Newspace parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.l (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.0823457270844\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{4}\) |
Projective field: | Galois closure of 4.2.12375.1 |
Artin image: | $C_4\wr C_2$ |
Artin field: | Galois closure of 8.0.16471125.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/165\mathbb{Z}\right)^\times\).
\(n\) | \(46\) | \(56\) | \(67\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(-i\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 |
|
0 | 1.00000i | − | 1.00000i | 1.00000i | 0 | 0 | 0 | −1.00000 | 0 | |||||||||||||||||||||||
98.1 | 0 | − | 1.00000i | 1.00000i | − | 1.00000i | 0 | 0 | 0 | −1.00000 | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-11}) \) |
15.e | even | 4 | 1 | inner |
165.l | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.1.l.b | yes | 2 |
3.b | odd | 2 | 1 | 165.1.l.a | ✓ | 2 | |
4.b | odd | 2 | 1 | 2640.1.ch.a | 2 | ||
5.b | even | 2 | 1 | 825.1.l.a | 2 | ||
5.c | odd | 4 | 1 | 165.1.l.a | ✓ | 2 | |
5.c | odd | 4 | 1 | 825.1.l.b | 2 | ||
11.b | odd | 2 | 1 | CM | 165.1.l.b | yes | 2 |
11.c | even | 5 | 4 | 1815.1.v.a | 8 | ||
11.d | odd | 10 | 4 | 1815.1.v.a | 8 | ||
12.b | even | 2 | 1 | 2640.1.ch.b | 2 | ||
15.d | odd | 2 | 1 | 825.1.l.b | 2 | ||
15.e | even | 4 | 1 | inner | 165.1.l.b | yes | 2 |
15.e | even | 4 | 1 | 825.1.l.a | 2 | ||
20.e | even | 4 | 1 | 2640.1.ch.b | 2 | ||
33.d | even | 2 | 1 | 165.1.l.a | ✓ | 2 | |
33.f | even | 10 | 4 | 1815.1.v.b | 8 | ||
33.h | odd | 10 | 4 | 1815.1.v.b | 8 | ||
44.c | even | 2 | 1 | 2640.1.ch.a | 2 | ||
55.d | odd | 2 | 1 | 825.1.l.a | 2 | ||
55.e | even | 4 | 1 | 165.1.l.a | ✓ | 2 | |
55.e | even | 4 | 1 | 825.1.l.b | 2 | ||
55.k | odd | 20 | 4 | 1815.1.v.b | 8 | ||
55.l | even | 20 | 4 | 1815.1.v.b | 8 | ||
60.l | odd | 4 | 1 | 2640.1.ch.a | 2 | ||
132.d | odd | 2 | 1 | 2640.1.ch.b | 2 | ||
165.d | even | 2 | 1 | 825.1.l.b | 2 | ||
165.l | odd | 4 | 1 | inner | 165.1.l.b | yes | 2 |
165.l | odd | 4 | 1 | 825.1.l.a | 2 | ||
165.u | odd | 20 | 4 | 1815.1.v.a | 8 | ||
165.v | even | 20 | 4 | 1815.1.v.a | 8 | ||
220.i | odd | 4 | 1 | 2640.1.ch.b | 2 | ||
660.q | even | 4 | 1 | 2640.1.ch.a | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.1.l.a | ✓ | 2 | 3.b | odd | 2 | 1 | |
165.1.l.a | ✓ | 2 | 5.c | odd | 4 | 1 | |
165.1.l.a | ✓ | 2 | 33.d | even | 2 | 1 | |
165.1.l.a | ✓ | 2 | 55.e | even | 4 | 1 | |
165.1.l.b | yes | 2 | 1.a | even | 1 | 1 | trivial |
165.1.l.b | yes | 2 | 11.b | odd | 2 | 1 | CM |
165.1.l.b | yes | 2 | 15.e | even | 4 | 1 | inner |
165.1.l.b | yes | 2 | 165.l | odd | 4 | 1 | inner |
825.1.l.a | 2 | 5.b | even | 2 | 1 | ||
825.1.l.a | 2 | 15.e | even | 4 | 1 | ||
825.1.l.a | 2 | 55.d | odd | 2 | 1 | ||
825.1.l.a | 2 | 165.l | odd | 4 | 1 | ||
825.1.l.b | 2 | 5.c | odd | 4 | 1 | ||
825.1.l.b | 2 | 15.d | odd | 2 | 1 | ||
825.1.l.b | 2 | 55.e | even | 4 | 1 | ||
825.1.l.b | 2 | 165.d | even | 2 | 1 | ||
1815.1.v.a | 8 | 11.c | even | 5 | 4 | ||
1815.1.v.a | 8 | 11.d | odd | 10 | 4 | ||
1815.1.v.a | 8 | 165.u | odd | 20 | 4 | ||
1815.1.v.a | 8 | 165.v | even | 20 | 4 | ||
1815.1.v.b | 8 | 33.f | even | 10 | 4 | ||
1815.1.v.b | 8 | 33.h | odd | 10 | 4 | ||
1815.1.v.b | 8 | 55.k | odd | 20 | 4 | ||
1815.1.v.b | 8 | 55.l | even | 20 | 4 | ||
2640.1.ch.a | 2 | 4.b | odd | 2 | 1 | ||
2640.1.ch.a | 2 | 44.c | even | 2 | 1 | ||
2640.1.ch.a | 2 | 60.l | odd | 4 | 1 | ||
2640.1.ch.a | 2 | 660.q | even | 4 | 1 | ||
2640.1.ch.b | 2 | 12.b | even | 2 | 1 | ||
2640.1.ch.b | 2 | 20.e | even | 4 | 1 | ||
2640.1.ch.b | 2 | 132.d | odd | 2 | 1 | ||
2640.1.ch.b | 2 | 220.i | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{23}^{2} + 2T_{23} + 2 \)
acting on \(S_{1}^{\mathrm{new}}(165, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 1 \)
$5$
\( T^{2} + 1 \)
$7$
\( T^{2} \)
$11$
\( T^{2} + 1 \)
$13$
\( T^{2} \)
$17$
\( T^{2} \)
$19$
\( T^{2} \)
$23$
\( T^{2} + 2T + 2 \)
$29$
\( T^{2} \)
$31$
\( T^{2} \)
$37$
\( T^{2} - 2T + 2 \)
$41$
\( T^{2} \)
$43$
\( T^{2} \)
$47$
\( T^{2} + 2T + 2 \)
$53$
\( T^{2} - 2T + 2 \)
$59$
\( (T - 2)^{2} \)
$61$
\( T^{2} \)
$67$
\( T^{2} + 2T + 2 \)
$71$
\( T^{2} \)
$73$
\( T^{2} \)
$79$
\( T^{2} \)
$83$
\( T^{2} \)
$89$
\( T^{2} \)
$97$
\( T^{2} + 2T + 2 \)
show more
show less