Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 24\cdot 59 + 48\cdot 59^{2} + 5\cdot 59^{3} + 40\cdot 59^{4} + 32\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 35\cdot 59 + 21\cdot 59^{2} + 42\cdot 59^{3} + 18\cdot 59^{4} + 27\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 19 + 44\cdot 59 + 57\cdot 59^{2} + 7\cdot 59^{3} + 11\cdot 59^{4} + 37\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 28 + 3\cdot 59 + 29\cdot 59^{2} + 45\cdot 59^{3} + 19\cdot 59^{4} + 11\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 30 + 23\cdot 59 + 30\cdot 59^{2} + 28\cdot 59^{3} + 39\cdot 59^{4} + 57\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 42 + 36\cdot 59 + 24\cdot 59^{2} + 48\cdot 59^{3} + 11\cdot 59^{4} + 13\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 48 + 38\cdot 59 + 10\cdot 59^{2} + 54\cdot 59^{3} + 2\cdot 59^{4} + 39\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 52 + 29\cdot 59 + 13\cdot 59^{2} + 3\cdot 59^{3} + 33\cdot 59^{4} + 17\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,3,7,4)$ |
| $(1,4,5,3)(2,6,7,8)$ |
| $(2,7)(3,4)$ |
| $(1,6,5,8)(2,4,7,3)$ |
| $(1,5)(2,7)(3,4)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,5)(2,7)(3,4)(6,8)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(2,7)(3,4)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,5)(3,6)(4,8)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,6,5,8)(2,4,7,3)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,8,5,6)(2,3,7,4)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(2,3,7,4)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(2,4,7,3)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,5)(2,4,7,3)(6,8)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,5)(2,3,7,4)(6,8)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,6,5,8)(2,3,7,4)$ |
$0$ |
$0$ |
| $4$ |
$4$ |
$(1,4,5,3)(2,6,7,8)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,2,6,4,5,7,8,3)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,4,8,2,5,3,6,7)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.