Properties

Label 165.1
Level 165
Weight 1
Dimension 4
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 1920
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(1920\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(165))\).

Total New Old
Modular forms 166 60 106
Cusp forms 6 4 2
Eisenstein series 160 56 104

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 2 q^{3} + O(q^{10}) \) \( 4 q - 2 q^{3} + 2 q^{12} - 2 q^{15} - 4 q^{16} - 4 q^{25} - 2 q^{27} + 2 q^{33} + 4 q^{37} + 2 q^{48} + 4 q^{55} + 2 q^{60} - 4 q^{67} + 2 q^{75} + 4 q^{81} - 4 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(165))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
165.1.b \(\chi_{165}(76, \cdot)\) None 0 1
165.1.e \(\chi_{165}(56, \cdot)\) None 0 1
165.1.g \(\chi_{165}(89, \cdot)\) None 0 1
165.1.h \(\chi_{165}(109, \cdot)\) None 0 1
165.1.i \(\chi_{165}(67, \cdot)\) None 0 2
165.1.l \(\chi_{165}(32, \cdot)\) 165.1.l.a 2 2
165.1.l.b 2
165.1.n \(\chi_{165}(19, \cdot)\) None 0 4
165.1.o \(\chi_{165}(14, \cdot)\) None 0 4
165.1.q \(\chi_{165}(26, \cdot)\) None 0 4
165.1.t \(\chi_{165}(46, \cdot)\) None 0 4
165.1.u \(\chi_{165}(2, \cdot)\) None 0 8
165.1.x \(\chi_{165}(37, \cdot)\) None 0 8

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(165))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(165)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 1}\)