Properties

Label 1650.2.d
Level $1650$
Weight $2$
Character orbit 1650.d
Rep. character $\chi_{1650}(1451,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $10$
Sturm bound $720$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(720\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(7\), \(17\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1650, [\chi])\).

Total New Old
Modular forms 384 76 308
Cusp forms 336 76 260
Eisenstein series 48 0 48

Trace form

\( 76 q + 76 q^{4} + 8 q^{9} + 76 q^{16} + 24 q^{27} + 32 q^{31} - 24 q^{33} - 16 q^{34} + 8 q^{36} + 16 q^{37} - 8 q^{42} - 28 q^{49} + 32 q^{58} + 76 q^{64} + 18 q^{66} + 40 q^{67} - 64 q^{69} + 40 q^{78}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1650, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1650.2.d.a 1650.d 33.d $2$ $13.175$ \(\Q(\sqrt{-2}) \) None 66.2.b.a \(-2\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+(1-\beta )q^{3}+q^{4}+(-1+\beta )q^{6}+\cdots\)
1650.2.d.b 1650.d 33.d $2$ $13.175$ \(\Q(\sqrt{-2}) \) None 66.2.b.a \(2\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+(1+\beta )q^{3}+q^{4}+(1+\beta )q^{6}+\cdots\)
1650.2.d.c 1650.d 33.d $8$ $13.175$ 8.0.2051727616.3 None 330.2.d.a \(-8\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{1}q^{6}+(\beta _{1}+\beta _{3}+\cdots)q^{7}+\cdots\)
1650.2.d.d 1650.d 33.d $8$ $13.175$ 8.0.\(\cdots\).1 None 1650.2.d.d \(-8\) \(-1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{1}q^{6}-\beta _{7}q^{7}+\cdots\)
1650.2.d.e 1650.d 33.d $8$ $13.175$ 8.0.\(\cdots\).1 None 1650.2.d.d \(-8\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{1}q^{6}-\beta _{7}q^{7}+\cdots\)
1650.2.d.f 1650.d 33.d $8$ $13.175$ 8.0.2051727616.3 None 330.2.d.a \(8\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+(-\beta _{3}-\beta _{4})q^{3}+q^{4}+(-\beta _{3}+\cdots)q^{6}+\cdots\)
1650.2.d.g 1650.d 33.d $8$ $13.175$ 8.0.\(\cdots\).1 None 1650.2.d.d \(8\) \(-1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+\beta _{4}q^{3}+q^{4}+\beta _{4}q^{6}-\beta _{7}q^{7}+\cdots\)
1650.2.d.h 1650.d 33.d $8$ $13.175$ 8.0.\(\cdots\).1 None 1650.2.d.d \(8\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-\beta _{4}q^{3}+q^{4}-\beta _{4}q^{6}-\beta _{7}q^{7}+\cdots\)
1650.2.d.i 1650.d 33.d $12$ $13.175$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 330.2.f.a \(-12\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{1}q^{6}-\beta _{3}q^{7}+\cdots\)
1650.2.d.j 1650.d 33.d $12$ $13.175$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 330.2.f.a \(12\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-\beta _{7}q^{3}+q^{4}-\beta _{7}q^{6}-\beta _{2}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1650, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(825, [\chi])\)\(^{\oplus 2}\)