Properties

Label 1650.2.f.c.1649.6
Level $1650$
Weight $2$
Character 1650.1649
Analytic conductor $13.175$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1650,2,Mod(1649,1650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1650.1649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4,-8,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1753163335\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2051727616.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 37x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1649.6
Root \(-0.356500i\) of defining polynomial
Character \(\chi\) \(=\) 1650.1649
Dual form 1650.2.f.c.1649.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(-1.19035 + 1.25820i) q^{3} -1.00000 q^{4} +(-1.25820 - 1.19035i) q^{6} +3.22941 q^{7} -1.00000i q^{8} +(-0.166154 - 2.99540i) q^{9} +(-2.73719 + 1.87291i) q^{11} +(1.19035 - 1.25820i) q^{12} -0.713000 q^{13} +3.22941i q^{14} +1.00000 q^{16} -6.12651i q^{17} +(2.99540 - 0.166154i) q^{18} +2.33231i q^{19} +(-3.84411 + 4.06325i) q^{21} +(-1.87291 - 2.73719i) q^{22} -3.03282 q^{23} +(1.25820 + 1.19035i) q^{24} -0.713000i q^{26} +(3.96660 + 3.35650i) q^{27} -3.22941 q^{28} -5.27779 q^{29} -9.55251 q^{31} +1.00000i q^{32} +(0.901704 - 5.67335i) q^{33} +6.12651 q^{34} +(0.166154 + 2.99540i) q^{36} -9.73661i q^{37} -2.33231 q^{38} +(0.848716 - 0.897099i) q^{39} -0.761383 q^{41} +(-4.06325 - 3.84411i) q^{42} -5.79420 q^{43} +(2.73719 - 1.87291i) q^{44} -3.03282i q^{46} -11.7942 q^{47} +(-1.19035 + 1.25820i) q^{48} +3.42907 q^{49} +(7.70840 + 7.29266i) q^{51} +0.713000 q^{52} +1.09369 q^{53} +(-3.35650 + 3.96660i) q^{54} -3.22941i q^{56} +(-2.93452 - 2.77625i) q^{57} -5.27779i q^{58} -1.95162i q^{59} +2.19331i q^{61} -9.55251i q^{62} +(-0.536580 - 9.67335i) q^{63} -1.00000 q^{64} +(5.67335 + 0.901704i) q^{66} -2.80977i q^{67} +6.12651i q^{68} +(3.61010 - 3.81590i) q^{69} -11.7366i q^{71} +(-2.99540 + 0.166154i) q^{72} +14.6946 q^{73} +9.73661 q^{74} -2.33231i q^{76} +(-8.83951 + 6.04838i) q^{77} +(0.897099 + 0.848716i) q^{78} +13.5400i q^{79} +(-8.94479 + 0.995395i) q^{81} -0.761383i q^{82} +7.72857i q^{83} +(3.84411 - 4.06325i) q^{84} -5.79420i q^{86} +(6.28240 - 6.64054i) q^{87} +(1.87291 + 2.73719i) q^{88} -3.04203i q^{89} -2.30257 q^{91} +3.03282 q^{92} +(11.3708 - 12.0190i) q^{93} -11.7942i q^{94} +(-1.25820 - 1.19035i) q^{96} -10.6462i q^{97} +3.42907i q^{98} +(6.06490 + 7.88778i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 8 q^{4} - 2 q^{6} - 2 q^{9} - 6 q^{11} + 4 q^{12} + 4 q^{13} + 8 q^{16} + 8 q^{21} + 6 q^{22} + 8 q^{23} + 2 q^{24} - 10 q^{27} - 4 q^{29} - 4 q^{31} + 4 q^{33} - 4 q^{34} + 2 q^{36} - 20 q^{38}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1650\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(727\) \(1201\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.19035 + 1.25820i −0.687246 + 0.726424i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.25820 1.19035i −0.513660 0.485957i
\(7\) 3.22941 1.22060 0.610301 0.792170i \(-0.291049\pi\)
0.610301 + 0.792170i \(0.291049\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.166154 2.99540i −0.0553847 0.998465i
\(10\) 0 0
\(11\) −2.73719 + 1.87291i −0.825294 + 0.564703i
\(12\) 1.19035 1.25820i 0.343623 0.363212i
\(13\) −0.713000 −0.197751 −0.0988753 0.995100i \(-0.531524\pi\)
−0.0988753 + 0.995100i \(0.531524\pi\)
\(14\) 3.22941i 0.863096i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.12651i 1.48590i −0.669349 0.742948i \(-0.733427\pi\)
0.669349 0.742948i \(-0.266573\pi\)
\(18\) 2.99540 0.166154i 0.706021 0.0391629i
\(19\) 2.33231i 0.535068i 0.963548 + 0.267534i \(0.0862088\pi\)
−0.963548 + 0.267534i \(0.913791\pi\)
\(20\) 0 0
\(21\) −3.84411 + 4.06325i −0.838854 + 0.886675i
\(22\) −1.87291 2.73719i −0.399305 0.583571i
\(23\) −3.03282 −0.632386 −0.316193 0.948695i \(-0.602405\pi\)
−0.316193 + 0.948695i \(0.602405\pi\)
\(24\) 1.25820 + 1.19035i 0.256830 + 0.242978i
\(25\) 0 0
\(26\) 0.713000i 0.139831i
\(27\) 3.96660 + 3.35650i 0.763372 + 0.645959i
\(28\) −3.22941 −0.610301
\(29\) −5.27779 −0.980061 −0.490031 0.871705i \(-0.663014\pi\)
−0.490031 + 0.871705i \(0.663014\pi\)
\(30\) 0 0
\(31\) −9.55251 −1.71568 −0.857840 0.513916i \(-0.828194\pi\)
−0.857840 + 0.513916i \(0.828194\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.901704 5.67335i 0.156967 0.987604i
\(34\) 6.12651 1.05069
\(35\) 0 0
\(36\) 0.166154 + 2.99540i 0.0276924 + 0.499233i
\(37\) 9.73661i 1.60069i −0.599541 0.800344i \(-0.704650\pi\)
0.599541 0.800344i \(-0.295350\pi\)
\(38\) −2.33231 −0.378350
\(39\) 0.848716 0.897099i 0.135903 0.143651i
\(40\) 0 0
\(41\) −0.761383 −0.118908 −0.0594540 0.998231i \(-0.518936\pi\)
−0.0594540 + 0.998231i \(0.518936\pi\)
\(42\) −4.06325 3.84411i −0.626974 0.593159i
\(43\) −5.79420 −0.883607 −0.441803 0.897112i \(-0.645661\pi\)
−0.441803 + 0.897112i \(0.645661\pi\)
\(44\) 2.73719 1.87291i 0.412647 0.282351i
\(45\) 0 0
\(46\) 3.03282i 0.447164i
\(47\) −11.7942 −1.72036 −0.860180 0.509990i \(-0.829649\pi\)
−0.860180 + 0.509990i \(0.829649\pi\)
\(48\) −1.19035 + 1.25820i −0.171812 + 0.181606i
\(49\) 3.42907 0.489868
\(50\) 0 0
\(51\) 7.70840 + 7.29266i 1.07939 + 1.02118i
\(52\) 0.713000 0.0988753
\(53\) 1.09369 0.150230 0.0751150 0.997175i \(-0.476068\pi\)
0.0751150 + 0.997175i \(0.476068\pi\)
\(54\) −3.35650 + 3.96660i −0.456762 + 0.539786i
\(55\) 0 0
\(56\) 3.22941i 0.431548i
\(57\) −2.93452 2.77625i −0.388687 0.367724i
\(58\) 5.27779i 0.693008i
\(59\) 1.95162i 0.254079i −0.991898 0.127039i \(-0.959453\pi\)
0.991898 0.127039i \(-0.0405475\pi\)
\(60\) 0 0
\(61\) 2.19331i 0.280824i 0.990093 + 0.140412i \(0.0448428\pi\)
−0.990093 + 0.140412i \(0.955157\pi\)
\(62\) 9.55251i 1.21317i
\(63\) −0.536580 9.67335i −0.0676027 1.21873i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 5.67335 + 0.901704i 0.698341 + 0.110992i
\(67\) 2.80977i 0.343268i −0.985161 0.171634i \(-0.945095\pi\)
0.985161 0.171634i \(-0.0549046\pi\)
\(68\) 6.12651i 0.742948i
\(69\) 3.61010 3.81590i 0.434605 0.459380i
\(70\) 0 0
\(71\) 11.7366i 1.39288i −0.717616 0.696439i \(-0.754766\pi\)
0.717616 0.696439i \(-0.245234\pi\)
\(72\) −2.99540 + 0.166154i −0.353011 + 0.0195815i
\(73\) 14.6946 1.71987 0.859935 0.510403i \(-0.170504\pi\)
0.859935 + 0.510403i \(0.170504\pi\)
\(74\) 9.73661 1.13186
\(75\) 0 0
\(76\) 2.33231i 0.267534i
\(77\) −8.83951 + 6.04838i −1.00736 + 0.689277i
\(78\) 0.897099 + 0.848716i 0.101576 + 0.0960982i
\(79\) 13.5400i 1.52337i 0.647947 + 0.761685i \(0.275628\pi\)
−0.647947 + 0.761685i \(0.724372\pi\)
\(80\) 0 0
\(81\) −8.94479 + 0.995395i −0.993865 + 0.110599i
\(82\) 0.761383i 0.0840807i
\(83\) 7.72857i 0.848320i 0.905587 + 0.424160i \(0.139431\pi\)
−0.905587 + 0.424160i \(0.860569\pi\)
\(84\) 3.84411 4.06325i 0.419427 0.443337i
\(85\) 0 0
\(86\) 5.79420i 0.624804i
\(87\) 6.28240 6.64054i 0.673543 0.711940i
\(88\) 1.87291 + 2.73719i 0.199653 + 0.291786i
\(89\) 3.04203i 0.322454i −0.986917 0.161227i \(-0.948455\pi\)
0.986917 0.161227i \(-0.0515451\pi\)
\(90\) 0 0
\(91\) −2.30257 −0.241375
\(92\) 3.03282 0.316193
\(93\) 11.3708 12.0190i 1.17910 1.24631i
\(94\) 11.7942i 1.21648i
\(95\) 0 0
\(96\) −1.25820 1.19035i −0.128415 0.121489i
\(97\) 10.6462i 1.08096i −0.841358 0.540479i \(-0.818243\pi\)
0.841358 0.540479i \(-0.181757\pi\)
\(98\) 3.42907i 0.346389i
\(99\) 6.06490 + 7.88778i 0.609545 + 0.792752i
\(100\) 0 0
\(101\) −14.5072 −1.44352 −0.721760 0.692143i \(-0.756667\pi\)
−0.721760 + 0.692143i \(0.756667\pi\)
\(102\) −7.29266 + 7.70840i −0.722081 + 0.763245i
\(103\) 7.79420i 0.767985i −0.923336 0.383993i \(-0.874549\pi\)
0.923336 0.383993i \(-0.125451\pi\)
\(104\) 0.713000i 0.0699154i
\(105\) 0 0
\(106\) 1.09369i 0.106229i
\(107\) 5.30425i 0.512781i −0.966573 0.256391i \(-0.917467\pi\)
0.966573 0.256391i \(-0.0825333\pi\)
\(108\) −3.96660 3.35650i −0.381686 0.322979i
\(109\) 11.9643i 1.14598i 0.819564 + 0.572988i \(0.194216\pi\)
−0.819564 + 0.572988i \(0.805784\pi\)
\(110\) 0 0
\(111\) 12.2506 + 11.5899i 1.16278 + 1.10007i
\(112\) 3.22941 0.305150
\(113\) 3.28700 0.309215 0.154607 0.987976i \(-0.450589\pi\)
0.154607 + 0.987976i \(0.450589\pi\)
\(114\) 2.77625 2.93452i 0.260020 0.274843i
\(115\) 0 0
\(116\) 5.27779 0.490031
\(117\) 0.118468 + 2.13572i 0.0109524 + 0.197447i
\(118\) 1.95162 0.179661
\(119\) 19.7850i 1.81369i
\(120\) 0 0
\(121\) 3.98443 10.2530i 0.362221 0.932092i
\(122\) −2.19331 −0.198573
\(123\) 0.906309 0.957975i 0.0817191 0.0863777i
\(124\) 9.55251 0.857840
\(125\) 0 0
\(126\) 9.67335 0.536580i 0.861771 0.0478023i
\(127\) 17.7631 1.57622 0.788109 0.615536i \(-0.211061\pi\)
0.788109 + 0.615536i \(0.211061\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 6.89710 7.29028i 0.607256 0.641874i
\(130\) 0 0
\(131\) 15.0720 1.31685 0.658423 0.752648i \(-0.271224\pi\)
0.658423 + 0.752648i \(0.271224\pi\)
\(132\) −0.901704 + 5.67335i −0.0784833 + 0.493802i
\(133\) 7.53198i 0.653105i
\(134\) 2.80977 0.242727
\(135\) 0 0
\(136\) −6.12651 −0.525344
\(137\) 4.53833 0.387736 0.193868 0.981028i \(-0.437897\pi\)
0.193868 + 0.981028i \(0.437897\pi\)
\(138\) 3.81590 + 3.61010i 0.324831 + 0.307312i
\(139\) 10.4404i 0.885543i −0.896635 0.442771i \(-0.853995\pi\)
0.896635 0.442771i \(-0.146005\pi\)
\(140\) 0 0
\(141\) 14.0392 14.8395i 1.18231 1.24971i
\(142\) 11.7366 0.984914
\(143\) 1.95162 1.33538i 0.163202 0.111670i
\(144\) −0.166154 2.99540i −0.0138462 0.249616i
\(145\) 0 0
\(146\) 14.6946i 1.21613i
\(147\) −4.08178 + 4.31447i −0.336660 + 0.355852i
\(148\) 9.73661i 0.800344i
\(149\) 0.691075 0.0566151 0.0283075 0.999599i \(-0.490988\pi\)
0.0283075 + 0.999599i \(0.490988\pi\)
\(150\) 0 0
\(151\) 10.3198i 0.839815i −0.907567 0.419907i \(-0.862063\pi\)
0.907567 0.419907i \(-0.137937\pi\)
\(152\) 2.33231 0.189175
\(153\) −18.3513 + 1.01795i −1.48362 + 0.0822960i
\(154\) −6.04838 8.83951i −0.487393 0.712308i
\(155\) 0 0
\(156\) −0.848716 + 0.897099i −0.0679517 + 0.0718254i
\(157\) 11.2778i 0.900066i −0.893012 0.450033i \(-0.851412\pi\)
0.893012 0.450033i \(-0.148588\pi\)
\(158\) −13.5400 −1.07719
\(159\) −1.30187 + 1.37609i −0.103245 + 0.109131i
\(160\) 0 0
\(161\) −9.79420 −0.771891
\(162\) −0.995395 8.94479i −0.0782056 0.702769i
\(163\) 6.51641i 0.510404i 0.966888 + 0.255202i \(0.0821420\pi\)
−0.966888 + 0.255202i \(0.917858\pi\)
\(164\) 0.761383 0.0594540
\(165\) 0 0
\(166\) −7.72857 −0.599853
\(167\) 8.61646i 0.666761i 0.942792 + 0.333381i \(0.108189\pi\)
−0.942792 + 0.333381i \(0.891811\pi\)
\(168\) 4.06325 + 3.84411i 0.313487 + 0.296580i
\(169\) −12.4916 −0.960895
\(170\) 0 0
\(171\) 6.98619 0.387523i 0.534247 0.0296346i
\(172\) 5.79420 0.441803
\(173\) 12.0656i 0.917333i −0.888608 0.458666i \(-0.848327\pi\)
0.888608 0.458666i \(-0.151673\pi\)
\(174\) 6.64054 + 6.28240i 0.503418 + 0.476267i
\(175\) 0 0
\(176\) −2.73719 + 1.87291i −0.206324 + 0.141176i
\(177\) 2.45553 + 2.32310i 0.184569 + 0.174615i
\(178\) 3.04203 0.228009
\(179\) 3.49280i 0.261064i 0.991444 + 0.130532i \(0.0416686\pi\)
−0.991444 + 0.130532i \(0.958331\pi\)
\(180\) 0 0
\(181\) −15.1361 −1.12506 −0.562531 0.826777i \(-0.690172\pi\)
−0.562531 + 0.826777i \(0.690172\pi\)
\(182\) 2.30257i 0.170678i
\(183\) −2.75963 2.61080i −0.203998 0.192996i
\(184\) 3.03282i 0.223582i
\(185\) 0 0
\(186\) 12.0190 + 11.3708i 0.881276 + 0.833746i
\(187\) 11.4744 + 16.7694i 0.839090 + 1.22630i
\(188\) 11.7942 0.860180
\(189\) 12.8098 + 10.8395i 0.931773 + 0.788458i
\(190\) 0 0
\(191\) 8.93152i 0.646262i 0.946354 + 0.323131i \(0.104735\pi\)
−0.946354 + 0.323131i \(0.895265\pi\)
\(192\) 1.19035 1.25820i 0.0859058 0.0908030i
\(193\) −20.5820 −1.48153 −0.740764 0.671766i \(-0.765536\pi\)
−0.740764 + 0.671766i \(0.765536\pi\)
\(194\) 10.6462 0.764352
\(195\) 0 0
\(196\) −3.42907 −0.244934
\(197\) 13.7631i 0.980578i 0.871560 + 0.490289i \(0.163109\pi\)
−0.871560 + 0.490289i \(0.836891\pi\)
\(198\) −7.88778 + 6.06490i −0.560560 + 0.431013i
\(199\) −18.3139 −1.29824 −0.649119 0.760687i \(-0.724862\pi\)
−0.649119 + 0.760687i \(0.724862\pi\)
\(200\) 0 0
\(201\) 3.53526 + 3.34459i 0.249358 + 0.235909i
\(202\) 14.5072i 1.02072i
\(203\) −17.0441 −1.19626
\(204\) −7.70840 7.29266i −0.539696 0.510588i
\(205\) 0 0
\(206\) 7.79420 0.543048
\(207\) 0.503915 + 9.08448i 0.0350245 + 0.631415i
\(208\) −0.713000 −0.0494376
\(209\) −4.36820 6.38397i −0.302155 0.441589i
\(210\) 0 0
\(211\) 1.12483i 0.0774362i 0.999250 + 0.0387181i \(0.0123274\pi\)
−0.999250 + 0.0387181i \(0.987673\pi\)
\(212\) −1.09369 −0.0751150
\(213\) 14.7670 + 13.9706i 1.01182 + 0.957251i
\(214\) 5.30425 0.362591
\(215\) 0 0
\(216\) 3.35650 3.96660i 0.228381 0.269893i
\(217\) −30.8489 −2.09416
\(218\) −11.9643 −0.810327
\(219\) −17.4916 + 18.4888i −1.18197 + 1.24936i
\(220\) 0 0
\(221\) 4.36820i 0.293837i
\(222\) −11.5899 + 12.2506i −0.777865 + 0.822209i
\(223\) 5.12343i 0.343090i −0.985176 0.171545i \(-0.945124\pi\)
0.985176 0.171545i \(-0.0548760\pi\)
\(224\) 3.22941i 0.215774i
\(225\) 0 0
\(226\) 3.28700i 0.218648i
\(227\) 26.9648i 1.78972i 0.446347 + 0.894860i \(0.352725\pi\)
−0.446347 + 0.894860i \(0.647275\pi\)
\(228\) 2.93452 + 2.77625i 0.194343 + 0.183862i
\(229\) 5.51005 0.364114 0.182057 0.983288i \(-0.441724\pi\)
0.182057 + 0.983288i \(0.441724\pi\)
\(230\) 0 0
\(231\) 2.91197 18.3216i 0.191594 1.20547i
\(232\) 5.27779i 0.346504i
\(233\) 17.7399i 1.16218i −0.813840 0.581089i \(-0.802627\pi\)
0.813840 0.581089i \(-0.197373\pi\)
\(234\) −2.13572 + 0.118468i −0.139616 + 0.00774449i
\(235\) 0 0
\(236\) 1.95162i 0.127039i
\(237\) −17.0361 16.1173i −1.10661 1.04693i
\(238\) 19.7850 1.28247
\(239\) −5.03938 −0.325971 −0.162985 0.986629i \(-0.552112\pi\)
−0.162985 + 0.986629i \(0.552112\pi\)
\(240\) 0 0
\(241\) 10.4588i 0.673712i 0.941556 + 0.336856i \(0.109363\pi\)
−0.941556 + 0.336856i \(0.890637\pi\)
\(242\) 10.2530 + 3.98443i 0.659089 + 0.256129i
\(243\) 9.39498 12.4392i 0.602688 0.797977i
\(244\) 2.19331i 0.140412i
\(245\) 0 0
\(246\) 0.957975 + 0.906309i 0.0610782 + 0.0577841i
\(247\) 1.66294i 0.105810i
\(248\) 9.55251i 0.606585i
\(249\) −9.72411 9.19967i −0.616241 0.583005i
\(250\) 0 0
\(251\) 19.2374i 1.21426i 0.794604 + 0.607128i \(0.207679\pi\)
−0.794604 + 0.607128i \(0.792321\pi\)
\(252\) 0.536580 + 9.67335i 0.0338013 + 0.609364i
\(253\) 8.30140 5.68018i 0.521904 0.357110i
\(254\) 17.7631i 1.11455i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −9.72740 −0.606778 −0.303389 0.952867i \(-0.598118\pi\)
−0.303389 + 0.952867i \(0.598118\pi\)
\(258\) 7.29028 + 6.89710i 0.453873 + 0.429395i
\(259\) 31.4435i 1.95380i
\(260\) 0 0
\(261\) 0.876927 + 15.8091i 0.0542804 + 0.978557i
\(262\) 15.0720i 0.931151i
\(263\) 9.76446i 0.602102i 0.953608 + 0.301051i \(0.0973375\pi\)
−0.953608 + 0.301051i \(0.902663\pi\)
\(264\) −5.67335 0.901704i −0.349171 0.0554960i
\(265\) 0 0
\(266\) −7.53198 −0.461815
\(267\) 3.82749 + 3.62106i 0.234238 + 0.221605i
\(268\) 2.80977i 0.171634i
\(269\) 16.8270i 1.02596i 0.858400 + 0.512981i \(0.171459\pi\)
−0.858400 + 0.512981i \(0.828541\pi\)
\(270\) 0 0
\(271\) 31.8836i 1.93679i −0.249415 0.968397i \(-0.580238\pi\)
0.249415 0.968397i \(-0.419762\pi\)
\(272\) 6.12651i 0.371474i
\(273\) 2.74085 2.89710i 0.165884 0.175340i
\(274\) 4.53833i 0.274171i
\(275\) 0 0
\(276\) −3.61010 + 3.81590i −0.217302 + 0.229690i
\(277\) 0.0483829 0.00290705 0.00145352 0.999999i \(-0.499537\pi\)
0.00145352 + 0.999999i \(0.499537\pi\)
\(278\) 10.4404 0.626173
\(279\) 1.58719 + 28.6135i 0.0950226 + 1.71305i
\(280\) 0 0
\(281\) −4.52445 −0.269906 −0.134953 0.990852i \(-0.543088\pi\)
−0.134953 + 0.990852i \(0.543088\pi\)
\(282\) 14.8395 + 14.0392i 0.883680 + 0.836021i
\(283\) −23.5950 −1.40257 −0.701287 0.712879i \(-0.747391\pi\)
−0.701287 + 0.712879i \(0.747391\pi\)
\(284\) 11.7366i 0.696439i
\(285\) 0 0
\(286\) 1.33538 + 1.95162i 0.0789629 + 0.115402i
\(287\) −2.45882 −0.145139
\(288\) 2.99540 0.166154i 0.176505 0.00979073i
\(289\) −20.5341 −1.20789
\(290\) 0 0
\(291\) 13.3951 + 12.6727i 0.785234 + 0.742884i
\(292\) −14.6946 −0.859935
\(293\) 24.6151i 1.43803i 0.694996 + 0.719014i \(0.255406\pi\)
−0.694996 + 0.719014i \(0.744594\pi\)
\(294\) −4.31447 4.08178i −0.251625 0.238054i
\(295\) 0 0
\(296\) −9.73661 −0.565929
\(297\) −17.1438 1.75831i −0.994782 0.102027i
\(298\) 0.691075i 0.0400329i
\(299\) 2.16240 0.125055
\(300\) 0 0
\(301\) −18.7118 −1.07853
\(302\) 10.3198 0.593839
\(303\) 17.2686 18.2530i 0.992054 1.04861i
\(304\) 2.33231i 0.133767i
\(305\) 0 0
\(306\) −1.01795 18.3513i −0.0581920 1.04907i
\(307\) 25.8725 1.47662 0.738312 0.674459i \(-0.235623\pi\)
0.738312 + 0.674459i \(0.235623\pi\)
\(308\) 8.83951 6.04838i 0.503678 0.344639i
\(309\) 9.80669 + 9.27779i 0.557883 + 0.527795i
\(310\) 0 0
\(311\) 10.7038i 0.606956i −0.952838 0.303478i \(-0.901852\pi\)
0.952838 0.303478i \(-0.0981479\pi\)
\(312\) −0.897099 0.848716i −0.0507882 0.0480491i
\(313\) 14.3682i 0.812139i −0.913842 0.406069i \(-0.866899\pi\)
0.913842 0.406069i \(-0.133101\pi\)
\(314\) 11.2778 0.636443
\(315\) 0 0
\(316\) 13.5400i 0.761685i
\(317\) 34.7727 1.95303 0.976515 0.215450i \(-0.0691219\pi\)
0.976515 + 0.215450i \(0.0691219\pi\)
\(318\) −1.37609 1.30187i −0.0771671 0.0730053i
\(319\) 14.4463 9.88482i 0.808839 0.553443i
\(320\) 0 0
\(321\) 6.67383 + 6.31389i 0.372497 + 0.352407i
\(322\) 9.79420i 0.545809i
\(323\) 14.2889 0.795056
\(324\) 8.94479 0.995395i 0.496933 0.0552997i
\(325\) 0 0
\(326\) −6.51641 −0.360910
\(327\) −15.0536 14.2417i −0.832464 0.787567i
\(328\) 0.761383i 0.0420403i
\(329\) −38.0883 −2.09987
\(330\) 0 0
\(331\) −13.7942 −0.758198 −0.379099 0.925356i \(-0.623766\pi\)
−0.379099 + 0.925356i \(0.623766\pi\)
\(332\) 7.72857i 0.424160i
\(333\) −29.1650 + 1.61778i −1.59823 + 0.0886537i
\(334\) −8.61646 −0.471472
\(335\) 0 0
\(336\) −3.84411 + 4.06325i −0.209713 + 0.221669i
\(337\) −13.3868 −0.729227 −0.364613 0.931159i \(-0.618799\pi\)
−0.364613 + 0.931159i \(0.618799\pi\)
\(338\) 12.4916i 0.679455i
\(339\) −3.91267 + 4.13572i −0.212507 + 0.224621i
\(340\) 0 0
\(341\) 26.1470 17.8910i 1.41594 0.968850i
\(342\) 0.387523 + 6.98619i 0.0209548 + 0.377770i
\(343\) −11.5320 −0.622668
\(344\) 5.79420i 0.312402i
\(345\) 0 0
\(346\) 12.0656 0.648652
\(347\) 19.3699i 1.03983i −0.854218 0.519915i \(-0.825964\pi\)
0.854218 0.519915i \(-0.174036\pi\)
\(348\) −6.28240 + 6.64054i −0.336772 + 0.355970i
\(349\) 2.53833i 0.135874i −0.997690 0.0679369i \(-0.978358\pi\)
0.997690 0.0679369i \(-0.0216417\pi\)
\(350\) 0 0
\(351\) −2.82818 2.39318i −0.150957 0.127739i
\(352\) −1.87291 2.73719i −0.0998263 0.145893i
\(353\) −32.9476 −1.75362 −0.876812 0.480834i \(-0.840334\pi\)
−0.876812 + 0.480834i \(0.840334\pi\)
\(354\) −2.32310 + 2.45553i −0.123471 + 0.130510i
\(355\) 0 0
\(356\) 3.04203i 0.161227i
\(357\) 24.8936 + 23.5510i 1.31751 + 1.24645i
\(358\) −3.49280 −0.184600
\(359\) −16.6212 −0.877234 −0.438617 0.898674i \(-0.644532\pi\)
−0.438617 + 0.898674i \(0.644532\pi\)
\(360\) 0 0
\(361\) 13.5603 0.713702
\(362\) 15.1361i 0.795538i
\(363\) 8.15753 + 17.2179i 0.428159 + 0.903703i
\(364\) 2.30257 0.120687
\(365\) 0 0
\(366\) 2.61080 2.75963i 0.136468 0.144248i
\(367\) 11.1361i 0.581302i 0.956829 + 0.290651i \(0.0938719\pi\)
−0.956829 + 0.290651i \(0.906128\pi\)
\(368\) −3.03282 −0.158096
\(369\) 0.126507 + 2.28064i 0.00658569 + 0.118726i
\(370\) 0 0
\(371\) 3.53198 0.183371
\(372\) −11.3708 + 12.0190i −0.589548 + 0.623156i
\(373\) −4.69458 −0.243076 −0.121538 0.992587i \(-0.538783\pi\)
−0.121538 + 0.992587i \(0.538783\pi\)
\(374\) −16.7694 + 11.4744i −0.867126 + 0.593326i
\(375\) 0 0
\(376\) 11.7942i 0.608239i
\(377\) 3.76306 0.193808
\(378\) −10.8395 + 12.8098i −0.557524 + 0.658863i
\(379\) −22.6339 −1.16263 −0.581313 0.813680i \(-0.697461\pi\)
−0.581313 + 0.813680i \(0.697461\pi\)
\(380\) 0 0
\(381\) −21.1442 + 22.3496i −1.08325 + 1.14500i
\(382\) −8.93152 −0.456976
\(383\) 34.2412 1.74964 0.874821 0.484447i \(-0.160979\pi\)
0.874821 + 0.484447i \(0.160979\pi\)
\(384\) 1.25820 + 1.19035i 0.0642075 + 0.0607446i
\(385\) 0 0
\(386\) 20.5820i 1.04760i
\(387\) 0.962731 + 17.3559i 0.0489383 + 0.882251i
\(388\) 10.6462i 0.540479i
\(389\) 3.67901i 0.186533i −0.995641 0.0932667i \(-0.970269\pi\)
0.995641 0.0932667i \(-0.0297309\pi\)
\(390\) 0 0
\(391\) 18.5806i 0.939660i
\(392\) 3.42907i 0.173194i
\(393\) −17.9409 + 18.9636i −0.904998 + 0.956589i
\(394\) −13.7631 −0.693373
\(395\) 0 0
\(396\) −6.06490 7.88778i −0.304772 0.396376i
\(397\) 1.07505i 0.0539552i −0.999636 0.0269776i \(-0.991412\pi\)
0.999636 0.0269776i \(-0.00858828\pi\)
\(398\) 18.3139i 0.917992i
\(399\) −9.47676 8.96565i −0.474431 0.448844i
\(400\) 0 0
\(401\) 28.8428i 1.44034i −0.693798 0.720170i \(-0.744064\pi\)
0.693798 0.720170i \(-0.255936\pi\)
\(402\) −3.34459 + 3.53526i −0.166813 + 0.176323i
\(403\) 6.81094 0.339277
\(404\) 14.5072 0.721760
\(405\) 0 0
\(406\) 17.0441i 0.845886i
\(407\) 18.2358 + 26.6510i 0.903913 + 1.32104i
\(408\) 7.29266 7.70840i 0.361041 0.381622i
\(409\) 3.23862i 0.160139i −0.996789 0.0800697i \(-0.974486\pi\)
0.996789 0.0800697i \(-0.0255143\pi\)
\(410\) 0 0
\(411\) −5.40218 + 5.71015i −0.266470 + 0.281661i
\(412\) 7.79420i 0.383993i
\(413\) 6.30257i 0.310129i
\(414\) −9.08448 + 0.503915i −0.446478 + 0.0247661i
\(415\) 0 0
\(416\) 0.713000i 0.0349577i
\(417\) 13.1361 + 12.4277i 0.643280 + 0.608586i
\(418\) 6.38397 4.36820i 0.312250 0.213656i
\(419\) 8.74413i 0.427179i 0.976924 + 0.213589i \(0.0685155\pi\)
−0.976924 + 0.213589i \(0.931485\pi\)
\(420\) 0 0
\(421\) −28.4749 −1.38778 −0.693891 0.720080i \(-0.744105\pi\)
−0.693891 + 0.720080i \(0.744105\pi\)
\(422\) −1.12483 −0.0547557
\(423\) 1.95966 + 35.3283i 0.0952817 + 1.71772i
\(424\) 1.09369i 0.0531143i
\(425\) 0 0
\(426\) −13.9706 + 14.7670i −0.676879 + 0.715466i
\(427\) 7.08309i 0.342775i
\(428\) 5.30425i 0.256391i
\(429\) −0.642915 + 4.04510i −0.0310402 + 0.195299i
\(430\) 0 0
\(431\) −11.9032 −0.573359 −0.286679 0.958027i \(-0.592551\pi\)
−0.286679 + 0.958027i \(0.592551\pi\)
\(432\) 3.96660 + 3.35650i 0.190843 + 0.161490i
\(433\) 20.9488i 1.00673i −0.864073 0.503367i \(-0.832094\pi\)
0.864073 0.503367i \(-0.167906\pi\)
\(434\) 30.8489i 1.48080i
\(435\) 0 0
\(436\) 11.9643i 0.572988i
\(437\) 7.07346i 0.338370i
\(438\) −18.4888 17.4916i −0.883428 0.835782i
\(439\) 32.8386i 1.56730i 0.621203 + 0.783649i \(0.286644\pi\)
−0.621203 + 0.783649i \(0.713356\pi\)
\(440\) 0 0
\(441\) −0.569755 10.2714i −0.0271312 0.489116i
\(442\) −4.36820 −0.207774
\(443\) 5.39604 0.256373 0.128187 0.991750i \(-0.459084\pi\)
0.128187 + 0.991750i \(0.459084\pi\)
\(444\) −12.2506 11.5899i −0.581389 0.550034i
\(445\) 0 0
\(446\) 5.12343 0.242602
\(447\) −0.822618 + 0.869513i −0.0389085 + 0.0411266i
\(448\) −3.22941 −0.152575
\(449\) 4.00000i 0.188772i −0.995536 0.0943858i \(-0.969911\pi\)
0.995536 0.0943858i \(-0.0300887\pi\)
\(450\) 0 0
\(451\) 2.08405 1.42600i 0.0981341 0.0671477i
\(452\) −3.28700 −0.154607
\(453\) 12.9844 + 12.2841i 0.610062 + 0.577160i
\(454\) −26.9648 −1.26552
\(455\) 0 0
\(456\) −2.77625 + 2.93452i −0.130010 + 0.137421i
\(457\) −16.1359 −0.754807 −0.377404 0.926049i \(-0.623183\pi\)
−0.377404 + 0.926049i \(0.623183\pi\)
\(458\) 5.51005i 0.257468i
\(459\) 20.5636 24.3014i 0.959828 1.13429i
\(460\) 0 0
\(461\) 5.29621 0.246669 0.123335 0.992365i \(-0.460641\pi\)
0.123335 + 0.992365i \(0.460641\pi\)
\(462\) 18.3216 + 2.91197i 0.852397 + 0.135477i
\(463\) 11.9159i 0.553781i 0.960901 + 0.276891i \(0.0893040\pi\)
−0.960901 + 0.276891i \(0.910696\pi\)
\(464\) −5.27779 −0.245015
\(465\) 0 0
\(466\) 17.7399 0.821785
\(467\) −4.56807 −0.211385 −0.105693 0.994399i \(-0.533706\pi\)
−0.105693 + 0.994399i \(0.533706\pi\)
\(468\) −0.118468 2.13572i −0.00547618 0.0987235i
\(469\) 9.07388i 0.418993i
\(470\) 0 0
\(471\) 14.1898 + 13.4245i 0.653830 + 0.618567i
\(472\) −1.95162 −0.0898305
\(473\) 15.8598 10.8520i 0.729236 0.498975i
\(474\) 16.1173 17.0361i 0.740292 0.782494i
\(475\) 0 0
\(476\) 19.7850i 0.906843i
\(477\) −0.181721 3.27604i −0.00832045 0.149999i
\(478\) 5.03938i 0.230496i
\(479\) 25.4010 1.16060 0.580301 0.814402i \(-0.302935\pi\)
0.580301 + 0.814402i \(0.302935\pi\)
\(480\) 0 0
\(481\) 6.94220i 0.316537i
\(482\) −10.4588 −0.476386
\(483\) 11.6585 12.3231i 0.530479 0.560720i
\(484\) −3.98443 + 10.2530i −0.181111 + 0.466046i
\(485\) 0 0
\(486\) 12.4392 + 9.39498i 0.564255 + 0.426165i
\(487\) 4.36205i 0.197663i −0.995104 0.0988317i \(-0.968489\pi\)
0.995104 0.0988317i \(-0.0315105\pi\)
\(488\) 2.19331 0.0992864
\(489\) −8.19897 7.75678i −0.370770 0.350774i
\(490\) 0 0
\(491\) 13.4156 0.605438 0.302719 0.953080i \(-0.402106\pi\)
0.302719 + 0.953080i \(0.402106\pi\)
\(492\) −0.906309 + 0.957975i −0.0408596 + 0.0431888i
\(493\) 32.3344i 1.45627i
\(494\) 1.66294 0.0748190
\(495\) 0 0
\(496\) −9.55251 −0.428920
\(497\) 37.9023i 1.70015i
\(498\) 9.19967 9.72411i 0.412247 0.435748i
\(499\) 20.6278 0.923426 0.461713 0.887029i \(-0.347235\pi\)
0.461713 + 0.887029i \(0.347235\pi\)
\(500\) 0 0
\(501\) −10.8413 10.2566i −0.484352 0.458229i
\(502\) −19.2374 −0.858609
\(503\) 1.14800i 0.0511868i −0.999672 0.0255934i \(-0.991852\pi\)
0.999672 0.0255934i \(-0.00814752\pi\)
\(504\) −9.67335 + 0.536580i −0.430885 + 0.0239012i
\(505\) 0 0
\(506\) 5.68018 + 8.30140i 0.252515 + 0.369042i
\(507\) 14.8694 15.7170i 0.660371 0.698017i
\(508\) −17.7631 −0.788109
\(509\) 2.81430i 0.124742i −0.998053 0.0623708i \(-0.980134\pi\)
0.998053 0.0623708i \(-0.0198661\pi\)
\(510\) 0 0
\(511\) 47.4548 2.09928
\(512\) 1.00000i 0.0441942i
\(513\) −7.82839 + 9.25133i −0.345632 + 0.408456i
\(514\) 9.72740i 0.429057i
\(515\) 0 0
\(516\) −6.89710 + 7.29028i −0.303628 + 0.320937i
\(517\) 32.2830 22.0894i 1.41980 0.971493i
\(518\) 31.4435 1.38155
\(519\) 15.1810 + 14.3623i 0.666373 + 0.630434i
\(520\) 0 0
\(521\) 31.1768i 1.36588i 0.730474 + 0.682940i \(0.239299\pi\)
−0.730474 + 0.682940i \(0.760701\pi\)
\(522\) −15.8091 + 0.876927i −0.691944 + 0.0383821i
\(523\) 32.9337 1.44009 0.720045 0.693927i \(-0.244121\pi\)
0.720045 + 0.693927i \(0.244121\pi\)
\(524\) −15.0720 −0.658423
\(525\) 0 0
\(526\) −9.76446 −0.425751
\(527\) 58.5235i 2.54932i
\(528\) 0.901704 5.67335i 0.0392416 0.246901i
\(529\) −13.8020 −0.600088
\(530\) 0 0
\(531\) −5.84586 + 0.324269i −0.253689 + 0.0140721i
\(532\) 7.53198i 0.326553i
\(533\) 0.542866 0.0235141
\(534\) −3.62106 + 3.82749i −0.156699 + 0.165632i
\(535\) 0 0
\(536\) −2.80977 −0.121363
\(537\) −4.39466 4.15764i −0.189643 0.179415i
\(538\) −16.8270 −0.725464
\(539\) −9.38603 + 6.42234i −0.404285 + 0.276630i
\(540\) 0 0
\(541\) 34.6026i 1.48768i 0.668357 + 0.743840i \(0.266998\pi\)
−0.668357 + 0.743840i \(0.733002\pi\)
\(542\) 31.8836 1.36952
\(543\) 18.0172 19.0444i 0.773194 0.817272i
\(544\) 6.12651 0.262672
\(545\) 0 0
\(546\) 2.89710 + 2.74085i 0.123984 + 0.117298i
\(547\) −28.8647 −1.23417 −0.617083 0.786898i \(-0.711686\pi\)
−0.617083 + 0.786898i \(0.711686\pi\)
\(548\) −4.53833 −0.193868
\(549\) 6.56983 0.364428i 0.280393 0.0155534i
\(550\) 0 0
\(551\) 12.3094i 0.524400i
\(552\) −3.81590 3.61010i −0.162416 0.153656i
\(553\) 43.7262i 1.85943i
\(554\) 0.0483829i 0.00205559i
\(555\) 0 0
\(556\) 10.4404i 0.442771i
\(557\) 15.4076i 0.652840i −0.945225 0.326420i \(-0.894158\pi\)
0.945225 0.326420i \(-0.105842\pi\)
\(558\) −28.6135 + 1.58719i −1.21131 + 0.0671911i
\(559\) 4.13126 0.174734
\(560\) 0 0
\(561\) −34.7578 5.52430i −1.46748 0.233236i
\(562\) 4.52445i 0.190852i
\(563\) 40.8624i 1.72214i 0.508483 + 0.861072i \(0.330206\pi\)
−0.508483 + 0.861072i \(0.669794\pi\)
\(564\) −14.0392 + 14.8395i −0.591156 + 0.624856i
\(565\) 0 0
\(566\) 23.5950i 0.991770i
\(567\) −28.8864 + 3.21454i −1.21311 + 0.134998i
\(568\) −11.7366 −0.492457
\(569\) 38.0817 1.59647 0.798234 0.602347i \(-0.205768\pi\)
0.798234 + 0.602347i \(0.205768\pi\)
\(570\) 0 0
\(571\) 5.43732i 0.227545i 0.993507 + 0.113772i \(0.0362935\pi\)
−0.993507 + 0.113772i \(0.963707\pi\)
\(572\) −1.95162 + 1.33538i −0.0816012 + 0.0558352i
\(573\) −11.2377 10.6316i −0.469460 0.444141i
\(574\) 2.45882i 0.102629i
\(575\) 0 0
\(576\) 0.166154 + 2.99540i 0.00692309 + 0.124808i
\(577\) 12.5556i 0.522696i 0.965245 + 0.261348i \(0.0841670\pi\)
−0.965245 + 0.261348i \(0.915833\pi\)
\(578\) 20.5341i 0.854105i
\(579\) 24.4997 25.8964i 1.01817 1.07622i
\(580\) 0 0
\(581\) 24.9587i 1.03546i
\(582\) −12.6727 + 13.3951i −0.525298 + 0.555244i
\(583\) −2.99364 + 2.04838i −0.123984 + 0.0848354i
\(584\) 14.6946i 0.608066i
\(585\) 0 0
\(586\) −24.6151 −1.01684
\(587\) −31.9380 −1.31822 −0.659110 0.752046i \(-0.729067\pi\)
−0.659110 + 0.752046i \(0.729067\pi\)
\(588\) 4.08178 4.31447i 0.168330 0.177926i
\(589\) 22.2794i 0.918006i
\(590\) 0 0
\(591\) −17.3167 16.3828i −0.712316 0.673899i
\(592\) 9.73661i 0.400172i
\(593\) 14.0345i 0.576328i 0.957581 + 0.288164i \(0.0930448\pi\)
−0.957581 + 0.288164i \(0.906955\pi\)
\(594\) 1.75831 17.1438i 0.0721443 0.703417i
\(595\) 0 0
\(596\) −0.691075 −0.0283075
\(597\) 21.7999 23.0426i 0.892209 0.943071i
\(598\) 2.16240i 0.0884270i
\(599\) 10.7383i 0.438755i −0.975640 0.219377i \(-0.929597\pi\)
0.975640 0.219377i \(-0.0704026\pi\)
\(600\) 0 0
\(601\) 20.7614i 0.846874i −0.905925 0.423437i \(-0.860823\pi\)
0.905925 0.423437i \(-0.139177\pi\)
\(602\) 18.7118i 0.762637i
\(603\) −8.41636 + 0.466854i −0.342741 + 0.0190118i
\(604\) 10.3198i 0.419907i
\(605\) 0 0
\(606\) 18.2530 + 17.2686i 0.741478 + 0.701488i
\(607\) 15.1326 0.614215 0.307107 0.951675i \(-0.400639\pi\)
0.307107 + 0.951675i \(0.400639\pi\)
\(608\) −2.33231 −0.0945876
\(609\) 20.2884 21.4450i 0.822128 0.868995i
\(610\) 0 0
\(611\) 8.40926 0.340202
\(612\) 18.3513 1.01795i 0.741808 0.0411480i
\(613\) 26.3137 1.06280 0.531399 0.847121i \(-0.321666\pi\)
0.531399 + 0.847121i \(0.321666\pi\)
\(614\) 25.8725i 1.04413i
\(615\) 0 0
\(616\) 6.04838 + 8.83951i 0.243696 + 0.356154i
\(617\) −2.21735 −0.0892670 −0.0446335 0.999003i \(-0.514212\pi\)
−0.0446335 + 0.999003i \(0.514212\pi\)
\(618\) −9.27779 + 9.80669i −0.373207 + 0.394483i
\(619\) 49.1338 1.97485 0.987427 0.158074i \(-0.0505286\pi\)
0.987427 + 0.158074i \(0.0505286\pi\)
\(620\) 0 0
\(621\) −12.0300 10.1796i −0.482746 0.408495i
\(622\) 10.7038 0.429183
\(623\) 9.82394i 0.393588i
\(624\) 0.848716 0.897099i 0.0339758 0.0359127i
\(625\) 0 0
\(626\) 14.3682 0.574269
\(627\) 13.2320 + 2.10305i 0.528436 + 0.0839878i
\(628\) 11.2778i 0.450033i
\(629\) −59.6514 −2.37846
\(630\) 0 0
\(631\) −18.3857 −0.731922 −0.365961 0.930630i \(-0.619260\pi\)
−0.365961 + 0.930630i \(0.619260\pi\)
\(632\) 13.5400 0.538593
\(633\) −1.41526 1.33893i −0.0562515 0.0532177i
\(634\) 34.7727i 1.38100i
\(635\) 0 0
\(636\) 1.30187 1.37609i 0.0516225 0.0545654i
\(637\) −2.44493 −0.0968716
\(638\) 9.88482 + 14.4463i 0.391344 + 0.571935i
\(639\) −35.1558 + 1.95009i −1.39074 + 0.0771442i
\(640\) 0 0
\(641\) 8.97639i 0.354546i −0.984162 0.177273i \(-0.943272\pi\)
0.984162 0.177273i \(-0.0567276\pi\)
\(642\) −6.31389 + 6.67383i −0.249189 + 0.263395i
\(643\) 29.0097i 1.14403i −0.820243 0.572016i \(-0.806162\pi\)
0.820243 0.572016i \(-0.193838\pi\)
\(644\) 9.79420 0.385945
\(645\) 0 0
\(646\) 14.2889i 0.562189i
\(647\) −21.7880 −0.856577 −0.428288 0.903642i \(-0.640883\pi\)
−0.428288 + 0.903642i \(0.640883\pi\)
\(648\) 0.995395 + 8.94479i 0.0391028 + 0.351384i
\(649\) 3.65520 + 5.34195i 0.143479 + 0.209690i
\(650\) 0 0
\(651\) 36.7209 38.8143i 1.43921 1.52125i
\(652\) 6.51641i 0.255202i
\(653\) 2.13307 0.0834736 0.0417368 0.999129i \(-0.486711\pi\)
0.0417368 + 0.999129i \(0.486711\pi\)
\(654\) 14.2417 15.0536i 0.556894 0.588641i
\(655\) 0 0
\(656\) −0.761383 −0.0297270
\(657\) −2.44157 44.0161i −0.0952546 1.71723i
\(658\) 38.0883i 1.48484i
\(659\) 28.7576 1.12024 0.560118 0.828413i \(-0.310756\pi\)
0.560118 + 0.828413i \(0.310756\pi\)
\(660\) 0 0
\(661\) −20.3371 −0.791020 −0.395510 0.918462i \(-0.629432\pi\)
−0.395510 + 0.918462i \(0.629432\pi\)
\(662\) 13.7942i 0.536127i
\(663\) −5.49608 5.19967i −0.213450 0.201938i
\(664\) 7.72857 0.299927
\(665\) 0 0
\(666\) −1.61778 29.1650i −0.0626876 1.13012i
\(667\) 16.0066 0.619777
\(668\) 8.61646i 0.333381i
\(669\) 6.44632 + 6.09866i 0.249229 + 0.235788i
\(670\) 0 0
\(671\) −4.10787 6.00351i −0.158582 0.231763i
\(672\) −4.06325 3.84411i −0.156743 0.148290i
\(673\) −12.5820 −0.485002 −0.242501 0.970151i \(-0.577968\pi\)
−0.242501 + 0.970151i \(0.577968\pi\)
\(674\) 13.3868i 0.515641i
\(675\) 0 0
\(676\) 12.4916 0.480447
\(677\) 16.6085i 0.638316i −0.947701 0.319158i \(-0.896600\pi\)
0.947701 0.319158i \(-0.103400\pi\)
\(678\) −4.13572 3.91267i −0.158831 0.150265i
\(679\) 34.3809i 1.31942i
\(680\) 0 0
\(681\) −33.9273 32.0975i −1.30010 1.22998i
\(682\) 17.8910 + 26.1470i 0.685080 + 1.00122i
\(683\) −36.0597 −1.37979 −0.689893 0.723911i \(-0.742343\pi\)
−0.689893 + 0.723911i \(0.742343\pi\)
\(684\) −6.98619 + 0.387523i −0.267123 + 0.0148173i
\(685\) 0 0
\(686\) 11.5320i 0.440293i
\(687\) −6.55886 + 6.93277i −0.250236 + 0.264502i
\(688\) −5.79420 −0.220902
\(689\) −0.779802 −0.0297081
\(690\) 0 0
\(691\) 27.3396 1.04005 0.520024 0.854152i \(-0.325923\pi\)
0.520024 + 0.854152i \(0.325923\pi\)
\(692\) 12.0656i 0.458666i
\(693\) 19.5860 + 25.4729i 0.744011 + 0.967634i
\(694\) 19.3699 0.735271
\(695\) 0 0
\(696\) −6.64054 6.28240i −0.251709 0.238134i
\(697\) 4.66462i 0.176685i
\(698\) 2.53833 0.0960773
\(699\) 22.3204 + 21.1166i 0.844235 + 0.798703i
\(700\) 0 0
\(701\) 6.68771 0.252591 0.126296 0.991993i \(-0.459691\pi\)
0.126296 + 0.991993i \(0.459691\pi\)
\(702\) 2.39318 2.82818i 0.0903249 0.106743i
\(703\) 22.7088 0.856477
\(704\) 2.73719 1.87291i 0.103162 0.0705879i
\(705\) 0 0
\(706\) 32.9476i 1.24000i
\(707\) −46.8497 −1.76196
\(708\) −2.45553 2.32310i −0.0922846 0.0873074i
\(709\) 34.9431 1.31231 0.656157 0.754624i \(-0.272181\pi\)
0.656157 + 0.754624i \(0.272181\pi\)
\(710\) 0 0
\(711\) 40.5577 2.24973i 1.52103 0.0843715i
\(712\) −3.04203 −0.114005
\(713\) 28.9710 1.08497
\(714\) −23.5510 + 24.8936i −0.881373 + 0.931618i
\(715\) 0 0
\(716\) 3.49280i 0.130532i
\(717\) 5.99861 6.34057i 0.224022 0.236793i
\(718\) 16.6212i 0.620298i
\(719\) 37.5534i 1.40051i 0.713894 + 0.700254i \(0.246930\pi\)
−0.713894 + 0.700254i \(0.753070\pi\)
\(720\) 0 0
\(721\) 25.1706i 0.937404i
\(722\) 13.5603i 0.504663i
\(723\) −13.1593 12.4496i −0.489400 0.463006i
\(724\) 15.1361 0.562531
\(725\) 0 0
\(726\) −17.2179 + 8.15753i −0.639015 + 0.302754i
\(727\) 29.6479i 1.09958i 0.835303 + 0.549789i \(0.185292\pi\)
−0.835303 + 0.549789i \(0.814708\pi\)
\(728\) 2.30257i 0.0853388i
\(729\) 4.46782 + 26.6278i 0.165475 + 0.986214i
\(730\) 0 0
\(731\) 35.4982i 1.31295i
\(732\) 2.75963 + 2.61080i 0.101999 + 0.0964978i
\(733\) 34.2703 1.26580 0.632901 0.774233i \(-0.281864\pi\)
0.632901 + 0.774233i \(0.281864\pi\)
\(734\) −11.1361 −0.411043
\(735\) 0 0
\(736\) 3.03282i 0.111791i
\(737\) 5.26243 + 7.69087i 0.193844 + 0.283297i
\(738\) −2.28064 + 0.126507i −0.0839516 + 0.00465679i
\(739\) 49.1457i 1.80785i −0.427689 0.903926i \(-0.640672\pi\)
0.427689 0.903926i \(-0.359328\pi\)
\(740\) 0 0
\(741\) 2.09231 + 1.97947i 0.0768630 + 0.0727176i
\(742\) 3.53198i 0.129663i
\(743\) 29.6654i 1.08832i −0.838983 0.544158i \(-0.816849\pi\)
0.838983 0.544158i \(-0.183151\pi\)
\(744\) −12.0190 11.3708i −0.440638 0.416873i
\(745\) 0 0
\(746\) 4.69458i 0.171881i
\(747\) 23.1501 1.28413i 0.847018 0.0469840i
\(748\) −11.4744 16.7694i −0.419545 0.613151i
\(749\) 17.1296i 0.625901i
\(750\) 0 0
\(751\) 9.45574 0.345045 0.172522 0.985006i \(-0.444808\pi\)
0.172522 + 0.985006i \(0.444808\pi\)
\(752\) −11.7942 −0.430090
\(753\) −24.2046 22.8992i −0.882066 0.834494i
\(754\) 3.76306i 0.137043i
\(755\) 0 0
\(756\) −12.8098 10.8395i −0.465887 0.394229i
\(757\) 39.5154i 1.43621i 0.695933 + 0.718107i \(0.254991\pi\)
−0.695933 + 0.718107i \(0.745009\pi\)
\(758\) 22.6339i 0.822101i
\(759\) −2.73470 + 17.2062i −0.0992634 + 0.624547i
\(760\) 0 0
\(761\) 10.0538 0.364449 0.182225 0.983257i \(-0.441670\pi\)
0.182225 + 0.983257i \(0.441670\pi\)
\(762\) −22.3496 21.1442i −0.809639 0.765973i
\(763\) 38.6377i 1.39878i
\(764\) 8.93152i 0.323131i
\(765\) 0 0
\(766\) 34.2412i 1.23718i
\(767\) 1.39150i 0.0502443i
\(768\) −1.19035 + 1.25820i −0.0429529 + 0.0454015i
\(769\) 52.0226i 1.87598i 0.346656 + 0.937992i \(0.387317\pi\)
−0.346656 + 0.937992i \(0.612683\pi\)
\(770\) 0 0
\(771\) 11.5790 12.2390i 0.417006 0.440779i
\(772\) 20.5820 0.740764
\(773\) 6.51969 0.234497 0.117248 0.993103i \(-0.462593\pi\)
0.117248 + 0.993103i \(0.462593\pi\)
\(774\) −17.3559 + 0.962731i −0.623845 + 0.0346046i
\(775\) 0 0
\(776\) −10.6462 −0.382176
\(777\) 39.5623 + 37.4286i 1.41929 + 1.34274i
\(778\) 3.67901 0.131899
\(779\) 1.77578i 0.0636239i
\(780\) 0 0
\(781\) 21.9816 + 32.1253i 0.786563 + 1.14953i
\(782\) −18.5806 −0.664440
\(783\) −20.9349 17.7149i −0.748152 0.633079i
\(784\) 3.42907 0.122467
\(785\) 0 0
\(786\) −18.9636 17.9409i −0.676410 0.639930i
\(787\) −27.3330 −0.974318 −0.487159 0.873313i \(-0.661967\pi\)
−0.487159 + 0.873313i \(0.661967\pi\)
\(788\) 13.7631i 0.490289i
\(789\) −12.2857 11.6231i −0.437382 0.413793i
\(790\) 0 0
\(791\) 10.6151 0.377428
\(792\) 7.88778 6.06490i 0.280280 0.215507i
\(793\) 1.56383i 0.0555332i
\(794\) 1.07505 0.0381521
\(795\) 0 0
\(796\) 18.3139 0.649119
\(797\) −43.6885 −1.54753 −0.773763 0.633475i \(-0.781628\pi\)
−0.773763 + 0.633475i \(0.781628\pi\)
\(798\) 8.96565 9.47676i 0.317381 0.335474i
\(799\) 72.2572i 2.55628i
\(800\) 0 0
\(801\) −9.11207 + 0.505445i −0.321959 + 0.0178590i
\(802\) 28.8428 1.01847
\(803\) −40.2219 + 27.5216i −1.41940 + 0.971216i
\(804\) −3.53526 3.34459i −0.124679 0.117955i
\(805\) 0 0
\(806\) 6.81094i 0.239905i
\(807\) −21.1718 20.0300i −0.745283 0.705088i
\(808\) 14.5072i 0.510361i
\(809\) 46.6684 1.64077 0.820387 0.571808i \(-0.193758\pi\)
0.820387 + 0.571808i \(0.193758\pi\)
\(810\) 0 0
\(811\) 10.0543i 0.353055i −0.984296 0.176527i \(-0.943514\pi\)
0.984296 0.176527i \(-0.0564864\pi\)
\(812\) 17.0441 0.598132
\(813\) 40.1161 + 37.9526i 1.40693 + 1.33105i
\(814\) −26.6510 + 18.2358i −0.934115 + 0.639163i
\(815\) 0 0
\(816\) 7.70840 + 7.29266i 0.269848 + 0.255294i
\(817\) 13.5139i 0.472790i
\(818\) 3.23862 0.113236
\(819\) 0.382581 + 6.89710i 0.0133685 + 0.241004i
\(820\) 0 0
\(821\) −8.34480 −0.291236 −0.145618 0.989341i \(-0.546517\pi\)
−0.145618 + 0.989341i \(0.546517\pi\)
\(822\) −5.71015 5.40218i −0.199164 0.188423i
\(823\) 1.96316i 0.0684315i −0.999414 0.0342158i \(-0.989107\pi\)
0.999414 0.0342158i \(-0.0108933\pi\)
\(824\) −7.79420 −0.271524
\(825\) 0 0
\(826\) 6.30257 0.219294
\(827\) 24.1152i 0.838567i −0.907855 0.419284i \(-0.862281\pi\)
0.907855 0.419284i \(-0.137719\pi\)
\(828\) −0.503915 9.08448i −0.0175123 0.315708i
\(829\) −43.2329 −1.50154 −0.750771 0.660563i \(-0.770318\pi\)
−0.750771 + 0.660563i \(0.770318\pi\)
\(830\) 0 0
\(831\) −0.0575924 + 0.0608756i −0.00199786 + 0.00211175i
\(832\) 0.713000 0.0247188
\(833\) 21.0082i 0.727893i
\(834\) −12.4277 + 13.1361i −0.430335 + 0.454868i
\(835\) 0 0
\(836\) 4.36820 + 6.38397i 0.151077 + 0.220794i
\(837\) −37.8910 32.0630i −1.30970 1.10826i
\(838\) −8.74413 −0.302061
\(839\) 3.70811i 0.128018i 0.997949 + 0.0640092i \(0.0203887\pi\)
−0.997949 + 0.0640092i \(0.979611\pi\)
\(840\) 0 0
\(841\) −1.14493 −0.0394802
\(842\) 28.4749i 0.981310i
\(843\) 5.38566 5.69268i 0.185492 0.196066i
\(844\) 1.12483i 0.0387181i
\(845\) 0 0
\(846\) −35.3283 + 1.95966i −1.21461 + 0.0673744i
\(847\) 12.8674 33.1112i 0.442128 1.13771i
\(848\) 1.09369 0.0375575
\(849\) 28.0862 29.6873i 0.963915 1.01886i
\(850\) 0 0
\(851\) 29.5293i 1.01225i
\(852\) −14.7670 13.9706i −0.505911 0.478626i
\(853\) −32.9542 −1.12833 −0.564164 0.825662i \(-0.690802\pi\)
−0.564164 + 0.825662i \(0.690802\pi\)
\(854\) −7.08309 −0.242378
\(855\) 0 0
\(856\) −5.30425 −0.181295
\(857\) 24.5788i 0.839594i 0.907618 + 0.419797i \(0.137899\pi\)
−0.907618 + 0.419797i \(0.862101\pi\)
\(858\) −4.04510 0.642915i −0.138097 0.0219488i
\(859\) 24.9776 0.852223 0.426112 0.904671i \(-0.359883\pi\)
0.426112 + 0.904671i \(0.359883\pi\)
\(860\) 0 0
\(861\) 2.92684 3.09369i 0.0997465 0.105433i
\(862\) 11.9032i 0.405426i
\(863\) −30.3314 −1.03249 −0.516246 0.856440i \(-0.672671\pi\)
−0.516246 + 0.856440i \(0.672671\pi\)
\(864\) −3.35650 + 3.96660i −0.114190 + 0.134946i
\(865\) 0 0
\(866\) 20.9488 0.711868
\(867\) 24.4427 25.8361i 0.830116 0.877439i
\(868\) 30.8489 1.04708
\(869\) −25.3592 37.0616i −0.860252 1.25723i
\(870\) 0 0
\(871\) 2.00336i 0.0678814i
\(872\) 11.9643 0.405163
\(873\) −31.8896 + 1.76891i −1.07930 + 0.0598686i
\(874\) 7.07346 0.239263
\(875\) 0 0
\(876\) 17.4916 18.4888i 0.590987 0.624678i
\(877\) 15.2497 0.514946 0.257473 0.966285i \(-0.417110\pi\)
0.257473 + 0.966285i \(0.417110\pi\)
\(878\) −32.8386 −1.10825
\(879\) −30.9708 29.3004i −1.04462 0.988279i
\(880\) 0 0
\(881\) 53.1457i 1.79052i 0.445541 + 0.895261i \(0.353011\pi\)
−0.445541 + 0.895261i \(0.646989\pi\)
\(882\) 10.2714 0.569755i 0.345857 0.0191847i
\(883\) 34.7231i 1.16852i −0.811565 0.584262i \(-0.801384\pi\)
0.811565 0.584262i \(-0.198616\pi\)
\(884\) 4.36820i 0.146918i
\(885\) 0 0
\(886\) 5.39604i 0.181283i
\(887\) 16.7241i 0.561540i −0.959775 0.280770i \(-0.909410\pi\)
0.959775 0.280770i \(-0.0905899\pi\)
\(888\) 11.5899 12.2506i 0.388932 0.411104i
\(889\) 57.3642 1.92393
\(890\) 0 0
\(891\) 22.6193 19.4773i 0.757775 0.652516i
\(892\) 5.12343i 0.171545i
\(893\) 27.5077i 0.920510i
\(894\) −0.869513 0.822618i −0.0290809 0.0275125i
\(895\) 0 0
\(896\) 3.22941i 0.107887i
\(897\) −2.57400 + 2.72074i −0.0859434 + 0.0908428i
\(898\) 4.00000 0.133482
\(899\) 50.4161 1.68147
\(900\) 0 0
\(901\) 6.70051i 0.223226i
\(902\) 1.42600 + 2.08405i 0.0474806 + 0.0693913i
\(903\) 22.2735 23.5433i 0.741217 0.783472i
\(904\) 3.28700i 0.109324i
\(905\) 0 0
\(906\) −12.2841 + 12.9844i −0.408113 + 0.431379i
\(907\) 46.9073i 1.55753i −0.627316 0.778765i \(-0.715847\pi\)
0.627316 0.778765i \(-0.284153\pi\)
\(908\) 26.9648i 0.894860i
\(909\) 2.41043 + 43.4548i 0.0799490 + 1.44130i
\(910\) 0 0
\(911\) 11.4463i 0.379233i −0.981858 0.189617i \(-0.939276\pi\)
0.981858 0.189617i \(-0.0607245\pi\)
\(912\) −2.93452 2.77625i −0.0971717 0.0919309i
\(913\) −14.4749 21.1546i −0.479049 0.700114i
\(914\) 16.1359i 0.533729i
\(915\) 0 0
\(916\) −5.51005 −0.182057
\(917\) 48.6736 1.60734
\(918\) 24.3014 + 20.5636i 0.802066 + 0.678701i
\(919\) 19.8836i 0.655901i −0.944695 0.327950i \(-0.893642\pi\)
0.944695 0.327950i \(-0.106358\pi\)
\(920\) 0 0
\(921\) −30.7973 + 32.5529i −1.01480 + 1.07266i
\(922\) 5.29621i 0.174421i
\(923\) 8.36820i 0.275443i
\(924\) −2.91197 + 18.3216i −0.0957968 + 0.602735i
\(925\) 0 0
\(926\) −11.9159 −0.391582
\(927\) −23.3467 + 1.29504i −0.766806 + 0.0425347i
\(928\) 5.27779i 0.173252i
\(929\) 27.5136i 0.902690i 0.892349 + 0.451345i \(0.149056\pi\)
−0.892349 + 0.451345i \(0.850944\pi\)
\(930\) 0 0
\(931\) 7.99766i 0.262113i
\(932\) 17.7399i 0.581089i
\(933\) 13.4676 + 12.7412i 0.440908 + 0.417129i
\(934\) 4.56807i 0.149472i
\(935\) 0 0
\(936\) 2.13572 0.118468i 0.0698081 0.00387225i
\(937\) −30.4642 −0.995222 −0.497611 0.867400i \(-0.665789\pi\)
−0.497611 + 0.867400i \(0.665789\pi\)
\(938\) 9.07388 0.296273
\(939\) 18.0781 + 17.1031i 0.589957 + 0.558139i
\(940\) 0 0
\(941\) −32.6542 −1.06450 −0.532249 0.846588i \(-0.678653\pi\)
−0.532249 + 0.846588i \(0.678653\pi\)
\(942\) −13.4245 + 14.1898i −0.437393 + 0.462327i
\(943\) 2.30913 0.0751957
\(944\) 1.95162i 0.0635197i
\(945\) 0 0
\(946\) 10.8520 + 15.8598i 0.352829 + 0.515648i
\(947\) 23.7449 0.771605 0.385802 0.922581i \(-0.373925\pi\)
0.385802 + 0.922581i \(0.373925\pi\)
\(948\) 17.0361 + 16.1173i 0.553307 + 0.523465i
\(949\) −10.4772 −0.340105
\(950\) 0 0
\(951\) −41.3915 + 43.7512i −1.34221 + 1.41873i
\(952\) −19.7850 −0.641235
\(953\) 23.0691i 0.747282i −0.927573 0.373641i \(-0.878109\pi\)
0.927573 0.373641i \(-0.121891\pi\)
\(954\) 3.27604 0.181721i 0.106066 0.00588345i
\(955\) 0 0
\(956\) 5.03938 0.162985
\(957\) −4.75900 + 29.9428i −0.153837 + 0.967912i
\(958\) 25.4010i 0.820670i
\(959\) 14.6561 0.473271
\(960\) 0 0
\(961\) 60.2504 1.94356
\(962\) −6.94220 −0.223825
\(963\) −15.8883 + 0.881323i −0.511994 + 0.0284003i
\(964\) 10.4588i 0.336856i
\(965\) 0 0
\(966\) 12.3231 + 11.6585i 0.396489 + 0.375106i
\(967\) −2.79237 −0.0897967 −0.0448983 0.998992i \(-0.514296\pi\)
−0.0448983 + 0.998992i \(0.514296\pi\)
\(968\) −10.2530 3.98443i −0.329544 0.128065i
\(969\) −17.0087 + 17.9784i −0.546399 + 0.577548i
\(970\) 0 0
\(971\) 21.5150i 0.690450i −0.938520 0.345225i \(-0.887803\pi\)
0.938520 0.345225i \(-0.112197\pi\)
\(972\) −9.39498 + 12.4392i −0.301344 + 0.398988i
\(973\) 33.7163i 1.08089i
\(974\) 4.36205 0.139769
\(975\) 0 0
\(976\) 2.19331i 0.0702061i
\(977\) −5.27428 −0.168739 −0.0843697 0.996435i \(-0.526888\pi\)
−0.0843697 + 0.996435i \(0.526888\pi\)
\(978\) 7.75678 8.19897i 0.248034 0.262174i
\(979\) 5.69743 + 8.32660i 0.182091 + 0.266119i
\(980\) 0 0
\(981\) 35.8379 1.98792i 1.14422 0.0634695i
\(982\) 13.4156i 0.428110i
\(983\) −28.1850 −0.898963 −0.449482 0.893290i \(-0.648391\pi\)
−0.449482 + 0.893290i \(0.648391\pi\)
\(984\) −0.957975 0.906309i −0.0305391 0.0288921i
\(985\) 0 0
\(986\) −32.3344 −1.02974
\(987\) 45.3382 47.9228i 1.44313 1.52540i
\(988\) 1.66294i 0.0529050i
\(989\) 17.5727 0.558781
\(990\) 0 0
\(991\) 0.602794 0.0191484 0.00957419 0.999954i \(-0.496952\pi\)
0.00957419 + 0.999954i \(0.496952\pi\)
\(992\) 9.55251i 0.303292i
\(993\) 16.4199 17.3559i 0.521069 0.550773i
\(994\) 37.9023 1.20219
\(995\) 0 0
\(996\) 9.72411 + 9.19967i 0.308120 + 0.291503i
\(997\) 23.2502 0.736340 0.368170 0.929758i \(-0.379984\pi\)
0.368170 + 0.929758i \(0.379984\pi\)
\(998\) 20.6278i 0.652961i
\(999\) 32.6809 38.6212i 1.03398 1.22192i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1650.2.f.c.1649.6 8
3.2 odd 2 1650.2.f.f.1649.3 8
5.2 odd 4 330.2.d.a.131.6 yes 8
5.3 odd 4 1650.2.d.f.1451.3 8
5.4 even 2 1650.2.f.e.1649.3 8
11.10 odd 2 1650.2.f.d.1649.2 8
15.2 even 4 330.2.d.b.131.5 yes 8
15.8 even 4 1650.2.d.c.1451.4 8
15.14 odd 2 1650.2.f.d.1649.6 8
20.7 even 4 2640.2.f.b.1121.3 8
33.32 even 2 1650.2.f.e.1649.7 8
55.32 even 4 330.2.d.b.131.6 yes 8
55.43 even 4 1650.2.d.c.1451.3 8
55.54 odd 2 1650.2.f.f.1649.7 8
60.47 odd 4 2640.2.f.a.1121.4 8
165.32 odd 4 330.2.d.a.131.5 8
165.98 odd 4 1650.2.d.f.1451.4 8
165.164 even 2 inner 1650.2.f.c.1649.2 8
220.87 odd 4 2640.2.f.a.1121.3 8
660.527 even 4 2640.2.f.b.1121.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.d.a.131.5 8 165.32 odd 4
330.2.d.a.131.6 yes 8 5.2 odd 4
330.2.d.b.131.5 yes 8 15.2 even 4
330.2.d.b.131.6 yes 8 55.32 even 4
1650.2.d.c.1451.3 8 55.43 even 4
1650.2.d.c.1451.4 8 15.8 even 4
1650.2.d.f.1451.3 8 5.3 odd 4
1650.2.d.f.1451.4 8 165.98 odd 4
1650.2.f.c.1649.2 8 165.164 even 2 inner
1650.2.f.c.1649.6 8 1.1 even 1 trivial
1650.2.f.d.1649.2 8 11.10 odd 2
1650.2.f.d.1649.6 8 15.14 odd 2
1650.2.f.e.1649.3 8 5.4 even 2
1650.2.f.e.1649.7 8 33.32 even 2
1650.2.f.f.1649.3 8 3.2 odd 2
1650.2.f.f.1649.7 8 55.54 odd 2
2640.2.f.a.1121.3 8 220.87 odd 4
2640.2.f.a.1121.4 8 60.47 odd 4
2640.2.f.b.1121.3 8 20.7 even 4
2640.2.f.b.1121.4 8 660.527 even 4