + 1.30579i −0.0383796 + 0.0790302i
\(274\) 6.66417 2.37593i 0.402597 0.143535i
\(275\) 5.65460 0.340985
\(276\) 12.7634 10.4261i 0.768266 0.627580i
\(277\) 25.5528i 1.53532i −0.640857 0.767661i \(-0.721421\pi\)
0.640857 0.767661i \(-0.278579\pi\)
\(278\) 6.79636 + 19.0629i 0.407619 + 1.14332i
\(279\) −7.50941 −0.449577
\(280\) −9.92450 + 6.43627i −0.593103 + 0.384640i
\(281\) 2.17501 0.129751 0.0648753 0.997893i \(-0.479335\pi\)
0.0648753 + 0.997893i \(0.479335\pi\)
\(282\) 5.50141 + 15.4307i 0.327604 + 0.918885i
\(283\) 12.2880i 0.730446i −0.930920 0.365223i \(-0.880993\pi\)
0.930920 0.365223i \(-0.119007\pi\)
\(284\) 1.61895 + 1.98187i 0.0960669 + 0.117602i
\(285\) −9.51981 −0.563905
\(286\) 1.65218 0.589040i 0.0976953 0.0348307i
\(287\) 8.19485 16.8746i 0.483727 0.996077i
\(288\) 0.798200 + 5.60026i 0.0470344 + 0.329998i
\(289\) 16.8120 0.988939
\(290\) 0.411883 + 1.15528i 0.0241866 + 0.0678402i
\(291\) −19.1778 −1.12422
\(292\) −1.09733 1.34332i −0.0642163 0.0786117i
\(293\) −24.8790 −1.45345 −0.726724 0.686929i \(-0.758958\pi\)
−0.726724 + 0.686929i \(0.758958\pi\)
\(294\) 5.27273 8.37845i 0.307512 0.488641i
\(295\) 18.2158i 1.06057i
\(296\) −10.1956 6.15839i −0.592608 0.357949i
\(297\) 2.26057i 0.131172i
\(298\) 8.76479 + 24.5840i 0.507730 + 1.42412i
\(299\) 4.52114i 0.261464i
\(300\) 3.16494 + 3.87443i 0.182728 + 0.223691i
\(301\) −4.34802 2.11154i −0.250616 0.121707i
\(302\) 6.90219 + 19.3597i 0.397177 + 1.11403i
\(303\) 4.74208i 0.272426i
\(304\) 23.6057 + 4.80720i 1.35388 + 0.275712i
\(305\) 19.1778 1.09812
\(306\) 0.205942 + 0.577639i 0.0117729 + 0.0330214i
\(307\) 17.0254i 0.971689i 0.874045 + 0.485844i \(0.161488\pi\)
−0.874045 + 0.485844i \(0.838512\pi\)
\(308\) −11.6390 + 2.76034i −0.663192 + 0.157285i
\(309\) 2.01040i 0.114368i
\(310\) −15.8120 + 5.63733i −0.898059 + 0.320179i
\(311\) 23.2983 1.32113 0.660564 0.750770i \(-0.270317\pi\)
0.660564 + 0.750770i \(0.270317\pi\)
\(312\) 1.32834 + 0.802350i 0.0752025 + 0.0454241i
\(313\) 15.0479i 0.850558i −0.905062 0.425279i \(-0.860176\pi\)
0.905062 0.425279i \(-0.139824\pi\)
\(314\) −7.73909 + 2.75917i −0.436742 + 0.155709i
\(315\) 3.76198 + 1.82694i 0.211963 + 0.102936i
\(316\) −13.1204 16.0616i −0.738078 0.903533i
\(317\) 22.4761i 1.26238i −0.775627 0.631192i \(-0.782566\pi\)
0.775627 0.631192i \(-0.217434\pi\)
\(318\) −4.94211 + 1.76198i −0.277140 + 0.0988067i
\(319\) 1.24029i 0.0694431i
\(320\) 5.88483 + 11.1928i 0.328972 + 0.625697i
\(321\) 17.7845i 0.992635i
\(322\) −3.37285 + 30.6473i −0.187962 + 1.70790i
\(323\) 2.61159 0.145313
\(324\) 1.54890 1.26527i 0.0860502 0.0702926i
\(325\) 1.37243 0.0761288
\(326\) −23.1129 + 8.24028i −1.28010 + 0.456387i
\(327\) 12.0432 0.665992
\(328\) −17.1660 10.3687i −0.947834 0.572514i
\(329\) −27.5690 13.3884i −1.51993 0.738127i
\(330\) −1.69702 4.75990i −0.0934177 0.262024i
\(331\) −23.5315 −1.29341 −0.646705 0.762740i \(-0.723853\pi\)
−0.646705 + 0.762740i \(0.723853\pi\)
\(332\) 7.76310 + 9.50336i 0.426055 + 0.521564i
\(333\) 4.21124i 0.230775i
\(334\) 1.09733 0.391223i 0.0600431 0.0214068i
\(335\) −14.7809 −0.807567
\(336\) −8.40580 6.42982i −0.458574 0.350775i
\(337\) 8.77682 0.478104 0.239052 0.971007i \(-0.423163\pi\)
0.239052 + 0.971007i \(0.423163\pi\)
\(338\) −16.9161 + 6.03099i −0.920115 + 0.328042i
\(339\) 2.86727i 0.155729i
\(340\) 0.867270 + 1.06169i 0.0470343 + 0.0575781i
\(341\) −16.9756 −0.919278
\(342\) −2.86023 8.02255i −0.154663 0.433810i
\(343\) 3.94283 + 18.0957i 0.212893 + 0.977076i
\(344\) −2.67166 + 4.42310i −0.144046 + 0.238478i
\(345\) −13.0254 −0.701262
\(346\) 26.0063 9.27185i 1.39811 0.498457i
\(347\) −4.00489 −0.214994 −0.107497 0.994205i \(-0.534284\pi\)
−0.107497 + 0.994205i \(0.534284\pi\)
\(348\) −0.849827 + 0.694206i −0.0455555 + 0.0372134i
\(349\) −3.43649 −0.183951 −0.0919756 0.995761i \(-0.529318\pi\)
−0.0919756 + 0.995761i \(0.529318\pi\)
\(350\) −9.30323 1.02386i −0.497279 0.0547275i
\(351\) 0.548664i 0.0292855i
\(352\) 1.80439 + 12.6598i 0.0961742 + 0.674769i
\(353\) 23.0903i 1.22897i 0.788927 + 0.614487i \(0.210637\pi\)
−0.788927 + 0.614487i \(0.789363\pi\)
\(354\) −15.3509 + 5.47295i −0.815891 + 0.290884i
\(355\) 2.02255i 0.107346i
\(356\) 10.0685 + 12.3255i 0.533628 + 0.653252i
\(357\) −1.03203 0.501187i −0.0546208 0.0265256i
\(358\) −5.85600 + 2.08780i −0.309499 + 0.110344i
\(359\) 21.8882i 1.15522i 0.816315 + 0.577608i \(0.196014\pi\)
−0.816315 + 0.577608i \(0.803986\pi\)
\(360\) 2.31156 3.82694i 0.121830 0.201697i
\(361\) −17.2711 −0.909004
\(362\) 10.8530 3.86935i 0.570421 0.203368i
\(363\) 5.88982i 0.309135i
\(364\) −2.82490 + 0.669963i −0.148065 + 0.0351156i
\(365\) 1.37089i 0.0717556i
\(366\) 5.76198 + 16.1616i 0.301183 + 0.844779i
\(367\) −27.9276 −1.45781 −0.728905 0.684614i \(-0.759971\pi\)
−0.728905 + 0.684614i \(0.759971\pi\)
\(368\) 32.2982 + 6.57739i 1.68366 + 0.342870i
\(369\) 7.09032i 0.369107i
\(370\) 3.16139 + 8.86727i 0.164353 + 0.460987i
\(371\) 4.28801 8.82975i 0.222622 0.458418i
\(372\) −9.50141 11.6313i −0.492625 0.603057i
\(373\) 15.2403i 0.789111i −0.918872 0.394555i \(-0.870899\pi\)
0.918872 0.394555i \(-0.129101\pi\)
\(374\) 0.465546 + 1.30579i 0.0240728 + 0.0675210i
\(375\) 11.8574i 0.612315i
\(376\) −16.9399 + 28.0451i −0.873609 + 1.44632i
\(377\) 0.301032i 0.0155039i
\(378\) −0.409313 + 3.71920i −0.0210528 + 0.191295i
\(379\) 11.4864 0.590018 0.295009 0.955494i \(-0.404677\pi\)
0.295009 + 0.955494i \(0.404677\pi\)
\(380\) −12.0451 14.7453i −0.617900 0.756416i
\(381\) −14.9928 −0.768102
\(382\) 0.199525 + 0.559640i 0.0102086 + 0.0286337i
\(383\) 22.4746 1.14840 0.574198 0.818716i \(-0.305314\pi\)
0.574198 + 0.818716i \(0.305314\pi\)
\(384\) −7.66432 + 8.32215i −0.391118 + 0.424688i
\(385\) 8.50422 + 4.12992i 0.433415 + 0.210480i
\(386\) −14.8598 + 5.29786i −0.756343 + 0.269654i
\(387\) 1.82694 0.0928684
\(388\) −24.2651 29.7046i −1.23187 1.50802i
\(389\) 20.5907i 1.04399i 0.852949 + 0.521994i \(0.174812\pi\)
−0.852949 + 0.521994i \(0.825188\pi\)
\(390\) −0.411883 1.15528i −0.0208565 0.0584998i
\(391\) 3.57327 0.180708
\(392\) 19.6488 2.43402i 0.992414 0.122937i
\(393\) 8.52114 0.429835
\(394\) −2.35102 6.59428i −0.118442 0.332215i
\(395\) 16.3912i 0.824732i
\(396\) 3.50141 2.86023i 0.175952 0.143732i
\(397\) 26.8778 1.34896 0.674479 0.738294i \(-0.264368\pi\)
0.674479 + 0.738294i \(0.264368\pi\)
\(398\) 16.0983 5.73943i 0.806936 0.287692i
\(399\) 14.3334 + 6.96075i 0.717566 + 0.348473i
\(400\) −1.99662 + 9.80438i −0.0998311 + 0.490219i
\(401\) 9.00281 0.449579 0.224789 0.974407i \(-0.427831\pi\)
0.224789 + 0.974407i \(0.427831\pi\)
\(402\) −4.44092 12.4562i −0.221493 0.621258i
\(403\) −4.12014 −0.205239
\(404\) 7.34503 6.00000i 0.365429 0.298511i
\(405\) −1.58069 −0.0785453
\(406\) 0.224575 2.04059i 0.0111455 0.101273i
\(407\) 9.51981i 0.471879i
\(408\) −0.634135 + 1.04985i −0.0313944 + 0.0519754i
\(409\) 4.91237i 0.242901i 0.992597 + 0.121450i \(0.0387545\pi\)
−0.992597 + 0.121450i \(0.961245\pi\)
\(410\) 5.32272 + 14.9295i 0.262870 + 0.737316i
\(411\) 5.00281i 0.246770i
\(412\) 3.11391 2.54369i 0.153411 0.125319i
\(413\) 13.3192 27.4265i 0.655393 1.34957i
\(414\) −3.91347 10.9768i −0.192336 0.539478i
\(415\) 9.69841i 0.476076i
\(416\) 0.437944 + 3.07266i 0.0214720 + 0.150650i
\(417\) 14.3106 0.700791
\(418\) −6.46574 18.1355i −0.316250 0.887038i
\(419\) 4.17501i 0.203963i 0.994786 + 0.101981i \(0.0325182\pi\)
−0.994786 + 0.101981i \(0.967482\pi\)
\(420\) 1.93016 + 8.13850i 0.0941820 + 0.397118i
\(421\) 3.11391i 0.151763i 0.997117 + 0.0758814i \(0.0241770\pi\)
−0.997117 + 0.0758814i \(0.975823\pi\)
\(422\) 8.22305 2.93171i 0.400292 0.142713i
\(423\) 11.5839 0.563227
\(424\) −8.98221 5.42547i −0.436215 0.263484i
\(425\) 1.08470i 0.0526155i
\(426\) 1.70444 0.607674i 0.0825806 0.0294419i
\(427\) −28.8748 14.0225i −1.39735 0.678599i
\(428\) 27.5465 22.5022i 1.33151 1.08768i
\(429\) 1.24029i 0.0598820i
\(430\) 3.84683 1.37149i 0.185511 0.0661389i
\(431\) 0.641564i 0.0309030i 0.999881 + 0.0154515i \(0.00491857\pi\)
−0.999881 + 0.0154515i \(0.995081\pi\)
\(432\) 3.91955 + 0.798200i 0.188579 + 0.0384034i
\(433\) 6.95772i 0.334366i −0.985926 0.167183i \(-0.946533\pi\)
0.985926 0.167183i \(-0.0534671\pi\)
\(434\) 27.9290 + 3.07370i 1.34064 + 0.147542i
\(435\) 0.867270 0.0415824
\(436\) 15.2379 + 18.6538i 0.729763 + 0.893355i
\(437\) −49.6275 −2.37400
\(438\) −1.15528 + 0.411883i −0.0552013 + 0.0196806i
\(439\) −17.4055 −0.830717 −0.415359 0.909658i \(-0.636344\pi\)
−0.415359 + 0.909658i \(0.636344\pi\)
\(440\) 5.22545 8.65106i 0.249114 0.412423i
\(441\) −4.32834 5.50141i −0.206111 0.261972i
\(442\) 0.112993 + 0.316930i 0.00537452 + 0.0150748i
\(443\) 18.0856 0.859271 0.429635 0.903002i \(-0.358642\pi\)
0.429635 + 0.903002i \(0.358642\pi\)
\(444\) −6.52280 + 5.32834i −0.309558 + 0.252872i
\(445\) 12.5785i 0.596279i
\(446\) −24.5208 + 8.74224i −1.16109 + 0.413957i
\(447\) 18.4553 0.872906
\(448\) −0.676409 21.1552i −0.0319573 0.999489i
\(449\) −21.2229 −1.00157 −0.500786 0.865571i \(-0.666956\pi\)
−0.500786 + 0.865571i \(0.666956\pi\)
\(450\) 3.33209 1.18797i 0.157076 0.0560013i
\(451\) 16.0282i 0.754737i
\(452\) −4.44112 + 3.62786i −0.208893 + 0.170640i
\(453\) 14.5334 0.682839
\(454\) −5.06107 14.1956i −0.237528 0.666233i
\(455\) 2.06406 + 1.00237i 0.0967647 + 0.0469920i
\(456\) 8.80720 14.5809i 0.412435 0.682812i
\(457\) 27.7046 1.29597 0.647983 0.761655i \(-0.275613\pi\)
0.647983 + 0.761655i \(0.275613\pi\)
\(458\) 11.9503 4.26057i 0.558402 0.199083i
\(459\) 0.433635 0.0202403
\(460\) −16.4806 20.1750i −0.768410 0.940665i
\(461\) 23.5438 1.09654 0.548272 0.836300i \(-0.315286\pi\)
0.548272 + 0.836300i \(0.315286\pi\)
\(462\) −0.925281 + 8.40752i −0.0430480 + 0.391153i
\(463\) 26.8145i 1.24618i 0.782151 + 0.623089i \(0.214122\pi\)
−0.782151 + 0.623089i \(0.785878\pi\)
\(464\) −2.15052 0.437944i −0.0998352 0.0203310i
\(465\) 11.8701i 0.550462i
\(466\) 19.8645 7.08217i 0.920207 0.328075i
\(467\) 17.3884i 0.804640i −0.915499 0.402320i \(-0.868204\pi\)
0.915499 0.402320i \(-0.131796\pi\)
\(468\) 0.849827 0.694206i 0.0392833 0.0320897i
\(469\) 22.2547 + 10.8076i 1.02762 + 0.499048i
\(470\) 24.3912 8.69604i 1.12508 0.401118i
\(471\) 5.80975i 0.267699i
\(472\) −27.9000 16.8523i −1.28420 0.775690i
\(473\) 4.12992 0.189894
\(474\) −13.8132 + 4.92474i −0.634463 + 0.226201i
\(475\) 15.0648i 0.691222i
\(476\) −0.529504 2.23265i −0.0242698 0.102333i
\(477\) 3.71005i 0.169872i
\(478\) −6.23900 17.4996i −0.285365 0.800411i
\(479\) −25.6003 −1.16971 −0.584854 0.811139i \(-0.698848\pi\)
−0.584854 + 0.811139i \(0.698848\pi\)
\(480\) 8.85229 1.26171i 0.404050 0.0575889i
\(481\) 2.31056i 0.105352i
\(482\) 4.81357 + 13.5014i 0.219252 + 0.614972i
\(483\) 19.6115 + 9.52395i 0.892352 + 0.433355i
\(484\) −9.12276 + 7.45219i −0.414671 + 0.338736i
\(485\) 30.3143i 1.37650i
\(486\) −0.474920 1.33209i −0.0215428 0.0604246i
\(487\) 0.940673i 0.0426260i −0.999773 0.0213130i \(-0.993215\pi\)
0.999773 0.0213130i \(-0.00678464\pi\)
\(488\) −17.7423 + 29.3734i −0.803155 + 1.32967i
\(489\) 17.3509i 0.784634i
\(490\) −13.2438 8.33457i −0.598292 0.376518i
\(491\) −24.0500 −1.08536 −0.542680 0.839939i \(-0.682590\pi\)
−0.542680 + 0.839939i \(0.682590\pi\)
\(492\) −10.9822 + 8.97114i −0.495116 + 0.404450i
\(493\) −0.237920 −0.0107154
\(494\) −1.56930 4.40168i −0.0706063 0.198041i
\(495\) −3.57327 −0.160607
\(496\) 5.99401 29.4335i 0.269139 1.32160i
\(497\) −1.47886 + 3.04522i −0.0663358 + 0.136597i
\(498\) 8.17306 2.91389i 0.366244 0.130574i
\(499\) −26.8354 −1.20132 −0.600658 0.799506i \(-0.705095\pi\)
−0.600658 + 0.799506i \(0.705095\pi\)
\(500\) 18.3660 15.0028i 0.821353 0.670946i
\(501\) 0.823767i 0.0368032i
\(502\) 10.7815 + 30.2407i 0.481203 + 1.34971i
\(503\) 1.13297 0.0505166 0.0252583 0.999681i \(-0.491959\pi\)
0.0252583 + 0.999681i \(0.491959\pi\)
\(504\) −6.27857 + 4.07180i −0.279670 + 0.181372i
\(505\) −7.49578 −0.333558
\(506\) −8.84667 24.8137i −0.393283 1.10310i
\(507\) 12.6990i 0.563981i
\(508\) −18.9698 23.2223i −0.841650 1.03032i
\(509\) −11.7937 −0.522745 −0.261373 0.965238i \(-0.584175\pi\)
−0.261373 + 0.965238i \(0.584175\pi\)
\(510\) 0.913070 0.325531i 0.0404314 0.0144148i
\(511\) 1.00237 2.06406i 0.0443424 0.0913087i
\(512\) −22.5876 1.34154i −0.998241 0.0592883i
\(513\) −6.02255 −0.265902
\(514\) −7.66169 21.4900i −0.337943 0.947883i
\(515\) −3.17783 −0.140032
\(516\) 2.31156 + 2.82975i 0.101761 + 0.124573i
\(517\) 26.1862 1.15167
\(518\) 1.72372 15.6625i 0.0757357 0.688169i
\(519\) 19.5230i 0.856964i
\(520\) 1.26827 2.09970i 0.0556173 0.0920780i
\(521\) 14.6991i 0.643979i −0.946743 0.321990i \(-0.895648\pi\)
0.946743 0.321990i \(-0.104352\pi\)
\(522\) 0.260571 + 0.730867i 0.0114049 + 0.0319892i
\(523\) 7.69507i 0.336482i −0.985746 0.168241i \(-0.946191\pi\)
0.985746 0.168241i \(-0.0538086\pi\)
\(524\) 10.7815 + 13.1984i 0.470993 + 0.576576i
\(525\) −2.89108 + 5.95322i −0.126177 + 0.259820i
\(526\) 7.15136 + 20.0586i 0.311814 + 0.874597i
\(527\) 3.25634i 0.141849i
\(528\) 8.86042 + 1.80439i 0.385600 + 0.0785259i
\(529\) −44.9022 −1.95227
\(530\) 2.78515 + 7.81196i 0.120979 + 0.339330i
\(531\) 11.5240i 0.500097i
\(532\) 7.35402 + 31.0082i 0.318837 + 1.34438i
\(533\) 3.89020i 0.168503i
\(534\) 10.6002 3.77921i 0.458715 0.163543i
\(535\) −28.1119 −1.21538
\(536\) 13.6745 22.6389i 0.590647 0.977854i
\(537\) 4.39611i 0.189706i
\(538\) 11.6729 4.16166i 0.503255 0.179422i
\(539\) −9.78452 12.4363i −0.421449 0.535670i
\(540\) −2.00000 2.44834i −0.0860663 0.105360i
\(541\) 11.6313i 0.500071i −0.968237 0.250035i \(-0.919558\pi\)
0.968237 0.250035i \(-0.0804422\pi\)
\(542\) 5.74446 2.04803i 0.246746 0.0879706i
\(543\) 8.14738i 0.349637i
\(544\) −2.42847 + 0.346128i −0.104120 + 0.0148401i
\(545\) 19.0367i 0.815441i
\(546\) −0.224575 + 2.04059i −0.00961094 + 0.0873293i
\(547\) 21.0048 0.898099 0.449049 0.893507i \(-0.351763\pi\)
0.449049 + 0.893507i \(0.351763\pi\)
\(548\) 7.74887 6.32989i 0.331015 0.270399i
\(549\) 12.1325 0.517804
\(550\) 7.53242 2.68548i 0.321183 0.114509i
\(551\) 3.30435 0.140770
\(552\) 12.0503 19.9501i 0.512897 0.849133i
\(553\) 11.9850 24.6792i 0.509655 1.04947i
\(554\) −12.1355 34.0386i −0.515590 1.44616i
\(555\) 6.65668 0.282560
\(556\) 18.1067 + 22.1657i 0.767894 + 0.940033i
\(557\) 34.7501i 1.47241i 0.676760 + 0.736204i \(0.263383\pi\)
−0.676760 + 0.736204i \(0.736617\pi\)
\(558\) −10.0032 + 3.56636i −0.423468 + 0.150976i
\(559\) 1.00237 0.0423959
\(560\) −10.1636 + 13.2870i −0.429490 + 0.561478i
\(561\) 0.980263 0.0413867
\(562\) 2.89731 1.03296i 0.122215 0.0435727i
\(563\) 16.9124i 0.712771i 0.934339 + 0.356386i \(0.115991\pi\)
−0.934339 + 0.356386i \(0.884009\pi\)
\(564\) 14.6567 + 17.9423i 0.617158 + 0.755507i
\(565\) 4.53228 0.190674
\(566\) −5.83581 16.3687i −0.245298 0.688027i
\(567\) 2.37995 + 1.15578i 0.0999486 + 0.0485382i
\(568\) 3.09781 + 1.87115i 0.129981 + 0.0785117i
\(569\) −20.4856 −0.858800 −0.429400 0.903114i \(-0.641275\pi\)
−0.429400 + 0.903114i \(0.641275\pi\)
\(570\) −12.6812 + 4.52114i −0.531157 + 0.189370i
\(571\) 46.0132 1.92559 0.962796 0.270229i \(-0.0870994\pi\)
0.962796 + 0.270229i \(0.0870994\pi\)
\(572\) 1.92109 1.56930i 0.0803250 0.0656158i
\(573\) 0.420123 0.0175509
\(574\) 2.90216 26.3703i 0.121134 1.10068i
\(575\) 20.6123i 0.859591i
\(576\) 3.72294 + 7.08094i 0.155123 + 0.295039i
\(577\) 35.8191i 1.49117i 0.666411 + 0.745585i \(0.267830\pi\)
−0.666411 + 0.745585i \(0.732170\pi\)
\(578\) 22.3950 7.98433i 0.931508 0.332104i
\(579\) 11.1553i 0.463598i
\(580\) 1.09733 + 1.34332i 0.0455641 + 0.0557782i
\(581\) −7.09134 + 14.6023i −0.294198 + 0.605805i
\(582\) −25.5465 + 9.10792i −1.05894 + 0.377536i
\(583\) 8.38684i 0.347347i
\(584\) −2.09970 1.26827i −0.0868863 0.0524814i
\(585\) −0.867270 −0.0358572
\(586\) −33.1410 + 11.8155i −1.36904 + 0.488095i
\(587\) 30.4007i 1.25477i −0.778708 0.627387i \(-0.784125\pi\)
0.778708 0.627387i \(-0.215875\pi\)
\(588\) 3.04464 13.6649i 0.125559 0.563532i
\(589\) 45.2258i 1.86350i
\(590\) 8.65106 + 24.2651i 0.356159 + 0.998977i
\(591\) −4.95035 −0.203630
\(592\) −16.5062 3.36141i −0.678399 0.138153i
\(593\) 23.3065i 0.957084i −0.878065 0.478542i \(-0.841165\pi\)
0.878065 0.478542i \(-0.158835\pi\)
\(594\) −1.07359 3.01127i −0.0440499 0.123554i
\(595\) −0.792224 + 1.63132i −0.0324780 + 0.0668778i
\(596\) 23.3509 + 28.5855i 0.956490 + 1.17091i
\(597\) 12.0851i 0.494608i
\(598\) −2.14718 6.02255i −0.0878047 0.246280i
\(599\) 19.9547i 0.815329i −0.913132 0.407664i \(-0.866343\pi\)
0.913132 0.407664i \(-0.133657\pi\)
\(600\) 6.05602 + 3.65798i 0.247236 + 0.149337i
\(601\) 27.0028i 1.10147i 0.834681 + 0.550734i \(0.185652\pi\)
−0.834681 + 0.550734i \(0.814348\pi\)
\(602\) −6.79474 0.747789i −0.276933 0.0304776i
\(603\) −9.35089 −0.380798
\(604\) 18.3886 + 22.5108i 0.748222 + 0.915952i
\(605\) 9.31000 0.378505
\(606\) −2.25211 6.31686i −0.0914856 0.256605i
\(607\) −1.63416 −0.0663283 −0.0331642 0.999450i \(-0.510558\pi\)
−0.0331642 + 0.999450i \(0.510558\pi\)
\(608\) 33.7278 4.80720i 1.36784 0.194958i
\(609\) −1.30579 0.634135i −0.0529134 0.0256965i
\(610\) 25.5465 9.10792i 1.03435 0.368769i
\(611\) 6.35565 0.257122
\(612\) 0.548664 + 0.671659i 0.0221784 + 0.0271502i
\(613\) 16.3500i 0.660369i −0.943916 0.330184i \(-0.892889\pi\)
0.943916 0.330184i \(-0.107111\pi\)
\(614\) 8.08568 + 22.6792i 0.326311 + 0.915259i
\(615\) 11.2076 0.451935
\(616\) −14.1932 + 9.20459i −0.571859 + 0.370863i
\(617\) 0.220365 0.00887154 0.00443577 0.999990i \(-0.498588\pi\)
0.00443577 + 0.999990i \(0.498588\pi\)
\(618\) −0.954777 2.67802i −0.0384068 0.107726i
\(619\) 16.9972i 0.683175i 0.939850 + 0.341587i \(0.110965\pi\)
−0.939850 + 0.341587i \(0.889035\pi\)
\(620\) −18.3856 + 15.0188i −0.738384 + 0.603170i
\(621\) −8.24028 −0.330671
\(622\) 31.0354 11.0648i 1.24440 0.443659i
\(623\) −9.19723 + 18.9387i −0.368479 + 0.758762i
\(624\) 2.15052 + 0.437944i 0.0860895 + 0.0175318i
\(625\) −6.23595 −0.249438
\(626\) −7.14654 20.0451i −0.285633 0.801163i
\(627\) −13.6144 −0.543707
\(628\) −8.99875 + 7.35089i −0.359089 + 0.293332i
\(629\) −1.82614 −0.0728130
\(630\) 5.87892 + 0.646999i 0.234222 + 0.0257771i
\(631\) 13.8402i 0.550971i −0.961305 0.275485i \(-0.911161\pi\)
0.961305 0.275485i \(-0.0888386\pi\)
\(632\) −25.1054 15.1643i −0.998638 0.603202i
\(633\) 6.17306i 0.245357i
\(634\) −10.6743 29.9401i −0.423932 1.18907i
\(635\) 23.6990i 0.940465i
\(636\) −5.74651 + 4.69421i −0.227864 + 0.186137i
\(637\) −2.37480 3.01842i −0.0940932 0.119594i
\(638\) 0.589040 + 1.65218i 0.0233203 + 0.0654103i
\(639\) 1.27953i 0.0506175i
\(640\) 13.1548 + 12.1149i 0.519988 + 0.478885i
\(641\) 13.0479 0.515361 0.257681 0.966230i \(-0.417042\pi\)
0.257681 + 0.966230i \(0.417042\pi\)
\(642\) −8.44622 23.6905i −0.333346 0.934990i
\(643\) 12.2880i 0.484592i −0.970202 0.242296i \(-0.922100\pi\)
0.970202 0.242296i \(-0.0779005\pi\)
\(644\) 10.0621 + 42.4266i 0.396500 + 1.67184i
\(645\) 2.88783i 0.113708i
\(646\) 3.47886 1.24029i 0.136874 0.0487987i
\(647\) −31.8638 −1.25269 −0.626347 0.779544i \(-0.715451\pi\)
−0.626347 + 0.779544i \(0.715451\pi\)
\(648\) 1.46237 2.42105i 0.0574474 0.0951077i
\(649\) 26.0507i 1.02258i
\(650\) 1.82820 0.651794i 0.0717077 0.0255655i
\(651\) 8.67923 17.8720i 0.340166 0.700460i
\(652\) −26.8748 + 21.9535i −1.05250 + 0.859766i
\(653\) 14.6007i 0.571371i 0.958323 + 0.285686i \(0.0922213\pi\)
−0.958323 + 0.285686i \(0.907779\pi\)
\(654\) 16.0426 5.71956i 0.627316 0.223653i
\(655\) 13.4693i 0.526290i
\(656\) −27.7909 5.65949i −1.08505 0.220966i
\(657\) 0.867270i 0.0338354i
\(658\) −43.0827 4.74143i −1.67954 0.184840i
\(659\) 7.25776 0.282722 0.141361 0.989958i \(-0.454852\pi\)
0.141361 + 0.989958i \(0.454852\pi\)
\(660\) −4.52114 5.53465i −0.175985 0.215436i
\(661\) 15.6031 0.606891 0.303446 0.952849i \(-0.401863\pi\)
0.303446 + 0.952849i \(0.401863\pi\)
\(662\) −31.3460 + 11.1756i −1.21830 + 0.434351i
\(663\) 0.237920 0.00924004
\(664\) 14.8544 + 8.97244i 0.576464 + 0.348198i
\(665\) 11.0028 22.6567i 0.426671 0.878588i
\(666\) 2.00000 + 5.60973i 0.0774984 + 0.217373i
\(667\) 4.52114 0.175059
\(668\) 1.27593 1.04228i 0.0493674 0.0403272i
\(669\) 18.4078i 0.711688i
\(670\) −19.6894 + 7.01974i −0.760669 + 0.271196i
\(671\) 27.4265 1.05879
\(672\) −14.2509 4.57299i −0.549740 0.176407i
\(673\) 9.19475 0.354432 0.177216 0.984172i \(-0.443291\pi\)
0.177216 + 0.984172i \(0.443291\pi\)
\(674\) 11.6915 4.16829i 0.450339 0.160556i
\(675\) 2.50141i 0.0962791i
\(676\) −19.6695 + 16.0676i −0.756518 + 0.617984i
\(677\) −14.1669 −0.544480 −0.272240 0.962229i \(-0.587764\pi\)
−0.272240 + 0.962229i \(0.587764\pi\)
\(678\) 1.36172 + 3.81945i 0.0522966 + 0.146685i
\(679\) 22.1654 45.6423i 0.850629 1.75159i
\(680\) 1.65949 + 1.00237i 0.0636387 + 0.0384393i
\(681\) −10.6567 −0.408365
\(682\) −22.6129 + 8.06202i −0.865892 + 0.308711i
\(683\) −35.9201 −1.37444 −0.687222 0.726448i \(-0.741170\pi\)
−0.687222 + 0.726448i \(0.741170\pi\)
\(684\) −7.62013 9.32834i −0.291363 0.356678i
\(685\) −7.90791 −0.302146
\(686\) 13.8462 + 22.2325i 0.528650 + 0.848840i
\(687\) 8.97114i 0.342270i
\(688\) −1.45826 + 7.16077i −0.0555957 + 0.273002i
\(689\) 2.03557i 0.0775491i
\(690\) −17.3509 + 6.18600i −0.660537 + 0.235497i
\(691\) 24.0451i 0.914719i −0.889282 0.457359i \(-0.848795\pi\)
0.889282 0.457359i \(-0.151205\pi\)
\(692\) 30.2392 24.7018i 1.14952 0.939021i
\(693\) 5.38005 + 2.61272i 0.204371 + 0.0992492i
\(694\) −5.33485 + 1.90200i −0.202508 + 0.0721989i
\(695\) 22.6206i 0.858049i
\(696\) −0.802350 + 1.32834i −0.0304130 + 0.0503507i
\(697\) −3.07461 −0.116459
\(698\) −4.57770 + 1.63206i −0.173269 + 0.0617743i
\(699\) 14.9124i 0.564037i
\(700\) −12.8789 + 3.05442i −0.486778 + 0.115446i
\(701\) 39.3211i 1.48514i −0.669771 0.742568i \(-0.733608\pi\)
0.669771 0.742568i \(-0.266392\pi\)
\(702\) −0.260571 0.730867i −0.00983463 0.0275848i
\(703\) 25.3624 0.956561
\(704\) 8.41598 + 16.0070i 0.317189 + 0.603285i
\(705\) 18.3106i 0.689615i
\(706\) 10.9660 + 30.7583i 0.412712 + 1.15760i
\(707\) 11.2859 + 5.48081i 0.424451 + 0.206127i
\(708\) −17.8495 + 14.5809i −0.670825 + 0.547983i
\(709\) 37.8578i 1.42178i 0.703304 + 0.710890i \(0.251707\pi\)
−0.703304 + 0.710890i \(0.748293\pi\)
\(710\) −0.960547 2.69421i −0.0360487 0.101112i
\(711\) 10.3696i 0.388892i
\(712\) 19.2657 + 11.6369i 0.722013 + 0.436113i
\(713\) 61.8796i 2.31741i
\(714\) −1.61278 0.177492i −0.0603566 0.00664249i
\(715\) −1.96053 −0.0733195
\(716\) −6.80915 + 5.56225i −0.254470 + 0.207871i
\(717\) −13.1370 −0.490609
\(718\) 10.3951 + 29.1570i 0.387943 + 1.08813i
\(719\) −25.6003 −0.954731 −0.477365 0.878705i \(-0.658408\pi\)
−0.477365 + 0.878705i \(0.658408\pi\)
\(720\) 1.26171 6.19561i 0.0470212 0.230897i
\(721\) 4.78465 + 2.32358i 0.178190 + 0.0865346i
\(722\) −23.0066 + 8.20237i −0.856215 + 0.305261i
\(723\) 10.1355 0.376945
\(724\) 12.6195 10.3086i 0.469000 0.383116i
\(725\) 1.37243i 0.0509708i
\(726\) 2.79719 + 7.84574i 0.103813 + 0.291183i
\(727\) 2.11772 0.0785420 0.0392710 0.999229i \(-0.487496\pi\)
0.0392710 + 0.999229i \(0.487496\pi\)
\(728\) −3.44483 + 2.23405i −0.127674 + 0.0827993i
\(729\) −1.00000 −0.0370370
\(730\) 0.651062 + 1.82614i 0.0240969 + 0.0675885i
\(731\) 0.792224i 0.0293014i
\(732\) 15.3509 + 18.7921i 0.567385 + 0.694577i
\(733\) −20.4120 −0.753936 −0.376968 0.926226i \(-0.623033\pi\)
−0.376968 + 0.926226i \(0.623033\pi\)
\(734\) −37.2020 + 13.2634i −1.37315 + 0.489560i
\(735\) −8.69604 + 6.84179i −0.320758 + 0.252363i
\(736\) 46.1477 6.57739i 1.70103 0.242446i
\(737\) −21.1384 −0.778641
\(738\) 3.36733 + 9.44491i 0.123953 + 0.347672i
\(739\) 18.3932 0.676604 0.338302 0.941038i \(-0.390147\pi\)
0.338302 + 0.941038i \(0.390147\pi\)
\(740\) 8.42248 + 10.3106i 0.309617 + 0.379024i
\(741\) −3.30435 −0.121389
\(742\) 1.51857 13.7984i 0.0557486 0.506556i
\(743\) 33.3812i 1.22464i −0.790611 0.612319i \(-0.790237\pi\)
0.790611 0.612319i \(-0.209763\pi\)
\(744\) −18.1806 10.9815i −0.666534 0.402603i
\(745\) 29.1722i 1.06879i
\(746\) −7.23790 20.3013i −0.264998 0.743284i
\(747\) 6.13554i 0.224488i
\(748\) 1.24029 + 1.51833i 0.0453496 + 0.0555157i
\(749\) 42.3263 + 20.5550i 1.54657 + 0.751064i
\(750\) −5.63132 15.7951i −0.205627 0.576756i
\(751\) 9.83899i 0.359030i −0.983755 0.179515i \(-0.942547\pi\)
0.983755 0.179515i \(-0.0574528\pi\)
\(752\) −9.24625 + 45.4036i −0.337176 + 1.65570i
\(753\) 22.7018 0.827299
\(754\) 0.142966 + 0.401000i 0.00520652 + 0.0146036i
\(755\) 22.9729i 0.836068i
\(756\) 1.22108 + 5.14869i 0.0444103 + 0.187256i
\(757\) 23.9363i 0.869980i −0.900435 0.434990i \(-0.856752\pi\)
0.900435 0.434990i \(-0.143248\pi\)
\(758\) 15.3009 5.45513i 0.555754 0.198139i
\(759\) −18.6277 −0.676144
\(760\) −23.0479 13.9215i −0.836035 0.504986i
\(761\) 14.6991i 0.532842i 0.963857 + 0.266421i \(0.0858411\pi\)
−0.963857 + 0.266421i \(0.914159\pi\)
\(762\) −19.9716 + 7.12035i −0.723496 + 0.257943i
\(763\) −13.9193 + 28.6623i −0.503914 + 1.03765i
\(764\) 0.531568 + 0.650730i 0.0192315 + 0.0235426i
\(765\) 0.685444i 0.0247823i
\(766\) 29.9380 10.6736i 1.08171 0.385653i
\(767\) 6.32278i 0.228302i
\(768\) −6.25717 + 14.7258i −0.225786 + 0.531370i
\(769\) 22.7317i 0.819727i −0.912147 0.409864i \(-0.865576\pi\)
0.912147 0.409864i \(-0.134424\pi\)
\(770\) 13.2897 + 1.46259i 0.478928 + 0.0527080i
\(771\) −16.1326 −0.581002
\(772\) −17.2784 + 14.1144i −0.621865 + 0.507988i
\(773\) −8.21267 −0.295389 −0.147695 0.989033i \(-0.547185\pi\)
−0.147695 + 0.989033i \(0.547185\pi\)
\(774\) 2.43364 0.867648i 0.0874752 0.0311870i
\(775\) −18.7841 −0.674744
\(776\) −46.4304 28.0451i −1.66676 1.00676i
\(777\) −10.0225 4.86727i −0.359557 0.174612i
\(778\) 9.77890 + 27.4285i 0.350591 + 0.983360i
\(779\) 42.7018 1.52995
\(780\) −1.09733 1.34332i −0.0392906 0.0480985i
\(781\) 2.89247i 0.103501i
\(782\) 4.75990 1.69702i 0.170214 0.0606852i
\(783\) 0.548664 0.0196076
\(784\) 25.0179 12.5739i 0.893497 0.449069i
\(785\) 9.18345 0.327771
\(786\) 11.3509 4.04686i 0.404873 0.144347i
\(787\) 25.3134i 0.902324i 0.892442 + 0.451162i \(0.148990\pi\)
−0.892442 + 0.451162i \(0.851010\pi\)
\(788\) −6.26351 7.66761i −0.223128 0.273147i
\(789\) 15.0581 0.536081
\(790\) 7.78451 + 21.8345i 0.276961 + 0.776837i
\(791\) −6.82396 3.31394i −0.242632 0.117830i
\(792\) 3.30579 5.47295i 0.117466 0.194473i
\(793\) 6.65668 0.236386
\(794\) 35.8035 12.7648i 1.27062 0.453005i
\(795\) 5.86446 0.207991
\(796\) 18.7186 15.2908i 0.663462 0.541969i
\(797\) −10.2767 −0.364021 −0.182010 0.983297i \(-0.558260\pi\)
−0.182010 + 0.983297i \(0.558260\pi\)
\(798\) 22.3991 + 2.46511i 0.792919 + 0.0872639i
\(799\) 5.02317i 0.177707i
\(800\) 1.99662 + 14.0085i 0.0705913 + 0.495276i
\(801\) 7.95759i 0.281168i
\(802\) 11.9925 4.27561i 0.423470 0.150977i
\(803\) 1.96053i 0.0691854i
\(804\) −11.8314 14.4836i −0.417260 0.510798i
\(805\) 15.0545 30.9997i 0.530600 1.09260i
\(806\) −5.48838 + 1.95674i −0.193320 + 0.0689231i
\(807\) 8.76288i 0.308468i
\(808\) 6.93468 11.4808i 0.243961 0.403893i
\(809\) 28.4968 1.00189 0.500947 0.865478i \(-0.332985\pi\)
0.500947 + 0.865478i \(0.332985\pi\)
\(810\) −2.10562 + 0.750703i −0.0739839 + 0.0263770i
\(811\) 13.2683i 0.465912i −0.972487 0.232956i \(-0.925160\pi\)
0.972487 0.232956i \(-0.0748398\pi\)
\(812\) −0.669963 2.82490i −0.0235111 0.0991345i
\(813\) 4.31238i 0.151242i
\(814\) 4.52114 + 12.6812i 0.158466 + 0.444476i
\(815\) 27.4265 0.960707
\(816\) −0.346128 + 1.69965i −0.0121169 + 0.0594998i
\(817\) 11.0028i 0.384940i
\(818\) 2.33298 + 6.54369i 0.0815707 + 0.228795i
\(819\) 1.30579 + 0.634135i 0.0456281 + 0.0221585i
\(820\) 14.1806 + 17.3595i 0.495209 + 0.606221i
\(821\) 50.5926i 1.76570i −0.469659 0.882848i \(-0.655623\pi\)
0.469659 0.882848i \(-0.344377\pi\)
\(822\) −2.37593 6.66417i −0.0828702 0.232440i
\(823\) 19.5730i 0.682274i 0.940014 + 0.341137i \(0.110812\pi\)
−0.940014 + 0.341137i \(0.889188\pi\)
\(824\) 2.93995 4.86727i 0.102418 0.169559i
\(825\) 5.65460i 0.196868i
\(826\) 4.71690 42.8599i 0.164122 1.49129i
\(827\) −4.64617 −0.161563 −0.0807816 0.996732i \(-0.525742\pi\)
−0.0807816 + 0.996732i \(0.525742\pi\)
\(828\) −10.4261 12.7634i −0.362334 0.443558i
\(829\) −22.2382 −0.772364 −0.386182 0.922423i \(-0.626206\pi\)
−0.386182 + 0.922423i \(0.626206\pi\)
\(830\) −4.60597 12.9191i −0.159875 0.448429i
\(831\) −25.5528 −0.886418
\(832\) 2.04264 + 3.88506i 0.0708159 + 0.134690i
\(833\) 2.38560 1.87692i 0.0826562 0.0650314i
\(834\) 19.0629 6.79636i 0.660094 0.235339i
\(835\) −1.30212 −0.0450619
\(836\) −17.2258 21.0874i −0.595768 0.729322i
\(837\) 7.50941i 0.259563i
\(838\) 1.98280 + 5.56148i 0.0684946 + 0.192118i
\(839\) −36.5297 −1.26115 −0.630573 0.776130i \(-0.717180\pi\)
−0.630573 + 0.776130i \(0.717180\pi\)
\(840\) 6.43627 + 9.92450i 0.222072 + 0.342428i
\(841\) 28.6990 0.989620
\(842\) 1.47886 + 4.14800i 0.0509648 + 0.142949i
\(843\) 2.17501i 0.0749115i
\(844\) 9.56148 7.81057i 0.329120 0.268851i
\(845\) 20.0732 0.690539
\(846\) 15.4307 5.50141i 0.530518 0.189142i
\(847\) −14.0175 6.80734i −0.481646 0.233903i
\(848\) −14.5417 2.96136i −0.499365 0.101694i
\(849\) −12.2880 −0.421723
\(850\) 0.515144 + 1.44491i 0.0176693 + 0.0495600i
\(851\) 34.7018 1.18956
\(852\) 1.98187 1.61895i 0.0678977 0.0554643i
\(853\) −42.1702 −1.44388 −0.721940 0.691956i \(-0.756749\pi\)
−0.721940 + 0.691956i \(0.756749\pi\)
\(854\) −45.1233 4.96600i −1.54409 0.169933i
\(855\) 9.51981i 0.325571i
\(856\) 26.0076 43.0572i 0.888921 1.47166i
\(857\) 37.5720i 1.28343i −0.766941 0.641717i \(-0.778222\pi\)
0.766941 0.641717i \(-0.221778\pi\)
\(858\) −0.589040 1.65218i −0.0201095 0.0564044i
\(859\) 12.7543i 0.435170i 0.976041 + 0.217585i \(0.0698180\pi\)
−0.976041 + 0.217585i \(0.930182\pi\)
\(860\) 4.47296 3.65387i 0.152527 0.124596i
\(861\) −16.8746 8.19485i −0.575085 0.279280i
\(862\) 0.304691 + 0.854618i 0.0103778 + 0.0291084i
\(863\) 51.1449i 1.74099i 0.492175 + 0.870496i \(0.336202\pi\)
−0.492175 + 0.870496i \(0.663798\pi\)
\(864\) 5.60026 0.798200i 0.190525 0.0271553i
\(865\) −30.8599 −1.04927
\(866\) −3.30435 9.26827i −0.112287 0.314949i
\(867\) 16.8120i 0.570964i
\(868\) 38.6636 9.16960i 1.31233 0.311237i
\(869\) 23.4413i 0.795192i
\(870\) 1.15528 0.411883i 0.0391676 0.0139642i
\(871\) −5.13050 −0.173840
\(872\) 29.1572 + 17.6117i 0.987388 + 0.596406i
\(873\) 19.1778i 0.649071i
\(874\) −66.1080 + 23.5690i −2.23614 + 0.797235i
\(875\) 28.2201 + 13.7046i 0.954014 + 0.463300i
\(876\) −1.34332 + 1.09733i −0.0453865 + 0.0370753i
\(877\) 13.8694i 0.468335i 0.972196 + 0.234168i \(0.0752365\pi\)
−0.972196 + 0.234168i \(0.924764\pi\)
\(878\) −23.1856 + 8.26619i −0.782475 + 0.278970i
\(879\) 24.8790i 0.839149i
\(880\) 2.85219 14.0056i 0.0961472 0.472129i
\(881\) 5.92202i 0.199518i 0.995012 + 0.0997589i \(0.0318071\pi\)
−0.995012 + 0.0997589i \(0.968193\pi\)
\(882\) −8.37845 5.27273i −0.282117 0.177542i
\(883\) −3.17025 −0.106688 −0.0533438 0.998576i \(-0.516988\pi\)
−0.0533438 + 0.998576i \(0.516988\pi\)
\(884\) 0.301032 + 0.368515i 0.0101248 + 0.0123945i
\(885\) 18.2158 0.612319
\(886\) 24.0915 8.58918i 0.809370 0.288559i
\(887\) 49.9010 1.67551 0.837756 0.546045i \(-0.183867\pi\)
0.837756 + 0.546045i \(0.183867\pi\)
\(888\) −6.15839 + 10.1956i −0.206662 + 0.342142i
\(889\) 17.3283 35.6820i 0.581174 1.19674i
\(890\) −5.97378 16.7557i −0.200242 0.561651i
\(891\) −2.26057 −0.0757320
\(892\) −28.5119 + 23.2908i −0.954651 + 0.779834i
\(893\) 69.7644i 2.33458i
\(894\) 24.5840 8.76479i 0.822214 0.293138i
\(895\) 6.94891 0.232276
\(896\) −10.9481 27.8593i −0.365749 0.930714i
\(897\) −4.52114 −0.150957
\(898\) −28.2707 + 10.0792i −0.943407 + 0.336347i
\(899\) 4.12014i 0.137414i
\(900\) 3.87443 3.16494i 0.129148 0.105498i
\(901\) −1.60881 −0.0535972
\(902\) 7.61209 + 21.3509i 0.253455 + 0.710907i
\(903\) −2.11154 + 4.34802i −0.0702676 + 0.144693i
\(904\) −4.19301 + 6.94180i −0.139458 + 0.230881i
\(905\) −12.8785 −0.428096
\(906\) 19.3597 6.90219i 0.643184 0.229310i
\(907\) −2.60938 −0.0866431 −0.0433216 0.999061i \(-0.513794\pi\)
−0.0433216 + 0.999061i \(0.513794\pi\)
\(908\) −13.4835 16.5062i −0.447467 0.547776i
\(909\) −4.74208 −0.157285
\(910\) 3.22555 + 0.354985i 0.106926 + 0.0117676i
\(911\) 42.9082i 1.42161i 0.703388 + 0.710807i \(0.251670\pi\)
−0.703388 + 0.710807i \(0.748330\pi\)
\(912\) 4.80720 23.6057i 0.159182 0.781662i
\(913\) 13.8698i 0.459024i
\(914\) 36.9049 13.1575i 1.22070 0.435210i
\(915\) 19.1778i 0.633999i
\(916\) 13.8954 11.3509i 0.459118 0.375044i
\(917\) −9.84857 + 20.2799i −0.325229 + 0.669702i
\(918\) 0.577639 0.205942i 0.0190649 0.00679709i
\(919\) 24.4217i 0.805598i −0.915288 0.402799i \(-0.868037\pi\)
0.915288 0.402799i \(-0.131963\pi\)
\(920\) −31.5350 19.0479i −1.03968 0.627991i
\(921\) 17.0254 0.561005
\(922\) 31.3623 11.1814i 1.03286 0.368240i
\(923\) 0.702033i 0.0231077i
\(924\) 2.76034 + 11.6390i 0.0908086 + 0.382894i
\(925\) 10.5340i 0.346356i
\(926\) 12.7348 + 35.7193i 0.418490 + 1.17381i
\(927\) −2.01040 −0.0660301
\(928\) −3.07266 + 0.437944i −0.100865 + 0.0143762i
\(929\) 32.9150i 1.07991i 0.841695 + 0.539954i \(0.181558\pi\)
−0.841695 + 0.539954i \(0.818442\pi\)
\(930\) 5.63733 + 15.8120i 0.184855 + 0.518495i
\(931\) −33.1325 + 26.0676i −1.08587 + 0.854332i
\(932\) 23.0978 18.8681i 0.756594 0.618046i
\(933\) 23.2983i 0.762753i
\(934\) −8.25810 23.1628i −0.270213 0.757912i
\(935\) 1.54950i 0.0506739i
\(936\) 0.802350 1.32834i 0.0262256 0.0434182i
\(937\) 41.2683i 1.34818i 0.738651 + 0.674088i \(0.235463\pi\)
−0.738651 + 0.674088i \(0.764537\pi\)
\(938\) 34.7778 + 3.82744i 1.13554 + 0.124970i
\(939\) −15.0479 −0.491070
\(940\) 28.3613 23.1677i 0.925043 0.755648i
\(941\) 53.4508 1.74245 0.871223 0.490887i \(-0.163327\pi\)
0.871223 + 0.490887i \(0.163327\pi\)
\(942\) 2.75917 + 7.73909i 0.0898985 + 0.252153i
\(943\) 58.4262 1.90262
\(944\) −45.1687 9.19842i −1.47012 0.299383i
\(945\) 1.82694 3.76198i 0.0594302 0.122377i
\(946\) 5.50141 1.96138i 0.178866 0.0637699i
\(947\) −55.2631 −1.79581 −0.897905 0.440189i \(-0.854911\pi\)
−0.897905 + 0.440189i \(0.854911\pi\)
\(948\) −16.0616 + 13.1204i −0.521655 + 0.426129i
\(949\) 0.475840i 0.0154464i
\(950\) −7.15458 20.0676i −0.232125 0.651080i
\(951\) −22.4761 −0.728838
\(952\) −1.76567 2.72261i −0.0572258 0.0882403i
\(953\) −22.5760 −0.731309 −0.365654 0.930751i \(-0.619155\pi\)
−0.365654 + 0.930751i \(0.619155\pi\)
\(954\) 1.76198 + 4.94211i 0.0570461 + 0.160007i
\(955\) 0.664086i 0.0214893i
\(956\) −16.6218 20.3479i −0.537586 0.658097i
\(957\) 1.24029 0.0400930
\(958\) −34.1018 + 12.1581i −1.10178 + 0.392810i
\(959\) 11.9064 + 5.78215i 0.384479 + 0.186715i
\(960\) 11.1928 5.88483i 0.361246 0.189932i
\(961\) 25.3912 0.819072
\(962\) 1.09733 + 3.07786i 0.0353793 + 0.0992341i
\(963\) −17.7845 −0.573098
\(964\) 12.8242 + 15.6990i 0.413038 + 0.505630i
\(965\) 17.6331 0.567629
\(966\) 30.6473 + 3.37285i 0.986059 + 0.108520i
\(967\) 24.2911i 0.781150i 0.920571 + 0.390575i \(0.127724\pi\)
−0.920571 + 0.390575i \(0.872276\pi\)
\(968\) −8.61310 + 14.2595i −0.276835 + 0.458319i
\(969\) 2.61159i 0.0838963i
\(970\) 14.3968 + 40.3812i 0.462255 + 1.29656i
\(971\) 24.9221i 0.799790i −0.916561 0.399895i \(-0.869047\pi\)
0.916561 0.399895i \(-0.130953\pi\)
\(972\) −1.26527 1.54890i −0.0405834 0.0496811i
\(973\) −16.5399 + 34.0584i −0.530244 + 1.09186i
\(974\) −0.446744 1.25306i −0.0143146 0.0401505i
\(975\) 1.37243i 0.0439530i
\(976\) −9.68419 + 47.5541i −0.309983 + 1.52217i
\(977\) 1.13273 0.0362392 0.0181196 0.999836i \(-0.494232\pi\)
0.0181196 + 0.999836i \(0.494232\pi\)
\(978\) 8.24028 + 23.1129i 0.263495 + 0.739068i
\(979\) 17.9887i 0.574921i
\(980\) −21.6001 4.81264i −0.689989 0.153734i
\(981\) 12.0432i 0.384511i
\(982\) −32.0366 + 11.4218i −1.02233 + 0.364485i
\(983\) 11.8218 0.377056 0.188528 0.982068i \(-0.439628\pi\)
0.188528 + 0.982068i \(0.439628\pi\)
\(984\) −10.3687 + 17.1660i −0.330541 + 0.547232i
\(985\) 7.82499i 0.249325i
\(986\) −0.316930 + 0.112993i −0.0100931 + 0.00359842i
\(987\) −13.3884 + 27.5690i −0.426158 + 0.877532i
\(988\) −4.18089 5.11812i −0.133012 0.162829i
\(989\) 15.0545i 0.478704i
\(990\) −4.75990 + 1.69702i −0.151280 + 0.0539347i
\(991\) 52.1176i 1.65557i 0.561045 + 0.827785i \(0.310400\pi\)
−0.561045 + 0.827785i \(0.689600\pi\)
\(992\) −5.99401 42.0546i −0.190310 1.33524i
\(993\) 23.5315i 0.746750i
\(994\) −0.523729 + 4.75883i −0.0166117 + 0.150941i
\(995\) −19.1028 −0.605599
\(996\) 9.50336 7.76310i 0.301125 0.245983i
\(997\) 26.2326 0.830796 0.415398 0.909640i \(-0.363642\pi\)
0.415398 + 0.909640i \(0.363642\pi\)
\(998\) −35.7470 + 12.7446i −1.13155 + 0.403425i
\(999\) 4.21124 0.133238
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.2.p.a.139.13 16
3.2 odd 2 504.2.p.g.307.4 16
4.3 odd 2 672.2.p.a.559.11 16
7.6 odd 2 inner 168.2.p.a.139.14 yes 16
8.3 odd 2 inner 168.2.p.a.139.15 yes 16
8.5 even 2 672.2.p.a.559.14 16
12.11 even 2 2016.2.p.g.559.11 16
21.20 even 2 504.2.p.g.307.3 16
24.5 odd 2 2016.2.p.g.559.6 16
24.11 even 2 504.2.p.g.307.1 16
28.27 even 2 672.2.p.a.559.6 16
56.13 odd 2 672.2.p.a.559.3 16
56.27 even 2 inner 168.2.p.a.139.16 yes 16
84.83 odd 2 2016.2.p.g.559.5 16
168.83 odd 2 504.2.p.g.307.2 16
168.125 even 2 2016.2.p.g.559.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.p.a.139.13 16 1.1 even 1 trivial
168.2.p.a.139.14 yes 16 7.6 odd 2 inner
168.2.p.a.139.15 yes 16 8.3 odd 2 inner
168.2.p.a.139.16 yes 16 56.27 even 2 inner
504.2.p.g.307.1 16 24.11 even 2
504.2.p.g.307.2 16 168.83 odd 2
504.2.p.g.307.3 16 21.20 even 2
504.2.p.g.307.4 16 3.2 odd 2
672.2.p.a.559.3 16 56.13 odd 2
672.2.p.a.559.6 16 28.27 even 2
672.2.p.a.559.11 16 4.3 odd 2
672.2.p.a.559.14 16 8.5 even 2
2016.2.p.g.559.5 16 84.83 odd 2
2016.2.p.g.559.6 16 24.5 odd 2
2016.2.p.g.559.11 16 12.11 even 2
2016.2.p.g.559.12 16 168.125 even 2