Properties

Label 1650.2.d.c.1451.4
Level $1650$
Weight $2$
Character 1650.1451
Analytic conductor $13.175$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1650,2,Mod(1451,1650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1650.1451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1753163335\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2051727616.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 37x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1451.4
Root \(0.356500i\) of defining polynomial
Character \(\chi\) \(=\) 1650.1451
Dual form 1650.2.d.c.1451.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-1.25820 + 1.19035i) q^{3} +1.00000 q^{4} +(1.25820 - 1.19035i) q^{6} -3.22941i q^{7} -1.00000 q^{8} +(0.166154 - 2.99540i) q^{9} +(2.73719 - 1.87291i) q^{11} +(-1.25820 + 1.19035i) q^{12} -0.713000i q^{13} +3.22941i q^{14} +1.00000 q^{16} +6.12651 q^{17} +(-0.166154 + 2.99540i) q^{18} -2.33231i q^{19} +(3.84411 + 4.06325i) q^{21} +(-2.73719 + 1.87291i) q^{22} +3.03282i q^{23} +(1.25820 - 1.19035i) q^{24} +0.713000i q^{26} +(3.35650 + 3.96660i) q^{27} -3.22941i q^{28} -5.27779 q^{29} -9.55251 q^{31} -1.00000 q^{32} +(-1.21454 + 5.61470i) q^{33} -6.12651 q^{34} +(0.166154 - 2.99540i) q^{36} -9.73661 q^{37} +2.33231i q^{38} +(0.848716 + 0.897099i) q^{39} +0.761383 q^{41} +(-3.84411 - 4.06325i) q^{42} -5.79420i q^{43} +(2.73719 - 1.87291i) q^{44} -3.03282i q^{46} -11.7942i q^{47} +(-1.25820 + 1.19035i) q^{48} -3.42907 q^{49} +(-7.70840 + 7.29266i) q^{51} -0.713000i q^{52} -1.09369i q^{53} +(-3.35650 - 3.96660i) q^{54} +3.22941i q^{56} +(2.77625 + 2.93452i) q^{57} +5.27779 q^{58} -1.95162i q^{59} +2.19331i q^{61} +9.55251 q^{62} +(-9.67335 - 0.536580i) q^{63} +1.00000 q^{64} +(1.21454 - 5.61470i) q^{66} -2.80977 q^{67} +6.12651 q^{68} +(-3.61010 - 3.81590i) q^{69} +11.7366i q^{71} +(-0.166154 + 2.99540i) q^{72} +14.6946i q^{73} +9.73661 q^{74} -2.33231i q^{76} +(-6.04838 - 8.83951i) q^{77} +(-0.848716 - 0.897099i) q^{78} -13.5400i q^{79} +(-8.94479 - 0.995395i) q^{81} -0.761383 q^{82} +7.72857 q^{83} +(3.84411 + 4.06325i) q^{84} +5.79420i q^{86} +(6.64054 - 6.28240i) q^{87} +(-2.73719 + 1.87291i) q^{88} -3.04203i q^{89} -2.30257 q^{91} +3.03282i q^{92} +(12.0190 - 11.3708i) q^{93} +11.7942i q^{94} +(1.25820 - 1.19035i) q^{96} -10.6462 q^{97} +3.42907 q^{98} +(-5.15530 - 8.51016i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 2 q^{3} + 8 q^{4} + 2 q^{6} - 8 q^{8} + 2 q^{9} + 6 q^{11} - 2 q^{12} + 8 q^{16} - 4 q^{17} - 2 q^{18} - 8 q^{21} - 6 q^{22} + 2 q^{24} + 22 q^{27} - 4 q^{29} - 4 q^{31} - 8 q^{32} + 2 q^{33}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1650\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(727\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.25820 + 1.19035i −0.726424 + 0.687246i
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.25820 1.19035i 0.513660 0.485957i
\(7\) 3.22941i 1.22060i −0.792170 0.610301i \(-0.791049\pi\)
0.792170 0.610301i \(-0.208951\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.166154 2.99540i 0.0553847 0.998465i
\(10\) 0 0
\(11\) 2.73719 1.87291i 0.825294 0.564703i
\(12\) −1.25820 + 1.19035i −0.363212 + 0.343623i
\(13\) 0.713000i 0.197751i −0.995100 0.0988753i \(-0.968476\pi\)
0.995100 0.0988753i \(-0.0315245\pi\)
\(14\) 3.22941i 0.863096i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.12651 1.48590 0.742948 0.669349i \(-0.233427\pi\)
0.742948 + 0.669349i \(0.233427\pi\)
\(18\) −0.166154 + 2.99540i −0.0391629 + 0.706021i
\(19\) 2.33231i 0.535068i −0.963548 0.267534i \(-0.913791\pi\)
0.963548 0.267534i \(-0.0862088\pi\)
\(20\) 0 0
\(21\) 3.84411 + 4.06325i 0.838854 + 0.886675i
\(22\) −2.73719 + 1.87291i −0.583571 + 0.399305i
\(23\) 3.03282i 0.632386i 0.948695 + 0.316193i \(0.102405\pi\)
−0.948695 + 0.316193i \(0.897595\pi\)
\(24\) 1.25820 1.19035i 0.256830 0.242978i
\(25\) 0 0
\(26\) 0.713000i 0.139831i
\(27\) 3.35650 + 3.96660i 0.645959 + 0.763372i
\(28\) 3.22941i 0.610301i
\(29\) −5.27779 −0.980061 −0.490031 0.871705i \(-0.663014\pi\)
−0.490031 + 0.871705i \(0.663014\pi\)
\(30\) 0 0
\(31\) −9.55251 −1.71568 −0.857840 0.513916i \(-0.828194\pi\)
−0.857840 + 0.513916i \(0.828194\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.21454 + 5.61470i −0.211424 + 0.977394i
\(34\) −6.12651 −1.05069
\(35\) 0 0
\(36\) 0.166154 2.99540i 0.0276924 0.499233i
\(37\) −9.73661 −1.60069 −0.800344 0.599541i \(-0.795350\pi\)
−0.800344 + 0.599541i \(0.795350\pi\)
\(38\) 2.33231i 0.378350i
\(39\) 0.848716 + 0.897099i 0.135903 + 0.143651i
\(40\) 0 0
\(41\) 0.761383 0.118908 0.0594540 0.998231i \(-0.481064\pi\)
0.0594540 + 0.998231i \(0.481064\pi\)
\(42\) −3.84411 4.06325i −0.593159 0.626974i
\(43\) 5.79420i 0.883607i −0.897112 0.441803i \(-0.854339\pi\)
0.897112 0.441803i \(-0.145661\pi\)
\(44\) 2.73719 1.87291i 0.412647 0.282351i
\(45\) 0 0
\(46\) 3.03282i 0.447164i
\(47\) 11.7942i 1.72036i −0.509990 0.860180i \(-0.670351\pi\)
0.509990 0.860180i \(-0.329649\pi\)
\(48\) −1.25820 + 1.19035i −0.181606 + 0.171812i
\(49\) −3.42907 −0.489868
\(50\) 0 0
\(51\) −7.70840 + 7.29266i −1.07939 + 1.02118i
\(52\) 0.713000i 0.0988753i
\(53\) 1.09369i 0.150230i −0.997175 0.0751150i \(-0.976068\pi\)
0.997175 0.0751150i \(-0.0239324\pi\)
\(54\) −3.35650 3.96660i −0.456762 0.539786i
\(55\) 0 0
\(56\) 3.22941i 0.431548i
\(57\) 2.77625 + 2.93452i 0.367724 + 0.388687i
\(58\) 5.27779 0.693008
\(59\) 1.95162i 0.254079i −0.991898 0.127039i \(-0.959453\pi\)
0.991898 0.127039i \(-0.0405475\pi\)
\(60\) 0 0
\(61\) 2.19331i 0.280824i 0.990093 + 0.140412i \(0.0448428\pi\)
−0.990093 + 0.140412i \(0.955157\pi\)
\(62\) 9.55251 1.21317
\(63\) −9.67335 0.536580i −1.21873 0.0676027i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 1.21454 5.61470i 0.149499 0.691122i
\(67\) −2.80977 −0.343268 −0.171634 0.985161i \(-0.554905\pi\)
−0.171634 + 0.985161i \(0.554905\pi\)
\(68\) 6.12651 0.742948
\(69\) −3.61010 3.81590i −0.434605 0.459380i
\(70\) 0 0
\(71\) 11.7366i 1.39288i 0.717616 + 0.696439i \(0.245234\pi\)
−0.717616 + 0.696439i \(0.754766\pi\)
\(72\) −0.166154 + 2.99540i −0.0195815 + 0.353011i
\(73\) 14.6946i 1.71987i 0.510403 + 0.859935i \(0.329496\pi\)
−0.510403 + 0.859935i \(0.670504\pi\)
\(74\) 9.73661 1.13186
\(75\) 0 0
\(76\) 2.33231i 0.267534i
\(77\) −6.04838 8.83951i −0.689277 1.00736i
\(78\) −0.848716 0.897099i −0.0960982 0.101576i
\(79\) 13.5400i 1.52337i −0.647947 0.761685i \(-0.724372\pi\)
0.647947 0.761685i \(-0.275628\pi\)
\(80\) 0 0
\(81\) −8.94479 0.995395i −0.993865 0.110599i
\(82\) −0.761383 −0.0840807
\(83\) 7.72857 0.848320 0.424160 0.905587i \(-0.360569\pi\)
0.424160 + 0.905587i \(0.360569\pi\)
\(84\) 3.84411 + 4.06325i 0.419427 + 0.443337i
\(85\) 0 0
\(86\) 5.79420i 0.624804i
\(87\) 6.64054 6.28240i 0.711940 0.673543i
\(88\) −2.73719 + 1.87291i −0.291786 + 0.199653i
\(89\) 3.04203i 0.322454i −0.986917 0.161227i \(-0.948455\pi\)
0.986917 0.161227i \(-0.0515451\pi\)
\(90\) 0 0
\(91\) −2.30257 −0.241375
\(92\) 3.03282i 0.316193i
\(93\) 12.0190 11.3708i 1.24631 1.17910i
\(94\) 11.7942i 1.21648i
\(95\) 0 0
\(96\) 1.25820 1.19035i 0.128415 0.121489i
\(97\) −10.6462 −1.08096 −0.540479 0.841358i \(-0.681757\pi\)
−0.540479 + 0.841358i \(0.681757\pi\)
\(98\) 3.42907 0.346389
\(99\) −5.15530 8.51016i −0.518127 0.855303i
\(100\) 0 0
\(101\) 14.5072 1.44352 0.721760 0.692143i \(-0.243333\pi\)
0.721760 + 0.692143i \(0.243333\pi\)
\(102\) 7.70840 7.29266i 0.763245 0.722081i
\(103\) 7.79420 0.767985 0.383993 0.923336i \(-0.374549\pi\)
0.383993 + 0.923336i \(0.374549\pi\)
\(104\) 0.713000i 0.0699154i
\(105\) 0 0
\(106\) 1.09369i 0.106229i
\(107\) 5.30425 0.512781 0.256391 0.966573i \(-0.417467\pi\)
0.256391 + 0.966573i \(0.417467\pi\)
\(108\) 3.35650 + 3.96660i 0.322979 + 0.381686i
\(109\) 11.9643i 1.14598i −0.819564 0.572988i \(-0.805784\pi\)
0.819564 0.572988i \(-0.194216\pi\)
\(110\) 0 0
\(111\) 12.2506 11.5899i 1.16278 1.10007i
\(112\) 3.22941i 0.305150i
\(113\) 3.28700i 0.309215i −0.987976 0.154607i \(-0.950589\pi\)
0.987976 0.154607i \(-0.0494113\pi\)
\(114\) −2.77625 2.93452i −0.260020 0.274843i
\(115\) 0 0
\(116\) −5.27779 −0.490031
\(117\) −2.13572 0.118468i −0.197447 0.0109524i
\(118\) 1.95162i 0.179661i
\(119\) 19.7850i 1.81369i
\(120\) 0 0
\(121\) 3.98443 10.2530i 0.362221 0.932092i
\(122\) 2.19331i 0.198573i
\(123\) −0.957975 + 0.906309i −0.0863777 + 0.0817191i
\(124\) −9.55251 −0.857840
\(125\) 0 0
\(126\) 9.67335 + 0.536580i 0.861771 + 0.0478023i
\(127\) 17.7631i 1.57622i −0.615536 0.788109i \(-0.711061\pi\)
0.615536 0.788109i \(-0.288939\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 6.89710 + 7.29028i 0.607256 + 0.641874i
\(130\) 0 0
\(131\) −15.0720 −1.31685 −0.658423 0.752648i \(-0.728776\pi\)
−0.658423 + 0.752648i \(0.728776\pi\)
\(132\) −1.21454 + 5.61470i −0.105712 + 0.488697i
\(133\) −7.53198 −0.653105
\(134\) 2.80977 0.242727
\(135\) 0 0
\(136\) −6.12651 −0.525344
\(137\) 4.53833i 0.387736i 0.981028 + 0.193868i \(0.0621033\pi\)
−0.981028 + 0.193868i \(0.937897\pi\)
\(138\) 3.61010 + 3.81590i 0.307312 + 0.324831i
\(139\) 10.4404i 0.885543i 0.896635 + 0.442771i \(0.146005\pi\)
−0.896635 + 0.442771i \(0.853995\pi\)
\(140\) 0 0
\(141\) 14.0392 + 14.8395i 1.18231 + 1.24971i
\(142\) 11.7366i 0.984914i
\(143\) −1.33538 1.95162i −0.111670 0.163202i
\(144\) 0.166154 2.99540i 0.0138462 0.249616i
\(145\) 0 0
\(146\) 14.6946i 1.21613i
\(147\) 4.31447 4.08178i 0.355852 0.336660i
\(148\) −9.73661 −0.800344
\(149\) 0.691075 0.0566151 0.0283075 0.999599i \(-0.490988\pi\)
0.0283075 + 0.999599i \(0.490988\pi\)
\(150\) 0 0
\(151\) 10.3198i 0.839815i −0.907567 0.419907i \(-0.862063\pi\)
0.907567 0.419907i \(-0.137937\pi\)
\(152\) 2.33231i 0.189175i
\(153\) 1.01795 18.3513i 0.0822960 1.48362i
\(154\) 6.04838 + 8.83951i 0.487393 + 0.712308i
\(155\) 0 0
\(156\) 0.848716 + 0.897099i 0.0679517 + 0.0718254i
\(157\) −11.2778 −0.900066 −0.450033 0.893012i \(-0.648588\pi\)
−0.450033 + 0.893012i \(0.648588\pi\)
\(158\) 13.5400i 1.07719i
\(159\) 1.30187 + 1.37609i 0.103245 + 0.109131i
\(160\) 0 0
\(161\) 9.79420 0.771891
\(162\) 8.94479 + 0.995395i 0.702769 + 0.0782056i
\(163\) −6.51641 −0.510404 −0.255202 0.966888i \(-0.582142\pi\)
−0.255202 + 0.966888i \(0.582142\pi\)
\(164\) 0.761383 0.0594540
\(165\) 0 0
\(166\) −7.72857 −0.599853
\(167\) −8.61646 −0.666761 −0.333381 0.942792i \(-0.608189\pi\)
−0.333381 + 0.942792i \(0.608189\pi\)
\(168\) −3.84411 4.06325i −0.296580 0.313487i
\(169\) 12.4916 0.960895
\(170\) 0 0
\(171\) −6.98619 0.387523i −0.534247 0.0296346i
\(172\) 5.79420i 0.441803i
\(173\) −12.0656 −0.917333 −0.458666 0.888608i \(-0.651673\pi\)
−0.458666 + 0.888608i \(0.651673\pi\)
\(174\) −6.64054 + 6.28240i −0.503418 + 0.476267i
\(175\) 0 0
\(176\) 2.73719 1.87291i 0.206324 0.141176i
\(177\) 2.32310 + 2.45553i 0.174615 + 0.184569i
\(178\) 3.04203i 0.228009i
\(179\) 3.49280i 0.261064i 0.991444 + 0.130532i \(0.0416686\pi\)
−0.991444 + 0.130532i \(0.958331\pi\)
\(180\) 0 0
\(181\) −15.1361 −1.12506 −0.562531 0.826777i \(-0.690172\pi\)
−0.562531 + 0.826777i \(0.690172\pi\)
\(182\) 2.30257 0.170678
\(183\) −2.61080 2.75963i −0.192996 0.203998i
\(184\) 3.03282i 0.223582i
\(185\) 0 0
\(186\) −12.0190 + 11.3708i −0.881276 + 0.833746i
\(187\) 16.7694 11.4744i 1.22630 0.839090i
\(188\) 11.7942i 0.860180i
\(189\) 12.8098 10.8395i 0.931773 0.788458i
\(190\) 0 0
\(191\) 8.93152i 0.646262i −0.946354 0.323131i \(-0.895265\pi\)
0.946354 0.323131i \(-0.104735\pi\)
\(192\) −1.25820 + 1.19035i −0.0908030 + 0.0859058i
\(193\) 20.5820i 1.48153i −0.671766 0.740764i \(-0.734464\pi\)
0.671766 0.740764i \(-0.265536\pi\)
\(194\) 10.6462 0.764352
\(195\) 0 0
\(196\) −3.42907 −0.244934
\(197\) −13.7631 −0.980578 −0.490289 0.871560i \(-0.663109\pi\)
−0.490289 + 0.871560i \(0.663109\pi\)
\(198\) 5.15530 + 8.51016i 0.366371 + 0.604791i
\(199\) 18.3139 1.29824 0.649119 0.760687i \(-0.275138\pi\)
0.649119 + 0.760687i \(0.275138\pi\)
\(200\) 0 0
\(201\) 3.53526 3.34459i 0.249358 0.235909i
\(202\) −14.5072 −1.02072
\(203\) 17.0441i 1.19626i
\(204\) −7.70840 + 7.29266i −0.539696 + 0.510588i
\(205\) 0 0
\(206\) −7.79420 −0.543048
\(207\) 9.08448 + 0.503915i 0.631415 + 0.0350245i
\(208\) 0.713000i 0.0494376i
\(209\) −4.36820 6.38397i −0.302155 0.441589i
\(210\) 0 0
\(211\) 1.12483i 0.0774362i 0.999250 + 0.0387181i \(0.0123274\pi\)
−0.999250 + 0.0387181i \(0.987673\pi\)
\(212\) 1.09369i 0.0751150i
\(213\) −13.9706 14.7670i −0.957251 1.01182i
\(214\) −5.30425 −0.362591
\(215\) 0 0
\(216\) −3.35650 3.96660i −0.228381 0.269893i
\(217\) 30.8489i 2.09416i
\(218\) 11.9643i 0.810327i
\(219\) −17.4916 18.4888i −1.18197 1.24936i
\(220\) 0 0
\(221\) 4.36820i 0.293837i
\(222\) −12.2506 + 11.5899i −0.822209 + 0.777865i
\(223\) 5.12343 0.343090 0.171545 0.985176i \(-0.445124\pi\)
0.171545 + 0.985176i \(0.445124\pi\)
\(224\) 3.22941i 0.215774i
\(225\) 0 0
\(226\) 3.28700i 0.218648i
\(227\) −26.9648 −1.78972 −0.894860 0.446347i \(-0.852725\pi\)
−0.894860 + 0.446347i \(0.852725\pi\)
\(228\) 2.77625 + 2.93452i 0.183862 + 0.194343i
\(229\) −5.51005 −0.364114 −0.182057 0.983288i \(-0.558276\pi\)
−0.182057 + 0.983288i \(0.558276\pi\)
\(230\) 0 0
\(231\) 18.1322 + 3.92224i 1.19301 + 0.258064i
\(232\) 5.27779 0.346504
\(233\) −17.7399 −1.16218 −0.581089 0.813840i \(-0.697373\pi\)
−0.581089 + 0.813840i \(0.697373\pi\)
\(234\) 2.13572 + 0.118468i 0.139616 + 0.00774449i
\(235\) 0 0
\(236\) 1.95162i 0.127039i
\(237\) 16.1173 + 17.0361i 1.04693 + 1.10661i
\(238\) 19.7850i 1.28247i
\(239\) −5.03938 −0.325971 −0.162985 0.986629i \(-0.552112\pi\)
−0.162985 + 0.986629i \(0.552112\pi\)
\(240\) 0 0
\(241\) 10.4588i 0.673712i 0.941556 + 0.336856i \(0.109363\pi\)
−0.941556 + 0.336856i \(0.890637\pi\)
\(242\) −3.98443 + 10.2530i −0.256129 + 0.659089i
\(243\) 12.4392 9.39498i 0.797977 0.602688i
\(244\) 2.19331i 0.140412i
\(245\) 0 0
\(246\) 0.957975 0.906309i 0.0610782 0.0577841i
\(247\) −1.66294 −0.105810
\(248\) 9.55251 0.606585
\(249\) −9.72411 + 9.19967i −0.616241 + 0.583005i
\(250\) 0 0
\(251\) 19.2374i 1.21426i −0.794604 0.607128i \(-0.792321\pi\)
0.794604 0.607128i \(-0.207679\pi\)
\(252\) −9.67335 0.536580i −0.609364 0.0338013i
\(253\) 5.68018 + 8.30140i 0.357110 + 0.521904i
\(254\) 17.7631i 1.11455i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 9.72740i 0.606778i −0.952867 0.303389i \(-0.901882\pi\)
0.952867 0.303389i \(-0.0981182\pi\)
\(258\) −6.89710 7.29028i −0.429395 0.453873i
\(259\) 31.4435i 1.95380i
\(260\) 0 0
\(261\) −0.876927 + 15.8091i −0.0542804 + 0.978557i
\(262\) 15.0720 0.931151
\(263\) 9.76446 0.602102 0.301051 0.953608i \(-0.402663\pi\)
0.301051 + 0.953608i \(0.402663\pi\)
\(264\) 1.21454 5.61470i 0.0747496 0.345561i
\(265\) 0 0
\(266\) 7.53198 0.461815
\(267\) 3.62106 + 3.82749i 0.221605 + 0.234238i
\(268\) −2.80977 −0.171634
\(269\) 16.8270i 1.02596i 0.858400 + 0.512981i \(0.171459\pi\)
−0.858400 + 0.512981i \(0.828541\pi\)
\(270\) 0 0
\(271\) 31.8836i 1.93679i −0.249415 0.968397i \(-0.580238\pi\)
0.249415 0.968397i \(-0.419762\pi\)
\(272\) 6.12651 0.371474
\(273\) 2.89710 2.74085i 0.175340 0.165884i
\(274\) 4.53833i 0.274171i
\(275\) 0 0
\(276\) −3.61010 3.81590i −0.217302 0.229690i
\(277\) 0.0483829i 0.00290705i −0.999999 0.00145352i \(-0.999537\pi\)
0.999999 0.00145352i \(-0.000462671\pi\)
\(278\) 10.4404i 0.626173i
\(279\) −1.58719 + 28.6135i −0.0950226 + 1.71305i
\(280\) 0 0
\(281\) 4.52445 0.269906 0.134953 0.990852i \(-0.456912\pi\)
0.134953 + 0.990852i \(0.456912\pi\)
\(282\) −14.0392 14.8395i −0.836021 0.883680i
\(283\) 23.5950i 1.40257i −0.712879 0.701287i \(-0.752609\pi\)
0.712879 0.701287i \(-0.247391\pi\)
\(284\) 11.7366i 0.696439i
\(285\) 0 0
\(286\) 1.33538 + 1.95162i 0.0789629 + 0.115402i
\(287\) 2.45882i 0.145139i
\(288\) −0.166154 + 2.99540i −0.00979073 + 0.176505i
\(289\) 20.5341 1.20789
\(290\) 0 0
\(291\) 13.3951 12.6727i 0.785234 0.742884i
\(292\) 14.6946i 0.859935i
\(293\) 24.6151 1.43803 0.719014 0.694996i \(-0.244594\pi\)
0.719014 + 0.694996i \(0.244594\pi\)
\(294\) −4.31447 + 4.08178i −0.251625 + 0.238054i
\(295\) 0 0
\(296\) 9.73661 0.565929
\(297\) 16.6165 + 4.57093i 0.964185 + 0.265232i
\(298\) −0.691075 −0.0400329
\(299\) 2.16240 0.125055
\(300\) 0 0
\(301\) −18.7118 −1.07853
\(302\) 10.3198i 0.593839i
\(303\) −18.2530 + 17.2686i −1.04861 + 0.992054i
\(304\) 2.33231i 0.133767i
\(305\) 0 0
\(306\) −1.01795 + 18.3513i −0.0581920 + 1.04907i
\(307\) 25.8725i 1.47662i −0.674459 0.738312i \(-0.735623\pi\)
0.674459 0.738312i \(-0.264377\pi\)
\(308\) −6.04838 8.83951i −0.344639 0.503678i
\(309\) −9.80669 + 9.27779i −0.557883 + 0.527795i
\(310\) 0 0
\(311\) 10.7038i 0.606956i 0.952838 + 0.303478i \(0.0981479\pi\)
−0.952838 + 0.303478i \(0.901852\pi\)
\(312\) −0.848716 0.897099i −0.0480491 0.0507882i
\(313\) 14.3682 0.812139 0.406069 0.913842i \(-0.366899\pi\)
0.406069 + 0.913842i \(0.366899\pi\)
\(314\) 11.2778 0.636443
\(315\) 0 0
\(316\) 13.5400i 0.761685i
\(317\) 34.7727i 1.95303i 0.215450 + 0.976515i \(0.430878\pi\)
−0.215450 + 0.976515i \(0.569122\pi\)
\(318\) −1.30187 1.37609i −0.0730053 0.0771671i
\(319\) −14.4463 + 9.88482i −0.808839 + 0.553443i
\(320\) 0 0
\(321\) −6.67383 + 6.31389i −0.372497 + 0.352407i
\(322\) −9.79420 −0.545809
\(323\) 14.2889i 0.795056i
\(324\) −8.94479 0.995395i −0.496933 0.0552997i
\(325\) 0 0
\(326\) 6.51641 0.360910
\(327\) 14.2417 + 15.0536i 0.787567 + 0.832464i
\(328\) −0.761383 −0.0420403
\(329\) −38.0883 −2.09987
\(330\) 0 0
\(331\) −13.7942 −0.758198 −0.379099 0.925356i \(-0.623766\pi\)
−0.379099 + 0.925356i \(0.623766\pi\)
\(332\) 7.72857 0.424160
\(333\) −1.61778 + 29.1650i −0.0886537 + 1.59823i
\(334\) 8.61646 0.471472
\(335\) 0 0
\(336\) 3.84411 + 4.06325i 0.209713 + 0.221669i
\(337\) 13.3868i 0.729227i 0.931159 + 0.364613i \(0.118799\pi\)
−0.931159 + 0.364613i \(0.881201\pi\)
\(338\) −12.4916 −0.679455
\(339\) 3.91267 + 4.13572i 0.212507 + 0.224621i
\(340\) 0 0
\(341\) −26.1470 + 17.8910i −1.41594 + 0.968850i
\(342\) 6.98619 + 0.387523i 0.377770 + 0.0209548i
\(343\) 11.5320i 0.622668i
\(344\) 5.79420i 0.312402i
\(345\) 0 0
\(346\) 12.0656 0.648652
\(347\) 19.3699 1.03983 0.519915 0.854218i \(-0.325964\pi\)
0.519915 + 0.854218i \(0.325964\pi\)
\(348\) 6.64054 6.28240i 0.355970 0.336772i
\(349\) 2.53833i 0.135874i 0.997690 + 0.0679369i \(0.0216417\pi\)
−0.997690 + 0.0679369i \(0.978358\pi\)
\(350\) 0 0
\(351\) 2.82818 2.39318i 0.150957 0.127739i
\(352\) −2.73719 + 1.87291i −0.145893 + 0.0998263i
\(353\) 32.9476i 1.75362i 0.480834 + 0.876812i \(0.340334\pi\)
−0.480834 + 0.876812i \(0.659666\pi\)
\(354\) −2.32310 2.45553i −0.123471 0.130510i
\(355\) 0 0
\(356\) 3.04203i 0.161227i
\(357\) 23.5510 + 24.8936i 1.24645 + 1.31751i
\(358\) 3.49280i 0.184600i
\(359\) −16.6212 −0.877234 −0.438617 0.898674i \(-0.644532\pi\)
−0.438617 + 0.898674i \(0.644532\pi\)
\(360\) 0 0
\(361\) 13.5603 0.713702
\(362\) 15.1361 0.795538
\(363\) 7.19140 + 17.6432i 0.377451 + 0.926030i
\(364\) −2.30257 −0.120687
\(365\) 0 0
\(366\) 2.61080 + 2.75963i 0.136468 + 0.144248i
\(367\) 11.1361 0.581302 0.290651 0.956829i \(-0.406128\pi\)
0.290651 + 0.956829i \(0.406128\pi\)
\(368\) 3.03282i 0.158096i
\(369\) 0.126507 2.28064i 0.00658569 0.118726i
\(370\) 0 0
\(371\) −3.53198 −0.183371
\(372\) 12.0190 11.3708i 0.623156 0.589548i
\(373\) 4.69458i 0.243076i −0.992587 0.121538i \(-0.961217\pi\)
0.992587 0.121538i \(-0.0387827\pi\)
\(374\) −16.7694 + 11.4744i −0.867126 + 0.593326i
\(375\) 0 0
\(376\) 11.7942i 0.608239i
\(377\) 3.76306i 0.193808i
\(378\) −12.8098 + 10.8395i −0.658863 + 0.557524i
\(379\) 22.6339 1.16263 0.581313 0.813680i \(-0.302539\pi\)
0.581313 + 0.813680i \(0.302539\pi\)
\(380\) 0 0
\(381\) 21.1442 + 22.3496i 1.08325 + 1.14500i
\(382\) 8.93152i 0.456976i
\(383\) 34.2412i 1.74964i −0.484447 0.874821i \(-0.660979\pi\)
0.484447 0.874821i \(-0.339021\pi\)
\(384\) 1.25820 1.19035i 0.0642075 0.0607446i
\(385\) 0 0
\(386\) 20.5820i 1.04760i
\(387\) −17.3559 0.962731i −0.882251 0.0489383i
\(388\) −10.6462 −0.540479
\(389\) 3.67901i 0.186533i −0.995641 0.0932667i \(-0.970269\pi\)
0.995641 0.0932667i \(-0.0297309\pi\)
\(390\) 0 0
\(391\) 18.5806i 0.939660i
\(392\) 3.42907 0.173194
\(393\) 18.9636 17.9409i 0.956589 0.904998i
\(394\) 13.7631 0.693373
\(395\) 0 0
\(396\) −5.15530 8.51016i −0.259064 0.427652i
\(397\) −1.07505 −0.0539552 −0.0269776 0.999636i \(-0.508588\pi\)
−0.0269776 + 0.999636i \(0.508588\pi\)
\(398\) −18.3139 −0.917992
\(399\) 9.47676 8.96565i 0.474431 0.448844i
\(400\) 0 0
\(401\) 28.8428i 1.44034i 0.693798 + 0.720170i \(0.255936\pi\)
−0.693798 + 0.720170i \(0.744064\pi\)
\(402\) −3.53526 + 3.34459i −0.176323 + 0.166813i
\(403\) 6.81094i 0.339277i
\(404\) 14.5072 0.721760
\(405\) 0 0
\(406\) 17.0441i 0.845886i
\(407\) −26.6510 + 18.2358i −1.32104 + 0.903913i
\(408\) 7.70840 7.29266i 0.381622 0.361041i
\(409\) 3.23862i 0.160139i 0.996789 + 0.0800697i \(0.0255143\pi\)
−0.996789 + 0.0800697i \(0.974486\pi\)
\(410\) 0 0
\(411\) −5.40218 5.71015i −0.266470 0.281661i
\(412\) 7.79420 0.383993
\(413\) −6.30257 −0.310129
\(414\) −9.08448 0.503915i −0.446478 0.0247661i
\(415\) 0 0
\(416\) 0.713000i 0.0349577i
\(417\) −12.4277 13.1361i −0.608586 0.643280i
\(418\) 4.36820 + 6.38397i 0.213656 + 0.312250i
\(419\) 8.74413i 0.427179i 0.976924 + 0.213589i \(0.0685155\pi\)
−0.976924 + 0.213589i \(0.931485\pi\)
\(420\) 0 0
\(421\) −28.4749 −1.38778 −0.693891 0.720080i \(-0.744105\pi\)
−0.693891 + 0.720080i \(0.744105\pi\)
\(422\) 1.12483i 0.0547557i
\(423\) −35.3283 1.95966i −1.71772 0.0952817i
\(424\) 1.09369i 0.0531143i
\(425\) 0 0
\(426\) 13.9706 + 14.7670i 0.676879 + 0.715466i
\(427\) 7.08309 0.342775
\(428\) 5.30425 0.256391
\(429\) 4.00328 + 0.865965i 0.193280 + 0.0418092i
\(430\) 0 0
\(431\) 11.9032 0.573359 0.286679 0.958027i \(-0.407449\pi\)
0.286679 + 0.958027i \(0.407449\pi\)
\(432\) 3.35650 + 3.96660i 0.161490 + 0.190843i
\(433\) 20.9488 1.00673 0.503367 0.864073i \(-0.332094\pi\)
0.503367 + 0.864073i \(0.332094\pi\)
\(434\) 30.8489i 1.48080i
\(435\) 0 0
\(436\) 11.9643i 0.572988i
\(437\) 7.07346 0.338370
\(438\) 17.4916 + 18.4888i 0.835782 + 0.883428i
\(439\) 32.8386i 1.56730i −0.621203 0.783649i \(-0.713356\pi\)
0.621203 0.783649i \(-0.286644\pi\)
\(440\) 0 0
\(441\) −0.569755 + 10.2714i −0.0271312 + 0.489116i
\(442\) 4.36820i 0.207774i
\(443\) 5.39604i 0.256373i −0.991750 0.128187i \(-0.959084\pi\)
0.991750 0.128187i \(-0.0409157\pi\)
\(444\) 12.2506 11.5899i 0.581389 0.550034i
\(445\) 0 0
\(446\) −5.12343 −0.242602
\(447\) −0.869513 + 0.822618i −0.0411266 + 0.0389085i
\(448\) 3.22941i 0.152575i
\(449\) 4.00000i 0.188772i −0.995536 0.0943858i \(-0.969911\pi\)
0.995536 0.0943858i \(-0.0300887\pi\)
\(450\) 0 0
\(451\) 2.08405 1.42600i 0.0981341 0.0671477i
\(452\) 3.28700i 0.154607i
\(453\) 12.2841 + 12.9844i 0.577160 + 0.610062i
\(454\) 26.9648 1.26552
\(455\) 0 0
\(456\) −2.77625 2.93452i −0.130010 0.137421i
\(457\) 16.1359i 0.754807i 0.926049 + 0.377404i \(0.123183\pi\)
−0.926049 + 0.377404i \(0.876817\pi\)
\(458\) 5.51005 0.257468
\(459\) 20.5636 + 24.3014i 0.959828 + 1.13429i
\(460\) 0 0
\(461\) −5.29621 −0.246669 −0.123335 0.992365i \(-0.539359\pi\)
−0.123335 + 0.992365i \(0.539359\pi\)
\(462\) −18.1322 3.92224i −0.843585 0.182479i
\(463\) −11.9159 −0.553781 −0.276891 0.960901i \(-0.589304\pi\)
−0.276891 + 0.960901i \(0.589304\pi\)
\(464\) −5.27779 −0.245015
\(465\) 0 0
\(466\) 17.7399 0.821785
\(467\) 4.56807i 0.211385i −0.994399 0.105693i \(-0.966294\pi\)
0.994399 0.105693i \(-0.0337060\pi\)
\(468\) −2.13572 0.118468i −0.0987235 0.00547618i
\(469\) 9.07388i 0.418993i
\(470\) 0 0
\(471\) 14.1898 13.4245i 0.653830 0.618567i
\(472\) 1.95162i 0.0898305i
\(473\) −10.8520 15.8598i −0.498975 0.729236i
\(474\) −16.1173 17.0361i −0.740292 0.782494i
\(475\) 0 0
\(476\) 19.7850i 0.906843i
\(477\) −3.27604 0.181721i −0.149999 0.00832045i
\(478\) 5.03938 0.230496
\(479\) 25.4010 1.16060 0.580301 0.814402i \(-0.302935\pi\)
0.580301 + 0.814402i \(0.302935\pi\)
\(480\) 0 0
\(481\) 6.94220i 0.316537i
\(482\) 10.4588i 0.476386i
\(483\) −12.3231 + 11.6585i −0.560720 + 0.530479i
\(484\) 3.98443 10.2530i 0.181111 0.466046i
\(485\) 0 0
\(486\) −12.4392 + 9.39498i −0.564255 + 0.426165i
\(487\) −4.36205 −0.197663 −0.0988317 0.995104i \(-0.531511\pi\)
−0.0988317 + 0.995104i \(0.531511\pi\)
\(488\) 2.19331i 0.0992864i
\(489\) 8.19897 7.75678i 0.370770 0.350774i
\(490\) 0 0
\(491\) −13.4156 −0.605438 −0.302719 0.953080i \(-0.597894\pi\)
−0.302719 + 0.953080i \(0.597894\pi\)
\(492\) −0.957975 + 0.906309i −0.0431888 + 0.0408596i
\(493\) −32.3344 −1.45627
\(494\) 1.66294 0.0748190
\(495\) 0 0
\(496\) −9.55251 −0.428920
\(497\) 37.9023 1.70015
\(498\) 9.72411 9.19967i 0.435748 0.412247i
\(499\) −20.6278 −0.923426 −0.461713 0.887029i \(-0.652765\pi\)
−0.461713 + 0.887029i \(0.652765\pi\)
\(500\) 0 0
\(501\) 10.8413 10.2566i 0.484352 0.458229i
\(502\) 19.2374i 0.858609i
\(503\) −1.14800 −0.0511868 −0.0255934 0.999672i \(-0.508148\pi\)
−0.0255934 + 0.999672i \(0.508148\pi\)
\(504\) 9.67335 + 0.536580i 0.430885 + 0.0239012i
\(505\) 0 0
\(506\) −5.68018 8.30140i −0.252515 0.369042i
\(507\) −15.7170 + 14.8694i −0.698017 + 0.660371i
\(508\) 17.7631i 0.788109i
\(509\) 2.81430i 0.124742i −0.998053 0.0623708i \(-0.980134\pi\)
0.998053 0.0623708i \(-0.0198661\pi\)
\(510\) 0 0
\(511\) 47.4548 2.09928
\(512\) −1.00000 −0.0441942
\(513\) 9.25133 7.82839i 0.408456 0.345632i
\(514\) 9.72740i 0.429057i
\(515\) 0 0
\(516\) 6.89710 + 7.29028i 0.303628 + 0.320937i
\(517\) −22.0894 32.2830i −0.971493 1.41980i
\(518\) 31.4435i 1.38155i
\(519\) 15.1810 14.3623i 0.666373 0.630434i
\(520\) 0 0
\(521\) 31.1768i 1.36588i −0.730474 0.682940i \(-0.760701\pi\)
0.730474 0.682940i \(-0.239299\pi\)
\(522\) 0.876927 15.8091i 0.0383821 0.691944i
\(523\) 32.9337i 1.44009i 0.693927 + 0.720045i \(0.255879\pi\)
−0.693927 + 0.720045i \(0.744121\pi\)
\(524\) −15.0720 −0.658423
\(525\) 0 0
\(526\) −9.76446 −0.425751
\(527\) −58.5235 −2.54932
\(528\) −1.21454 + 5.61470i −0.0528559 + 0.244349i
\(529\) 13.8020 0.600088
\(530\) 0 0
\(531\) −5.84586 0.324269i −0.253689 0.0140721i
\(532\) −7.53198 −0.326553
\(533\) 0.542866i 0.0235141i
\(534\) −3.62106 3.82749i −0.156699 0.165632i
\(535\) 0 0
\(536\) 2.80977 0.121363
\(537\) −4.15764 4.39466i −0.179415 0.189643i
\(538\) 16.8270i 0.725464i
\(539\) −9.38603 + 6.42234i −0.404285 + 0.276630i
\(540\) 0 0
\(541\) 34.6026i 1.48768i 0.668357 + 0.743840i \(0.266998\pi\)
−0.668357 + 0.743840i \(0.733002\pi\)
\(542\) 31.8836i 1.36952i
\(543\) 19.0444 18.0172i 0.817272 0.773194i
\(544\) −6.12651 −0.262672
\(545\) 0 0
\(546\) −2.89710 + 2.74085i −0.123984 + 0.117298i
\(547\) 28.8647i 1.23417i 0.786898 + 0.617083i \(0.211686\pi\)
−0.786898 + 0.617083i \(0.788314\pi\)
\(548\) 4.53833i 0.193868i
\(549\) 6.56983 + 0.364428i 0.280393 + 0.0155534i
\(550\) 0 0
\(551\) 12.3094i 0.524400i
\(552\) 3.61010 + 3.81590i 0.153656 + 0.162416i
\(553\) −43.7262 −1.85943
\(554\) 0.0483829i 0.00205559i
\(555\) 0 0
\(556\) 10.4404i 0.442771i
\(557\) 15.4076 0.652840 0.326420 0.945225i \(-0.394158\pi\)
0.326420 + 0.945225i \(0.394158\pi\)
\(558\) 1.58719 28.6135i 0.0671911 1.21131i
\(559\) −4.13126 −0.174734
\(560\) 0 0
\(561\) −7.44087 + 34.3985i −0.314154 + 1.45231i
\(562\) −4.52445 −0.190852
\(563\) 40.8624 1.72214 0.861072 0.508483i \(-0.169794\pi\)
0.861072 + 0.508483i \(0.169794\pi\)
\(564\) 14.0392 + 14.8395i 0.591156 + 0.624856i
\(565\) 0 0
\(566\) 23.5950i 0.991770i
\(567\) −3.21454 + 28.8864i −0.134998 + 1.21311i
\(568\) 11.7366i 0.492457i
\(569\) 38.0817 1.59647 0.798234 0.602347i \(-0.205768\pi\)
0.798234 + 0.602347i \(0.205768\pi\)
\(570\) 0 0
\(571\) 5.43732i 0.227545i 0.993507 + 0.113772i \(0.0362935\pi\)
−0.993507 + 0.113772i \(0.963707\pi\)
\(572\) −1.33538 1.95162i −0.0558352 0.0816012i
\(573\) 10.6316 + 11.2377i 0.444141 + 0.469460i
\(574\) 2.45882i 0.102629i
\(575\) 0 0
\(576\) 0.166154 2.99540i 0.00692309 0.124808i
\(577\) 12.5556 0.522696 0.261348 0.965245i \(-0.415833\pi\)
0.261348 + 0.965245i \(0.415833\pi\)
\(578\) −20.5341 −0.854105
\(579\) 24.4997 + 25.8964i 1.01817 + 1.07622i
\(580\) 0 0
\(581\) 24.9587i 1.03546i
\(582\) −13.3951 + 12.6727i −0.555244 + 0.525298i
\(583\) −2.04838 2.99364i −0.0848354 0.123984i
\(584\) 14.6946i 0.608066i
\(585\) 0 0
\(586\) −24.6151 −1.01684
\(587\) 31.9380i 1.31822i −0.752046 0.659110i \(-0.770933\pi\)
0.752046 0.659110i \(-0.229067\pi\)
\(588\) 4.31447 4.08178i 0.177926 0.168330i
\(589\) 22.2794i 0.918006i
\(590\) 0 0
\(591\) 17.3167 16.3828i 0.712316 0.673899i
\(592\) −9.73661 −0.400172
\(593\) 14.0345 0.576328 0.288164 0.957581i \(-0.406955\pi\)
0.288164 + 0.957581i \(0.406955\pi\)
\(594\) −16.6165 4.57093i −0.681781 0.187547i
\(595\) 0 0
\(596\) 0.691075 0.0283075
\(597\) −23.0426 + 21.7999i −0.943071 + 0.892209i
\(598\) −2.16240 −0.0884270
\(599\) 10.7383i 0.438755i −0.975640 0.219377i \(-0.929597\pi\)
0.975640 0.219377i \(-0.0704026\pi\)
\(600\) 0 0
\(601\) 20.7614i 0.846874i −0.905925 0.423437i \(-0.860823\pi\)
0.905925 0.423437i \(-0.139177\pi\)
\(602\) 18.7118 0.762637
\(603\) −0.466854 + 8.41636i −0.0190118 + 0.342741i
\(604\) 10.3198i 0.419907i
\(605\) 0 0
\(606\) 18.2530 17.2686i 0.741478 0.701488i
\(607\) 15.1326i 0.614215i −0.951675 0.307107i \(-0.900639\pi\)
0.951675 0.307107i \(-0.0993611\pi\)
\(608\) 2.33231i 0.0945876i
\(609\) −20.2884 21.4450i −0.822128 0.868995i
\(610\) 0 0
\(611\) −8.40926 −0.340202
\(612\) 1.01795 18.3513i 0.0411480 0.741808i
\(613\) 26.3137i 1.06280i 0.847121 + 0.531399i \(0.178334\pi\)
−0.847121 + 0.531399i \(0.821666\pi\)
\(614\) 25.8725i 1.04413i
\(615\) 0 0
\(616\) 6.04838 + 8.83951i 0.243696 + 0.356154i
\(617\) 2.21735i 0.0892670i −0.999003 0.0446335i \(-0.985788\pi\)
0.999003 0.0446335i \(-0.0142120\pi\)
\(618\) 9.80669 9.27779i 0.394483 0.373207i
\(619\) −49.1338 −1.97485 −0.987427 0.158074i \(-0.949471\pi\)
−0.987427 + 0.158074i \(0.949471\pi\)
\(620\) 0 0
\(621\) −12.0300 + 10.1796i −0.482746 + 0.408495i
\(622\) 10.7038i 0.429183i
\(623\) −9.82394 −0.393588
\(624\) 0.848716 + 0.897099i 0.0339758 + 0.0359127i
\(625\) 0 0
\(626\) −14.3682 −0.574269
\(627\) 13.0952 + 2.83268i 0.522973 + 0.113126i
\(628\) −11.2778 −0.450033
\(629\) −59.6514 −2.37846
\(630\) 0 0
\(631\) −18.3857 −0.731922 −0.365961 0.930630i \(-0.619260\pi\)
−0.365961 + 0.930630i \(0.619260\pi\)
\(632\) 13.5400i 0.538593i
\(633\) −1.33893 1.41526i −0.0532177 0.0562515i
\(634\) 34.7727i 1.38100i
\(635\) 0 0
\(636\) 1.30187 + 1.37609i 0.0516225 + 0.0545654i
\(637\) 2.44493i 0.0968716i
\(638\) 14.4463 9.88482i 0.571935 0.391344i
\(639\) 35.1558 + 1.95009i 1.39074 + 0.0771442i
\(640\) 0 0
\(641\) 8.97639i 0.354546i 0.984162 + 0.177273i \(0.0567276\pi\)
−0.984162 + 0.177273i \(0.943272\pi\)
\(642\) 6.67383 6.31389i 0.263395 0.249189i
\(643\) 29.0097 1.14403 0.572016 0.820243i \(-0.306162\pi\)
0.572016 + 0.820243i \(0.306162\pi\)
\(644\) 9.79420 0.385945
\(645\) 0 0
\(646\) 14.2889i 0.562189i
\(647\) 21.7880i 0.856577i −0.903642 0.428288i \(-0.859117\pi\)
0.903642 0.428288i \(-0.140883\pi\)
\(648\) 8.94479 + 0.995395i 0.351384 + 0.0391028i
\(649\) −3.65520 5.34195i −0.143479 0.209690i
\(650\) 0 0
\(651\) −36.7209 38.8143i −1.43921 1.52125i
\(652\) −6.51641 −0.255202
\(653\) 2.13307i 0.0834736i −0.999129 0.0417368i \(-0.986711\pi\)
0.999129 0.0417368i \(-0.0132891\pi\)
\(654\) −14.2417 15.0536i −0.556894 0.588641i
\(655\) 0 0
\(656\) 0.761383 0.0297270
\(657\) 44.0161 + 2.44157i 1.71723 + 0.0952546i
\(658\) 38.0883 1.48484
\(659\) 28.7576 1.12024 0.560118 0.828413i \(-0.310756\pi\)
0.560118 + 0.828413i \(0.310756\pi\)
\(660\) 0 0
\(661\) −20.3371 −0.791020 −0.395510 0.918462i \(-0.629432\pi\)
−0.395510 + 0.918462i \(0.629432\pi\)
\(662\) 13.7942 0.536127
\(663\) 5.19967 + 5.49608i 0.201938 + 0.213450i
\(664\) −7.72857 −0.299927
\(665\) 0 0
\(666\) 1.61778 29.1650i 0.0626876 1.13012i
\(667\) 16.0066i 0.619777i
\(668\) −8.61646 −0.333381
\(669\) −6.44632 + 6.09866i −0.249229 + 0.235788i
\(670\) 0 0
\(671\) 4.10787 + 6.00351i 0.158582 + 0.231763i
\(672\) −3.84411 4.06325i −0.148290 0.156743i
\(673\) 12.5820i 0.485002i −0.970151 0.242501i \(-0.922032\pi\)
0.970151 0.242501i \(-0.0779678\pi\)
\(674\) 13.3868i 0.515641i
\(675\) 0 0
\(676\) 12.4916 0.480447
\(677\) 16.6085 0.638316 0.319158 0.947701i \(-0.396600\pi\)
0.319158 + 0.947701i \(0.396600\pi\)
\(678\) −3.91267 4.13572i −0.150265 0.158831i
\(679\) 34.3809i 1.31942i
\(680\) 0 0
\(681\) 33.9273 32.0975i 1.30010 1.22998i
\(682\) 26.1470 17.8910i 1.00122 0.685080i
\(683\) 36.0597i 1.37979i 0.723911 + 0.689893i \(0.242343\pi\)
−0.723911 + 0.689893i \(0.757657\pi\)
\(684\) −6.98619 0.387523i −0.267123 0.0148173i
\(685\) 0 0
\(686\) 11.5320i 0.440293i
\(687\) 6.93277 6.55886i 0.264502 0.250236i
\(688\) 5.79420i 0.220902i
\(689\) −0.779802 −0.0297081
\(690\) 0 0
\(691\) 27.3396 1.04005 0.520024 0.854152i \(-0.325923\pi\)
0.520024 + 0.854152i \(0.325923\pi\)
\(692\) −12.0656 −0.458666
\(693\) −27.4828 + 16.6486i −1.04398 + 0.632427i
\(694\) −19.3699 −0.735271
\(695\) 0 0
\(696\) −6.64054 + 6.28240i −0.251709 + 0.238134i
\(697\) 4.66462 0.176685
\(698\) 2.53833i 0.0960773i
\(699\) 22.3204 21.1166i 0.844235 0.798703i
\(700\) 0 0
\(701\) −6.68771 −0.252591 −0.126296 0.991993i \(-0.540309\pi\)
−0.126296 + 0.991993i \(0.540309\pi\)
\(702\) −2.82818 + 2.39318i −0.106743 + 0.0903249i
\(703\) 22.7088i 0.856477i
\(704\) 2.73719 1.87291i 0.103162 0.0705879i
\(705\) 0 0
\(706\) 32.9476i 1.24000i
\(707\) 46.8497i 1.76196i
\(708\) 2.32310 + 2.45553i 0.0873074 + 0.0922846i
\(709\) −34.9431 −1.31231 −0.656157 0.754624i \(-0.727819\pi\)
−0.656157 + 0.754624i \(0.727819\pi\)
\(710\) 0 0
\(711\) −40.5577 2.24973i −1.52103 0.0843715i
\(712\) 3.04203i 0.114005i
\(713\) 28.9710i 1.08497i
\(714\) −23.5510 24.8936i −0.881373 0.931618i
\(715\) 0 0
\(716\) 3.49280i 0.130532i
\(717\) 6.34057 5.99861i 0.236793 0.224022i
\(718\) 16.6212 0.620298
\(719\) 37.5534i 1.40051i 0.713894 + 0.700254i \(0.246930\pi\)
−0.713894 + 0.700254i \(0.753070\pi\)
\(720\) 0 0
\(721\) 25.1706i 0.937404i
\(722\) −13.5603 −0.504663
\(723\) −12.4496 13.1593i −0.463006 0.489400i
\(724\) −15.1361 −0.562531
\(725\) 0 0
\(726\) −7.19140 17.6432i −0.266898 0.654802i
\(727\) 29.6479 1.09958 0.549789 0.835303i \(-0.314708\pi\)
0.549789 + 0.835303i \(0.314708\pi\)
\(728\) 2.30257 0.0853388
\(729\) −4.46782 + 26.6278i −0.165475 + 0.986214i
\(730\) 0 0
\(731\) 35.4982i 1.31295i
\(732\) −2.61080 2.75963i −0.0964978 0.101999i
\(733\) 34.2703i 1.26580i 0.774233 + 0.632901i \(0.218136\pi\)
−0.774233 + 0.632901i \(0.781864\pi\)
\(734\) −11.1361 −0.411043
\(735\) 0 0
\(736\) 3.03282i 0.111791i
\(737\) −7.69087 + 5.26243i −0.283297 + 0.193844i
\(738\) −0.126507 + 2.28064i −0.00465679 + 0.0839516i
\(739\) 49.1457i 1.80785i 0.427689 + 0.903926i \(0.359328\pi\)
−0.427689 + 0.903926i \(0.640672\pi\)
\(740\) 0 0
\(741\) 2.09231 1.97947i 0.0768630 0.0727176i
\(742\) 3.53198 0.129663
\(743\) −29.6654 −1.08832 −0.544158 0.838983i \(-0.683151\pi\)
−0.544158 + 0.838983i \(0.683151\pi\)
\(744\) −12.0190 + 11.3708i −0.440638 + 0.416873i
\(745\) 0 0
\(746\) 4.69458i 0.171881i
\(747\) 1.28413 23.1501i 0.0469840 0.847018i
\(748\) 16.7694 11.4744i 0.613151 0.419545i
\(749\) 17.1296i 0.625901i
\(750\) 0 0
\(751\) 9.45574 0.345045 0.172522 0.985006i \(-0.444808\pi\)
0.172522 + 0.985006i \(0.444808\pi\)
\(752\) 11.7942i 0.430090i
\(753\) 22.8992 + 24.2046i 0.834494 + 0.882066i
\(754\) 3.76306i 0.137043i
\(755\) 0 0
\(756\) 12.8098 10.8395i 0.465887 0.394229i
\(757\) 39.5154 1.43621 0.718107 0.695933i \(-0.245009\pi\)
0.718107 + 0.695933i \(0.245009\pi\)
\(758\) −22.6339 −0.822101
\(759\) −17.0284 3.68347i −0.618090 0.133701i
\(760\) 0 0
\(761\) −10.0538 −0.364449 −0.182225 0.983257i \(-0.558330\pi\)
−0.182225 + 0.983257i \(0.558330\pi\)
\(762\) −21.1442 22.3496i −0.765973 0.809639i
\(763\) −38.6377 −1.39878
\(764\) 8.93152i 0.323131i
\(765\) 0 0
\(766\) 34.2412i 1.23718i
\(767\) −1.39150 −0.0502443
\(768\) −1.25820 + 1.19035i −0.0454015 + 0.0429529i
\(769\) 52.0226i 1.87598i −0.346656 0.937992i \(-0.612683\pi\)
0.346656 0.937992i \(-0.387317\pi\)
\(770\) 0 0
\(771\) 11.5790 + 12.2390i 0.417006 + 0.440779i
\(772\) 20.5820i 0.740764i
\(773\) 6.51969i 0.234497i −0.993103 0.117248i \(-0.962593\pi\)
0.993103 0.117248i \(-0.0374074\pi\)
\(774\) 17.3559 + 0.962731i 0.623845 + 0.0346046i
\(775\) 0 0
\(776\) 10.6462 0.382176
\(777\) −37.4286 39.5623i −1.34274 1.41929i
\(778\) 3.67901i 0.131899i
\(779\) 1.77578i 0.0636239i
\(780\) 0 0
\(781\) 21.9816 + 32.1253i 0.786563 + 1.14953i
\(782\) 18.5806i 0.664440i
\(783\) −17.7149 20.9349i −0.633079 0.748152i
\(784\) −3.42907 −0.122467
\(785\) 0 0
\(786\) −18.9636 + 17.9409i −0.676410 + 0.639930i
\(787\) 27.3330i 0.974318i 0.873313 + 0.487159i \(0.161967\pi\)
−0.873313 + 0.487159i \(0.838033\pi\)
\(788\) −13.7631 −0.490289
\(789\) −12.2857 + 11.6231i −0.437382 + 0.413793i
\(790\) 0 0
\(791\) −10.6151 −0.377428
\(792\) 5.15530 + 8.51016i 0.183186 + 0.302395i
\(793\) 1.56383 0.0555332
\(794\) 1.07505 0.0381521
\(795\) 0 0
\(796\) 18.3139 0.649119
\(797\) 43.6885i 1.54753i −0.633475 0.773763i \(-0.718372\pi\)
0.633475 0.773763i \(-0.281628\pi\)
\(798\) −9.47676 + 8.96565i −0.335474 + 0.317381i
\(799\) 72.2572i 2.55628i
\(800\) 0 0
\(801\) −9.11207 0.505445i −0.321959 0.0178590i
\(802\) 28.8428i 1.01847i
\(803\) 27.5216 + 40.2219i 0.971216 + 1.41940i
\(804\) 3.53526 3.34459i 0.124679 0.117955i
\(805\) 0 0
\(806\) 6.81094i 0.239905i
\(807\) −20.0300 21.1718i −0.705088 0.745283i
\(808\) −14.5072 −0.510361
\(809\) 46.6684 1.64077 0.820387 0.571808i \(-0.193758\pi\)
0.820387 + 0.571808i \(0.193758\pi\)
\(810\) 0 0
\(811\) 10.0543i 0.353055i −0.984296 0.176527i \(-0.943514\pi\)
0.984296 0.176527i \(-0.0564864\pi\)
\(812\) 17.0441i 0.598132i
\(813\) 37.9526 + 40.1161i 1.33105 + 1.40693i
\(814\) 26.6510 18.2358i 0.934115 0.639163i
\(815\) 0 0
\(816\) −7.70840 + 7.29266i −0.269848 + 0.255294i
\(817\) −13.5139 −0.472790
\(818\) 3.23862i 0.113236i
\(819\) −0.382581 + 6.89710i −0.0133685 + 0.241004i
\(820\) 0 0
\(821\) 8.34480 0.291236 0.145618 0.989341i \(-0.453483\pi\)
0.145618 + 0.989341i \(0.453483\pi\)
\(822\) 5.40218 + 5.71015i 0.188423 + 0.199164i
\(823\) 1.96316 0.0684315 0.0342158 0.999414i \(-0.489107\pi\)
0.0342158 + 0.999414i \(0.489107\pi\)
\(824\) −7.79420 −0.271524
\(825\) 0 0
\(826\) 6.30257 0.219294
\(827\) 24.1152 0.838567 0.419284 0.907855i \(-0.362281\pi\)
0.419284 + 0.907855i \(0.362281\pi\)
\(828\) 9.08448 + 0.503915i 0.315708 + 0.0175123i
\(829\) 43.2329 1.50154 0.750771 0.660563i \(-0.229682\pi\)
0.750771 + 0.660563i \(0.229682\pi\)
\(830\) 0 0
\(831\) 0.0575924 + 0.0608756i 0.00199786 + 0.00211175i
\(832\) 0.713000i 0.0247188i
\(833\) −21.0082 −0.727893
\(834\) 12.4277 + 13.1361i 0.430335 + 0.454868i
\(835\) 0 0
\(836\) −4.36820 6.38397i −0.151077 0.220794i
\(837\) −32.0630 37.8910i −1.10826 1.30970i
\(838\) 8.74413i 0.302061i
\(839\) 3.70811i 0.128018i 0.997949 + 0.0640092i \(0.0203887\pi\)
−0.997949 + 0.0640092i \(0.979611\pi\)
\(840\) 0 0
\(841\) −1.14493 −0.0394802
\(842\) 28.4749 0.981310
\(843\) −5.69268 + 5.38566i −0.196066 + 0.185492i
\(844\) 1.12483i 0.0387181i
\(845\) 0 0
\(846\) 35.3283 + 1.95966i 1.21461 + 0.0673744i
\(847\) −33.1112 12.8674i −1.13771 0.442128i
\(848\) 1.09369i 0.0375575i
\(849\) 28.0862 + 29.6873i 0.963915 + 1.01886i
\(850\) 0 0
\(851\) 29.5293i 1.01225i
\(852\) −13.9706 14.7670i −0.478626 0.505911i
\(853\) 32.9542i 1.12833i −0.825662 0.564164i \(-0.809198\pi\)
0.825662 0.564164i \(-0.190802\pi\)
\(854\) −7.08309 −0.242378
\(855\) 0 0
\(856\) −5.30425 −0.181295
\(857\) −24.5788 −0.839594 −0.419797 0.907618i \(-0.637899\pi\)
−0.419797 + 0.907618i \(0.637899\pi\)
\(858\) −4.00328 0.865965i −0.136670 0.0295636i
\(859\) −24.9776 −0.852223 −0.426112 0.904671i \(-0.640117\pi\)
−0.426112 + 0.904671i \(0.640117\pi\)
\(860\) 0 0
\(861\) 2.92684 + 3.09369i 0.0997465 + 0.105433i
\(862\) −11.9032 −0.405426
\(863\) 30.3314i 1.03249i 0.856440 + 0.516246i \(0.172671\pi\)
−0.856440 + 0.516246i \(0.827329\pi\)
\(864\) −3.35650 3.96660i −0.114190 0.134946i
\(865\) 0 0
\(866\) −20.9488 −0.711868
\(867\) −25.8361 + 24.4427i −0.877439 + 0.830116i
\(868\) 30.8489i 1.04708i
\(869\) −25.3592 37.0616i −0.860252 1.25723i
\(870\) 0 0
\(871\) 2.00336i 0.0678814i
\(872\) 11.9643i 0.405163i
\(873\) −1.76891 + 31.8896i −0.0598686 + 1.07930i
\(874\) −7.07346 −0.239263
\(875\) 0 0
\(876\) −17.4916 18.4888i −0.590987 0.624678i
\(877\) 15.2497i 0.514946i −0.966285 0.257473i \(-0.917110\pi\)
0.966285 0.257473i \(-0.0828899\pi\)
\(878\) 32.8386i 1.10825i
\(879\) −30.9708 + 29.3004i −1.04462 + 0.988279i
\(880\) 0 0
\(881\) 53.1457i 1.79052i −0.445541 0.895261i \(-0.646989\pi\)
0.445541 0.895261i \(-0.353011\pi\)
\(882\) 0.569755 10.2714i 0.0191847 0.345857i
\(883\) 34.7231 1.16852 0.584262 0.811565i \(-0.301384\pi\)
0.584262 + 0.811565i \(0.301384\pi\)
\(884\) 4.36820i 0.146918i
\(885\) 0 0
\(886\) 5.39604i 0.181283i
\(887\) 16.7241 0.561540 0.280770 0.959775i \(-0.409410\pi\)
0.280770 + 0.959775i \(0.409410\pi\)
\(888\) −12.2506 + 11.5899i −0.411104 + 0.388932i
\(889\) −57.3642 −1.92393
\(890\) 0 0
\(891\) −26.3479 + 14.0282i −0.882687 + 0.469961i
\(892\) 5.12343 0.171545
\(893\) −27.5077 −0.920510
\(894\) 0.869513 0.822618i 0.0290809 0.0275125i
\(895\) 0 0
\(896\) 3.22941i 0.107887i
\(897\) −2.72074 + 2.57400i −0.0908428 + 0.0859434i
\(898\) 4.00000i 0.133482i
\(899\) 50.4161 1.68147
\(900\) 0 0
\(901\) 6.70051i 0.223226i
\(902\) −2.08405 + 1.42600i −0.0693913 + 0.0474806i
\(903\) 23.5433 22.2735i 0.783472 0.741217i
\(904\) 3.28700i 0.109324i
\(905\) 0 0
\(906\) −12.2841 12.9844i −0.408113 0.431379i
\(907\) −46.9073 −1.55753 −0.778765 0.627316i \(-0.784153\pi\)
−0.778765 + 0.627316i \(0.784153\pi\)
\(908\) −26.9648 −0.894860
\(909\) 2.41043 43.4548i 0.0799490 1.44130i
\(910\) 0 0
\(911\) 11.4463i 0.379233i 0.981858 + 0.189617i \(0.0607245\pi\)
−0.981858 + 0.189617i \(0.939276\pi\)
\(912\) 2.77625 + 2.93452i 0.0919309 + 0.0971717i
\(913\) 21.1546 14.4749i 0.700114 0.479049i
\(914\) 16.1359i 0.533729i
\(915\) 0 0
\(916\) −5.51005 −0.182057
\(917\) 48.6736i 1.60734i
\(918\) −20.5636 24.3014i −0.678701 0.802066i
\(919\) 19.8836i 0.655901i 0.944695 + 0.327950i \(0.106358\pi\)
−0.944695 + 0.327950i \(0.893642\pi\)
\(920\) 0 0
\(921\) 30.7973 + 32.5529i 1.01480 + 1.07266i
\(922\) 5.29621 0.174421
\(923\) 8.36820 0.275443
\(924\) 18.1322 + 3.92224i 0.596505 + 0.129032i
\(925\) 0 0
\(926\) 11.9159 0.391582
\(927\) 1.29504 23.3467i 0.0425347 0.766806i
\(928\) 5.27779 0.173252
\(929\) 27.5136i 0.902690i 0.892349 + 0.451345i \(0.149056\pi\)
−0.892349 + 0.451345i \(0.850944\pi\)
\(930\) 0 0
\(931\) 7.99766i 0.262113i
\(932\) −17.7399 −0.581089
\(933\) −12.7412 13.4676i −0.417129 0.440908i
\(934\) 4.56807i 0.149472i
\(935\) 0 0
\(936\) 2.13572 + 0.118468i 0.0698081 + 0.00387225i
\(937\) 30.4642i 0.995222i 0.867400 + 0.497611i \(0.165789\pi\)
−0.867400 + 0.497611i \(0.834211\pi\)
\(938\) 9.07388i 0.296273i
\(939\) −18.0781 + 17.1031i −0.589957 + 0.558139i
\(940\) 0 0
\(941\) 32.6542 1.06450 0.532249 0.846588i \(-0.321347\pi\)
0.532249 + 0.846588i \(0.321347\pi\)
\(942\) −14.1898 + 13.4245i −0.462327 + 0.437393i
\(943\) 2.30913i 0.0751957i
\(944\) 1.95162i 0.0635197i
\(945\) 0 0
\(946\) 10.8520 + 15.8598i 0.352829 + 0.515648i
\(947\) 23.7449i 0.771605i 0.922581 + 0.385802i \(0.126075\pi\)
−0.922581 + 0.385802i \(0.873925\pi\)
\(948\) 16.1173 + 17.0361i 0.523465 + 0.553307i
\(949\) 10.4772 0.340105
\(950\) 0 0
\(951\) −41.3915 43.7512i −1.34221 1.41873i
\(952\) 19.7850i 0.641235i
\(953\) −23.0691 −0.747282 −0.373641 0.927573i \(-0.621891\pi\)
−0.373641 + 0.927573i \(0.621891\pi\)
\(954\) 3.27604 + 0.181721i 0.106066 + 0.00588345i
\(955\) 0 0
\(956\) −5.03938 −0.162985
\(957\) 6.41007 29.6332i 0.207208 0.957906i
\(958\) −25.4010 −0.820670
\(959\) 14.6561 0.473271
\(960\) 0 0
\(961\) 60.2504 1.94356
\(962\) 6.94220i 0.223825i
\(963\) 0.881323 15.8883i 0.0284003 0.511994i
\(964\) 10.4588i 0.336856i
\(965\) 0 0
\(966\) 12.3231 11.6585i 0.396489 0.375106i
\(967\) 2.79237i 0.0897967i 0.998992 + 0.0448983i \(0.0142964\pi\)
−0.998992 + 0.0448983i \(0.985704\pi\)
\(968\) −3.98443 + 10.2530i −0.128065 + 0.329544i
\(969\) 17.0087 + 17.9784i 0.546399 + 0.577548i
\(970\) 0 0
\(971\) 21.5150i 0.690450i 0.938520 + 0.345225i \(0.112197\pi\)
−0.938520 + 0.345225i \(0.887803\pi\)
\(972\) 12.4392 9.39498i 0.398988 0.301344i
\(973\) 33.7163 1.08089
\(974\) 4.36205 0.139769
\(975\) 0 0
\(976\) 2.19331i 0.0702061i
\(977\) 5.27428i 0.168739i −0.996435 0.0843697i \(-0.973112\pi\)
0.996435 0.0843697i \(-0.0268877\pi\)
\(978\) −8.19897 + 7.75678i −0.262174 + 0.248034i
\(979\) −5.69743 8.32660i −0.182091 0.266119i
\(980\) 0 0
\(981\) −35.8379 1.98792i −1.14422 0.0634695i
\(982\) 13.4156 0.428110
\(983\) 28.1850i 0.898963i 0.893290 + 0.449482i \(0.148391\pi\)
−0.893290 + 0.449482i \(0.851609\pi\)
\(984\) 0.957975 0.906309i 0.0305391 0.0288921i
\(985\) 0 0
\(986\) 32.3344 1.02974
\(987\) 47.9228 45.3382i 1.52540 1.44313i
\(988\) −1.66294 −0.0529050
\(989\) 17.5727 0.558781
\(990\) 0 0
\(991\) 0.602794 0.0191484 0.00957419 0.999954i \(-0.496952\pi\)
0.00957419 + 0.999954i \(0.496952\pi\)
\(992\) 9.55251 0.303292
\(993\) 17.3559 16.4199i 0.550773 0.521069i
\(994\) −37.9023 −1.20219
\(995\) 0 0
\(996\) −9.72411 + 9.19967i −0.308120 + 0.291503i
\(997\) 23.2502i 0.736340i −0.929758 0.368170i \(-0.879984\pi\)
0.929758 0.368170i \(-0.120016\pi\)
\(998\) 20.6278 0.652961
\(999\) −32.6809 38.6212i −1.03398 1.22192i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1650.2.d.c.1451.4 8
3.2 odd 2 1650.2.d.f.1451.3 8
5.2 odd 4 1650.2.f.f.1649.3 8
5.3 odd 4 1650.2.f.d.1649.6 8
5.4 even 2 330.2.d.b.131.5 yes 8
11.10 odd 2 1650.2.d.f.1451.4 8
15.2 even 4 1650.2.f.c.1649.6 8
15.8 even 4 1650.2.f.e.1649.3 8
15.14 odd 2 330.2.d.a.131.6 yes 8
20.19 odd 2 2640.2.f.a.1121.4 8
33.32 even 2 inner 1650.2.d.c.1451.3 8
55.32 even 4 1650.2.f.e.1649.7 8
55.43 even 4 1650.2.f.c.1649.2 8
55.54 odd 2 330.2.d.a.131.5 8
60.59 even 2 2640.2.f.b.1121.3 8
165.32 odd 4 1650.2.f.d.1649.2 8
165.98 odd 4 1650.2.f.f.1649.7 8
165.164 even 2 330.2.d.b.131.6 yes 8
220.219 even 2 2640.2.f.b.1121.4 8
660.659 odd 2 2640.2.f.a.1121.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.d.a.131.5 8 55.54 odd 2
330.2.d.a.131.6 yes 8 15.14 odd 2
330.2.d.b.131.5 yes 8 5.4 even 2
330.2.d.b.131.6 yes 8 165.164 even 2
1650.2.d.c.1451.3 8 33.32 even 2 inner
1650.2.d.c.1451.4 8 1.1 even 1 trivial
1650.2.d.f.1451.3 8 3.2 odd 2
1650.2.d.f.1451.4 8 11.10 odd 2
1650.2.f.c.1649.2 8 55.43 even 4
1650.2.f.c.1649.6 8 15.2 even 4
1650.2.f.d.1649.2 8 165.32 odd 4
1650.2.f.d.1649.6 8 5.3 odd 4
1650.2.f.e.1649.3 8 15.8 even 4
1650.2.f.e.1649.7 8 55.32 even 4
1650.2.f.f.1649.3 8 5.2 odd 4
1650.2.f.f.1649.7 8 165.98 odd 4
2640.2.f.a.1121.3 8 660.659 odd 2
2640.2.f.a.1121.4 8 20.19 odd 2
2640.2.f.b.1121.3 8 60.59 even 2
2640.2.f.b.1121.4 8 220.219 even 2