Properties

Label 1638.2.y.c.827.4
Level $1638$
Weight $2$
Character 1638.827
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(827,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.827"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 20 x^{14} - 12 x^{13} + 40 x^{12} + 40 x^{11} + 82 x^{10} + 104 x^{9} + 537 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 827.4
Root \(0.457766 - 1.10514i\) of defining polynomial
Character \(\chi\) \(=\) 1638.827
Dual form 1638.2.y.c.1331.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(2.34991 - 2.34991i) q^{5} +(0.707107 - 0.707107i) q^{7} +(0.707107 + 0.707107i) q^{8} +3.32328i q^{10} +(-0.324149 - 0.324149i) q^{11} +(-0.665596 - 3.54358i) q^{13} +1.00000i q^{14} -1.00000 q^{16} +1.62982 q^{17} +(5.77706 + 5.77706i) q^{19} +(-2.34991 - 2.34991i) q^{20} +0.458415 q^{22} -0.0634972 q^{23} -6.04418i q^{25} +(2.97634 + 2.03504i) q^{26} +(-0.707107 - 0.707107i) q^{28} -4.93529i q^{29} +(6.43095 + 6.43095i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-1.15245 + 1.15245i) q^{34} -3.32328i q^{35} +(1.02017 - 1.02017i) q^{37} -8.17000 q^{38} +3.32328 q^{40} +(1.70138 - 1.70138i) q^{41} +2.64926i q^{43} +(-0.324149 + 0.324149i) q^{44} +(0.0448993 - 0.0448993i) q^{46} +(-7.39872 - 7.39872i) q^{47} -1.00000i q^{49} +(4.27388 + 4.27388i) q^{50} +(-3.54358 + 0.665596i) q^{52} -5.78862i q^{53} -1.52344 q^{55} +1.00000 q^{56} +(3.48978 + 3.48978i) q^{58} +(-3.10768 - 3.10768i) q^{59} +6.02310 q^{61} -9.09474 q^{62} +1.00000i q^{64} +(-9.89120 - 6.76302i) q^{65} +(-5.17274 - 5.17274i) q^{67} -1.62982i q^{68} +(2.34991 + 2.34991i) q^{70} +(2.44819 - 2.44819i) q^{71} +(-6.66296 + 6.66296i) q^{73} +1.44274i q^{74} +(5.77706 - 5.77706i) q^{76} -0.458415 q^{77} +0.341405 q^{79} +(-2.34991 + 2.34991i) q^{80} +2.40611i q^{82} +(1.32362 - 1.32362i) q^{83} +(3.82992 - 3.82992i) q^{85} +(-1.87331 - 1.87331i) q^{86} -0.458415i q^{88} +(-8.87914 - 8.87914i) q^{89} +(-2.97634 - 2.03504i) q^{91} +0.0634972i q^{92} +10.4634 q^{94} +27.1512 q^{95} +(-1.56229 - 1.56229i) q^{97} +(0.707107 + 0.707107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{5} + 8 q^{11} + 4 q^{13} - 16 q^{16} + 8 q^{17} + 16 q^{19} + 4 q^{20} - 8 q^{22} - 24 q^{23} - 8 q^{26} - 8 q^{31} + 4 q^{34} - 4 q^{37} - 16 q^{38} + 16 q^{41} + 8 q^{44} - 4 q^{47} + 16 q^{50}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 2.34991 2.34991i 1.05091 1.05091i 0.0522805 0.998632i \(-0.483351\pi\)
0.998632 0.0522805i \(-0.0166490\pi\)
\(6\) 0 0
\(7\) 0.707107 0.707107i 0.267261 0.267261i
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 3.32328i 1.05091i
\(11\) −0.324149 0.324149i −0.0977345 0.0977345i 0.656549 0.754283i \(-0.272016\pi\)
−0.754283 + 0.656549i \(0.772016\pi\)
\(12\) 0 0
\(13\) −0.665596 3.54358i −0.184603 0.982813i
\(14\) 1.00000i 0.267261i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.62982 0.395288 0.197644 0.980274i \(-0.436671\pi\)
0.197644 + 0.980274i \(0.436671\pi\)
\(18\) 0 0
\(19\) 5.77706 + 5.77706i 1.32535 + 1.32535i 0.909378 + 0.415971i \(0.136558\pi\)
0.415971 + 0.909378i \(0.363442\pi\)
\(20\) −2.34991 2.34991i −0.525456 0.525456i
\(21\) 0 0
\(22\) 0.458415 0.0977345
\(23\) −0.0634972 −0.0132401 −0.00662004 0.999978i \(-0.502107\pi\)
−0.00662004 + 0.999978i \(0.502107\pi\)
\(24\) 0 0
\(25\) 6.04418i 1.20884i
\(26\) 2.97634 + 2.03504i 0.583708 + 0.399105i
\(27\) 0 0
\(28\) −0.707107 0.707107i −0.133631 0.133631i
\(29\) 4.93529i 0.916460i −0.888834 0.458230i \(-0.848484\pi\)
0.888834 0.458230i \(-0.151516\pi\)
\(30\) 0 0
\(31\) 6.43095 + 6.43095i 1.15503 + 1.15503i 0.985529 + 0.169504i \(0.0542166\pi\)
0.169504 + 0.985529i \(0.445783\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) −1.15245 + 1.15245i −0.197644 + 0.197644i
\(35\) 3.32328i 0.561737i
\(36\) 0 0
\(37\) 1.02017 1.02017i 0.167715 0.167715i −0.618259 0.785974i \(-0.712162\pi\)
0.785974 + 0.618259i \(0.212162\pi\)
\(38\) −8.17000 −1.32535
\(39\) 0 0
\(40\) 3.32328 0.525456
\(41\) 1.70138 1.70138i 0.265710 0.265710i −0.561659 0.827369i \(-0.689837\pi\)
0.827369 + 0.561659i \(0.189837\pi\)
\(42\) 0 0
\(43\) 2.64926i 0.404009i 0.979385 + 0.202004i \(0.0647455\pi\)
−0.979385 + 0.202004i \(0.935255\pi\)
\(44\) −0.324149 + 0.324149i −0.0488672 + 0.0488672i
\(45\) 0 0
\(46\) 0.0448993 0.0448993i 0.00662004 0.00662004i
\(47\) −7.39872 7.39872i −1.07921 1.07921i −0.996580 0.0826350i \(-0.973666\pi\)
−0.0826350 0.996580i \(-0.526334\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 4.27388 + 4.27388i 0.604418 + 0.604418i
\(51\) 0 0
\(52\) −3.54358 + 0.665596i −0.491407 + 0.0923016i
\(53\) 5.78862i 0.795128i −0.917574 0.397564i \(-0.869856\pi\)
0.917574 0.397564i \(-0.130144\pi\)
\(54\) 0 0
\(55\) −1.52344 −0.205421
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) 3.48978 + 3.48978i 0.458230 + 0.458230i
\(59\) −3.10768 3.10768i −0.404585 0.404585i 0.475260 0.879845i \(-0.342354\pi\)
−0.879845 + 0.475260i \(0.842354\pi\)
\(60\) 0 0
\(61\) 6.02310 0.771179 0.385590 0.922670i \(-0.373998\pi\)
0.385590 + 0.922670i \(0.373998\pi\)
\(62\) −9.09474 −1.15503
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −9.89120 6.76302i −1.22685 0.838849i
\(66\) 0 0
\(67\) −5.17274 5.17274i −0.631951 0.631951i 0.316606 0.948557i \(-0.397457\pi\)
−0.948557 + 0.316606i \(0.897457\pi\)
\(68\) 1.62982i 0.197644i
\(69\) 0 0
\(70\) 2.34991 + 2.34991i 0.280868 + 0.280868i
\(71\) 2.44819 2.44819i 0.290546 0.290546i −0.546750 0.837296i \(-0.684135\pi\)
0.837296 + 0.546750i \(0.184135\pi\)
\(72\) 0 0
\(73\) −6.66296 + 6.66296i −0.779841 + 0.779841i −0.979804 0.199963i \(-0.935918\pi\)
0.199963 + 0.979804i \(0.435918\pi\)
\(74\) 1.44274i 0.167715i
\(75\) 0 0
\(76\) 5.77706 5.77706i 0.662674 0.662674i
\(77\) −0.458415 −0.0522413
\(78\) 0 0
\(79\) 0.341405 0.0384111 0.0192056 0.999816i \(-0.493886\pi\)
0.0192056 + 0.999816i \(0.493886\pi\)
\(80\) −2.34991 + 2.34991i −0.262728 + 0.262728i
\(81\) 0 0
\(82\) 2.40611i 0.265710i
\(83\) 1.32362 1.32362i 0.145286 0.145286i −0.630723 0.776008i \(-0.717241\pi\)
0.776008 + 0.630723i \(0.217241\pi\)
\(84\) 0 0
\(85\) 3.82992 3.82992i 0.415414 0.415414i
\(86\) −1.87331 1.87331i −0.202004 0.202004i
\(87\) 0 0
\(88\) 0.458415i 0.0488672i
\(89\) −8.87914 8.87914i −0.941187 0.941187i 0.0571769 0.998364i \(-0.481790\pi\)
−0.998364 + 0.0571769i \(0.981790\pi\)
\(90\) 0 0
\(91\) −2.97634 2.03504i −0.312005 0.213331i
\(92\) 0.0634972i 0.00662004i
\(93\) 0 0
\(94\) 10.4634 1.07921
\(95\) 27.1512 2.78565
\(96\) 0 0
\(97\) −1.56229 1.56229i −0.158626 0.158626i 0.623332 0.781958i \(-0.285779\pi\)
−0.781958 + 0.623332i \(0.785779\pi\)
\(98\) 0.707107 + 0.707107i 0.0714286 + 0.0714286i
\(99\) 0 0
\(100\) −6.04418 −0.604418
\(101\) −15.8373 −1.57587 −0.787933 0.615761i \(-0.788849\pi\)
−0.787933 + 0.615761i \(0.788849\pi\)
\(102\) 0 0
\(103\) 8.93993i 0.880878i −0.897783 0.440439i \(-0.854823\pi\)
0.897783 0.440439i \(-0.145177\pi\)
\(104\) 2.03504 2.97634i 0.199552 0.291854i
\(105\) 0 0
\(106\) 4.09317 + 4.09317i 0.397564 + 0.397564i
\(107\) 6.39853i 0.618570i −0.950969 0.309285i \(-0.899910\pi\)
0.950969 0.309285i \(-0.100090\pi\)
\(108\) 0 0
\(109\) 4.12784 + 4.12784i 0.395376 + 0.395376i 0.876598 0.481223i \(-0.159807\pi\)
−0.481223 + 0.876598i \(0.659807\pi\)
\(110\) 1.07724 1.07724i 0.102710 0.102710i
\(111\) 0 0
\(112\) −0.707107 + 0.707107i −0.0668153 + 0.0668153i
\(113\) 7.68101i 0.722568i 0.932456 + 0.361284i \(0.117662\pi\)
−0.932456 + 0.361284i \(0.882338\pi\)
\(114\) 0 0
\(115\) −0.149213 + 0.149213i −0.0139142 + 0.0139142i
\(116\) −4.93529 −0.458230
\(117\) 0 0
\(118\) 4.39492 0.404585
\(119\) 1.15245 1.15245i 0.105645 0.105645i
\(120\) 0 0
\(121\) 10.7899i 0.980896i
\(122\) −4.25898 + 4.25898i −0.385590 + 0.385590i
\(123\) 0 0
\(124\) 6.43095 6.43095i 0.577517 0.577517i
\(125\) −2.45373 2.45373i −0.219468 0.219468i
\(126\) 0 0
\(127\) 0.345230i 0.0306342i −0.999883 0.0153171i \(-0.995124\pi\)
0.999883 0.0153171i \(-0.00487577\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 11.7763 2.21196i 1.03285 0.194002i
\(131\) 5.61993i 0.491016i −0.969395 0.245508i \(-0.921045\pi\)
0.969395 0.245508i \(-0.0789548\pi\)
\(132\) 0 0
\(133\) 8.17000 0.708429
\(134\) 7.31536 0.631951
\(135\) 0 0
\(136\) 1.15245 + 1.15245i 0.0988221 + 0.0988221i
\(137\) 10.4753 + 10.4753i 0.894961 + 0.894961i 0.994985 0.100024i \(-0.0318920\pi\)
−0.100024 + 0.994985i \(0.531892\pi\)
\(138\) 0 0
\(139\) 15.6420 1.32674 0.663370 0.748292i \(-0.269126\pi\)
0.663370 + 0.748292i \(0.269126\pi\)
\(140\) −3.32328 −0.280868
\(141\) 0 0
\(142\) 3.46226i 0.290546i
\(143\) −0.932895 + 1.36440i −0.0780126 + 0.114097i
\(144\) 0 0
\(145\) −11.5975 11.5975i −0.963120 0.963120i
\(146\) 9.42285i 0.779841i
\(147\) 0 0
\(148\) −1.02017 1.02017i −0.0838573 0.0838573i
\(149\) −7.62823 + 7.62823i −0.624929 + 0.624929i −0.946788 0.321859i \(-0.895692\pi\)
0.321859 + 0.946788i \(0.395692\pi\)
\(150\) 0 0
\(151\) 2.40058 2.40058i 0.195357 0.195357i −0.602649 0.798006i \(-0.705888\pi\)
0.798006 + 0.602649i \(0.205888\pi\)
\(152\) 8.17000i 0.662674i
\(153\) 0 0
\(154\) 0.324149 0.324149i 0.0261206 0.0261206i
\(155\) 30.2244 2.42768
\(156\) 0 0
\(157\) −6.14017 −0.490039 −0.245019 0.969518i \(-0.578794\pi\)
−0.245019 + 0.969518i \(0.578794\pi\)
\(158\) −0.241410 + 0.241410i −0.0192056 + 0.0192056i
\(159\) 0 0
\(160\) 3.32328i 0.262728i
\(161\) −0.0448993 + 0.0448993i −0.00353856 + 0.00353856i
\(162\) 0 0
\(163\) 8.31791 8.31791i 0.651509 0.651509i −0.301847 0.953356i \(-0.597603\pi\)
0.953356 + 0.301847i \(0.0976032\pi\)
\(164\) −1.70138 1.70138i −0.132855 0.132855i
\(165\) 0 0
\(166\) 1.87187i 0.145286i
\(167\) 16.1126 + 16.1126i 1.24683 + 1.24683i 0.957110 + 0.289723i \(0.0935632\pi\)
0.289723 + 0.957110i \(0.406437\pi\)
\(168\) 0 0
\(169\) −12.1140 + 4.71719i −0.931843 + 0.362861i
\(170\) 5.41633i 0.415414i
\(171\) 0 0
\(172\) 2.64926 0.202004
\(173\) 22.3436 1.69876 0.849378 0.527785i \(-0.176977\pi\)
0.849378 + 0.527785i \(0.176977\pi\)
\(174\) 0 0
\(175\) −4.27388 4.27388i −0.323075 0.323075i
\(176\) 0.324149 + 0.324149i 0.0244336 + 0.0244336i
\(177\) 0 0
\(178\) 12.5570 0.941187
\(179\) 18.6770 1.39598 0.697992 0.716106i \(-0.254077\pi\)
0.697992 + 0.716106i \(0.254077\pi\)
\(180\) 0 0
\(181\) 22.6676i 1.68487i 0.538796 + 0.842436i \(0.318879\pi\)
−0.538796 + 0.842436i \(0.681121\pi\)
\(182\) 3.54358 0.665596i 0.262668 0.0493373i
\(183\) 0 0
\(184\) −0.0448993 0.0448993i −0.00331002 0.00331002i
\(185\) 4.79461i 0.352507i
\(186\) 0 0
\(187\) −0.528302 0.528302i −0.0386333 0.0386333i
\(188\) −7.39872 + 7.39872i −0.539607 + 0.539607i
\(189\) 0 0
\(190\) −19.1988 + 19.1988i −1.39283 + 1.39283i
\(191\) 17.1930i 1.24404i 0.783000 + 0.622022i \(0.213689\pi\)
−0.783000 + 0.622022i \(0.786311\pi\)
\(192\) 0 0
\(193\) 2.65661 2.65661i 0.191227 0.191227i −0.604999 0.796226i \(-0.706827\pi\)
0.796226 + 0.604999i \(0.206827\pi\)
\(194\) 2.20941 0.158626
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) −4.66485 + 4.66485i −0.332357 + 0.332357i −0.853481 0.521124i \(-0.825513\pi\)
0.521124 + 0.853481i \(0.325513\pi\)
\(198\) 0 0
\(199\) 22.2752i 1.57905i 0.613719 + 0.789525i \(0.289673\pi\)
−0.613719 + 0.789525i \(0.710327\pi\)
\(200\) 4.27388 4.27388i 0.302209 0.302209i
\(201\) 0 0
\(202\) 11.1986 11.1986i 0.787933 0.787933i
\(203\) −3.48978 3.48978i −0.244934 0.244934i
\(204\) 0 0
\(205\) 7.99618i 0.558477i
\(206\) 6.32149 + 6.32149i 0.440439 + 0.440439i
\(207\) 0 0
\(208\) 0.665596 + 3.54358i 0.0461508 + 0.245703i
\(209\) 3.74525i 0.259065i
\(210\) 0 0
\(211\) −15.1062 −1.03995 −0.519977 0.854180i \(-0.674060\pi\)
−0.519977 + 0.854180i \(0.674060\pi\)
\(212\) −5.78862 −0.397564
\(213\) 0 0
\(214\) 4.52445 + 4.52445i 0.309285 + 0.309285i
\(215\) 6.22553 + 6.22553i 0.424578 + 0.424578i
\(216\) 0 0
\(217\) 9.09474 0.617391
\(218\) −5.83765 −0.395376
\(219\) 0 0
\(220\) 1.52344i 0.102710i
\(221\) −1.08480 5.77539i −0.0729715 0.388495i
\(222\) 0 0
\(223\) −6.75687 6.75687i −0.452473 0.452473i 0.443701 0.896175i \(-0.353665\pi\)
−0.896175 + 0.443701i \(0.853665\pi\)
\(224\) 1.00000i 0.0668153i
\(225\) 0 0
\(226\) −5.43129 5.43129i −0.361284 0.361284i
\(227\) −3.91662 + 3.91662i −0.259955 + 0.259955i −0.825036 0.565081i \(-0.808845\pi\)
0.565081 + 0.825036i \(0.308845\pi\)
\(228\) 0 0
\(229\) 10.3547 10.3547i 0.684256 0.684256i −0.276700 0.960956i \(-0.589241\pi\)
0.960956 + 0.276700i \(0.0892409\pi\)
\(230\) 0.211019i 0.0139142i
\(231\) 0 0
\(232\) 3.48978 3.48978i 0.229115 0.229115i
\(233\) 9.21159 0.603471 0.301736 0.953392i \(-0.402434\pi\)
0.301736 + 0.953392i \(0.402434\pi\)
\(234\) 0 0
\(235\) −34.7727 −2.26832
\(236\) −3.10768 + 3.10768i −0.202293 + 0.202293i
\(237\) 0 0
\(238\) 1.62982i 0.105645i
\(239\) −12.5343 + 12.5343i −0.810780 + 0.810780i −0.984751 0.173971i \(-0.944340\pi\)
0.173971 + 0.984751i \(0.444340\pi\)
\(240\) 0 0
\(241\) −4.38083 + 4.38083i −0.282194 + 0.282194i −0.833984 0.551789i \(-0.813945\pi\)
0.551789 + 0.833984i \(0.313945\pi\)
\(242\) 7.62958 + 7.62958i 0.490448 + 0.490448i
\(243\) 0 0
\(244\) 6.02310i 0.385590i
\(245\) −2.34991 2.34991i −0.150130 0.150130i
\(246\) 0 0
\(247\) 16.6263 24.3167i 1.05791 1.54723i
\(248\) 9.09474i 0.577517i
\(249\) 0 0
\(250\) 3.47010 0.219468
\(251\) −16.7074 −1.05456 −0.527282 0.849691i \(-0.676789\pi\)
−0.527282 + 0.849691i \(0.676789\pi\)
\(252\) 0 0
\(253\) 0.0205825 + 0.0205825i 0.00129401 + 0.00129401i
\(254\) 0.244114 + 0.244114i 0.0153171 + 0.0153171i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −23.7154 −1.47932 −0.739662 0.672978i \(-0.765015\pi\)
−0.739662 + 0.672978i \(0.765015\pi\)
\(258\) 0 0
\(259\) 1.44274i 0.0896472i
\(260\) −6.76302 + 9.89120i −0.419425 + 0.613426i
\(261\) 0 0
\(262\) 3.97389 + 3.97389i 0.245508 + 0.245508i
\(263\) 24.5094i 1.51132i −0.654966 0.755659i \(-0.727317\pi\)
0.654966 0.755659i \(-0.272683\pi\)
\(264\) 0 0
\(265\) −13.6028 13.6028i −0.835611 0.835611i
\(266\) −5.77706 + 5.77706i −0.354214 + 0.354214i
\(267\) 0 0
\(268\) −5.17274 + 5.17274i −0.315976 + 0.315976i
\(269\) 2.64650i 0.161360i −0.996740 0.0806800i \(-0.974291\pi\)
0.996740 0.0806800i \(-0.0257092\pi\)
\(270\) 0 0
\(271\) 17.8317 17.8317i 1.08320 1.08320i 0.0869918 0.996209i \(-0.472275\pi\)
0.996209 0.0869918i \(-0.0277254\pi\)
\(272\) −1.62982 −0.0988221
\(273\) 0 0
\(274\) −14.8142 −0.894961
\(275\) −1.95921 + 1.95921i −0.118145 + 0.118145i
\(276\) 0 0
\(277\) 2.21059i 0.132821i −0.997792 0.0664106i \(-0.978845\pi\)
0.997792 0.0664106i \(-0.0211547\pi\)
\(278\) −11.0606 + 11.0606i −0.663370 + 0.663370i
\(279\) 0 0
\(280\) 2.34991 2.34991i 0.140434 0.140434i
\(281\) −8.10646 8.10646i −0.483591 0.483591i 0.422685 0.906276i \(-0.361088\pi\)
−0.906276 + 0.422685i \(0.861088\pi\)
\(282\) 0 0
\(283\) 24.6870i 1.46749i 0.679425 + 0.733745i \(0.262229\pi\)
−0.679425 + 0.733745i \(0.737771\pi\)
\(284\) −2.44819 2.44819i −0.145273 0.145273i
\(285\) 0 0
\(286\) −0.305120 1.62443i −0.0180421 0.0960547i
\(287\) 2.40611i 0.142028i
\(288\) 0 0
\(289\) −14.3437 −0.843747
\(290\) 16.4013 0.963120
\(291\) 0 0
\(292\) 6.66296 + 6.66296i 0.389920 + 0.389920i
\(293\) −13.8944 13.8944i −0.811718 0.811718i 0.173174 0.984891i \(-0.444598\pi\)
−0.984891 + 0.173174i \(0.944598\pi\)
\(294\) 0 0
\(295\) −14.6055 −0.850367
\(296\) 1.44274 0.0838573
\(297\) 0 0
\(298\) 10.7879i 0.624929i
\(299\) 0.0422635 + 0.225008i 0.00244416 + 0.0130125i
\(300\) 0 0
\(301\) 1.87331 + 1.87331i 0.107976 + 0.107976i
\(302\) 3.39494i 0.195357i
\(303\) 0 0
\(304\) −5.77706 5.77706i −0.331337 0.331337i
\(305\) 14.1538 14.1538i 0.810442 0.810442i
\(306\) 0 0
\(307\) −12.2425 + 12.2425i −0.698718 + 0.698718i −0.964134 0.265416i \(-0.914491\pi\)
0.265416 + 0.964134i \(0.414491\pi\)
\(308\) 0.458415i 0.0261206i
\(309\) 0 0
\(310\) −21.3719 + 21.3719i −1.21384 + 1.21384i
\(311\) 27.4849 1.55852 0.779262 0.626698i \(-0.215594\pi\)
0.779262 + 0.626698i \(0.215594\pi\)
\(312\) 0 0
\(313\) −34.7566 −1.96456 −0.982279 0.187424i \(-0.939986\pi\)
−0.982279 + 0.187424i \(0.939986\pi\)
\(314\) 4.34175 4.34175i 0.245019 0.245019i
\(315\) 0 0
\(316\) 0.341405i 0.0192056i
\(317\) 7.91647 7.91647i 0.444633 0.444633i −0.448932 0.893566i \(-0.648196\pi\)
0.893566 + 0.448932i \(0.148196\pi\)
\(318\) 0 0
\(319\) −1.59977 + 1.59977i −0.0895697 + 0.0895697i
\(320\) 2.34991 + 2.34991i 0.131364 + 0.131364i
\(321\) 0 0
\(322\) 0.0634972i 0.00353856i
\(323\) 9.41554 + 9.41554i 0.523895 + 0.523895i
\(324\) 0 0
\(325\) −21.4181 + 4.02298i −1.18806 + 0.223155i
\(326\) 11.7633i 0.651509i
\(327\) 0 0
\(328\) 2.40611 0.132855
\(329\) −10.4634 −0.576865
\(330\) 0 0
\(331\) 22.0478 + 22.0478i 1.21186 + 1.21186i 0.970416 + 0.241440i \(0.0776196\pi\)
0.241440 + 0.970416i \(0.422380\pi\)
\(332\) −1.32362 1.32362i −0.0726428 0.0726428i
\(333\) 0 0
\(334\) −22.7867 −1.24683
\(335\) −24.3110 −1.32825
\(336\) 0 0
\(337\) 35.9438i 1.95798i 0.203905 + 0.978991i \(0.434637\pi\)
−0.203905 + 0.978991i \(0.565363\pi\)
\(338\) 5.23031 11.9014i 0.284491 0.647352i
\(339\) 0 0
\(340\) −3.82992 3.82992i −0.207707 0.207707i
\(341\) 4.16917i 0.225773i
\(342\) 0 0
\(343\) −0.707107 0.707107i −0.0381802 0.0381802i
\(344\) −1.87331 + 1.87331i −0.101002 + 0.101002i
\(345\) 0 0
\(346\) −15.7993 + 15.7993i −0.849378 + 0.849378i
\(347\) 23.3475i 1.25336i 0.779277 + 0.626680i \(0.215587\pi\)
−0.779277 + 0.626680i \(0.784413\pi\)
\(348\) 0 0
\(349\) 3.71738 3.71738i 0.198987 0.198987i −0.600579 0.799566i \(-0.705063\pi\)
0.799566 + 0.600579i \(0.205063\pi\)
\(350\) 6.04418 0.323075
\(351\) 0 0
\(352\) −0.458415 −0.0244336
\(353\) 13.5947 13.5947i 0.723574 0.723574i −0.245757 0.969331i \(-0.579037\pi\)
0.969331 + 0.245757i \(0.0790367\pi\)
\(354\) 0 0
\(355\) 11.5061i 0.610678i
\(356\) −8.87914 + 8.87914i −0.470594 + 0.470594i
\(357\) 0 0
\(358\) −13.2066 + 13.2066i −0.697992 + 0.697992i
\(359\) 0.510808 + 0.510808i 0.0269594 + 0.0269594i 0.720458 0.693499i \(-0.243932\pi\)
−0.693499 + 0.720458i \(0.743932\pi\)
\(360\) 0 0
\(361\) 47.7489i 2.51310i
\(362\) −16.0284 16.0284i −0.842436 0.842436i
\(363\) 0 0
\(364\) −2.03504 + 2.97634i −0.106665 + 0.156003i
\(365\) 31.3148i 1.63909i
\(366\) 0 0
\(367\) −2.08236 −0.108698 −0.0543491 0.998522i \(-0.517308\pi\)
−0.0543491 + 0.998522i \(0.517308\pi\)
\(368\) 0.0634972 0.00331002
\(369\) 0 0
\(370\) 3.39030 + 3.39030i 0.176253 + 0.176253i
\(371\) −4.09317 4.09317i −0.212507 0.212507i
\(372\) 0 0
\(373\) 16.2677 0.842311 0.421155 0.906988i \(-0.361625\pi\)
0.421155 + 0.906988i \(0.361625\pi\)
\(374\) 0.747132 0.0386333
\(375\) 0 0
\(376\) 10.4634i 0.539607i
\(377\) −17.4886 + 3.28491i −0.900709 + 0.169181i
\(378\) 0 0
\(379\) −9.60317 9.60317i −0.493282 0.493282i 0.416057 0.909339i \(-0.363412\pi\)
−0.909339 + 0.416057i \(0.863412\pi\)
\(380\) 27.1512i 1.39283i
\(381\) 0 0
\(382\) −12.1573 12.1573i −0.622022 0.622022i
\(383\) 7.31052 7.31052i 0.373550 0.373550i −0.495218 0.868769i \(-0.664912\pi\)
0.868769 + 0.495218i \(0.164912\pi\)
\(384\) 0 0
\(385\) −1.07724 + 1.07724i −0.0549010 + 0.0549010i
\(386\) 3.75701i 0.191227i
\(387\) 0 0
\(388\) −1.56229 + 1.56229i −0.0793130 + 0.0793130i
\(389\) −20.7184 −1.05046 −0.525231 0.850960i \(-0.676021\pi\)
−0.525231 + 0.850960i \(0.676021\pi\)
\(390\) 0 0
\(391\) −0.103489 −0.00523365
\(392\) 0.707107 0.707107i 0.0357143 0.0357143i
\(393\) 0 0
\(394\) 6.59709i 0.332357i
\(395\) 0.802273 0.802273i 0.0403667 0.0403667i
\(396\) 0 0
\(397\) 27.2204 27.2204i 1.36615 1.36615i 0.500297 0.865854i \(-0.333224\pi\)
0.865854 0.500297i \(-0.166776\pi\)
\(398\) −15.7510 15.7510i −0.789525 0.789525i
\(399\) 0 0
\(400\) 6.04418i 0.302209i
\(401\) 14.9967 + 14.9967i 0.748899 + 0.748899i 0.974272 0.225373i \(-0.0723602\pi\)
−0.225373 + 0.974272i \(0.572360\pi\)
\(402\) 0 0
\(403\) 18.5082 27.0690i 0.921959 1.34841i
\(404\) 15.8373i 0.787933i
\(405\) 0 0
\(406\) 4.93529 0.244934
\(407\) −0.661372 −0.0327830
\(408\) 0 0
\(409\) −28.0059 28.0059i −1.38480 1.38480i −0.835864 0.548937i \(-0.815033\pi\)
−0.548937 0.835864i \(-0.684967\pi\)
\(410\) 5.65415 + 5.65415i 0.279239 + 0.279239i
\(411\) 0 0
\(412\) −8.93993 −0.440439
\(413\) −4.39492 −0.216260
\(414\) 0 0
\(415\) 6.22076i 0.305365i
\(416\) −2.97634 2.03504i −0.145927 0.0997762i
\(417\) 0 0
\(418\) 2.64829 + 2.64829i 0.129532 + 0.129532i
\(419\) 37.3499i 1.82466i 0.409455 + 0.912330i \(0.365719\pi\)
−0.409455 + 0.912330i \(0.634281\pi\)
\(420\) 0 0
\(421\) 20.5126 + 20.5126i 0.999723 + 0.999723i 1.00000 0.000277066i \(-8.81929e-5\pi\)
−0.000277066 1.00000i \(0.500088\pi\)
\(422\) 10.6817 10.6817i 0.519977 0.519977i
\(423\) 0 0
\(424\) 4.09317 4.09317i 0.198782 0.198782i
\(425\) 9.85090i 0.477839i
\(426\) 0 0
\(427\) 4.25898 4.25898i 0.206106 0.206106i
\(428\) −6.39853 −0.309285
\(429\) 0 0
\(430\) −8.80423 −0.424578
\(431\) −27.8444 + 27.8444i −1.34122 + 1.34122i −0.446372 + 0.894847i \(0.647284\pi\)
−0.894847 + 0.446372i \(0.852716\pi\)
\(432\) 0 0
\(433\) 23.6705i 1.13753i 0.822499 + 0.568767i \(0.192579\pi\)
−0.822499 + 0.568767i \(0.807421\pi\)
\(434\) −6.43095 + 6.43095i −0.308696 + 0.308696i
\(435\) 0 0
\(436\) 4.12784 4.12784i 0.197688 0.197688i
\(437\) −0.366827 0.366827i −0.0175477 0.0175477i
\(438\) 0 0
\(439\) 2.80498i 0.133874i 0.997757 + 0.0669371i \(0.0213227\pi\)
−0.997757 + 0.0669371i \(0.978677\pi\)
\(440\) −1.07724 1.07724i −0.0513552 0.0513552i
\(441\) 0 0
\(442\) 4.85088 + 3.31675i 0.230733 + 0.157762i
\(443\) 5.39588i 0.256366i −0.991751 0.128183i \(-0.959086\pi\)
0.991751 0.128183i \(-0.0409145\pi\)
\(444\) 0 0
\(445\) −41.7304 −1.97821
\(446\) 9.55565 0.452473
\(447\) 0 0
\(448\) 0.707107 + 0.707107i 0.0334077 + 0.0334077i
\(449\) −0.0774135 0.0774135i −0.00365337 0.00365337i 0.705278 0.708931i \(-0.250822\pi\)
−0.708931 + 0.705278i \(0.750822\pi\)
\(450\) 0 0
\(451\) −1.10300 −0.0519381
\(452\) 7.68101 0.361284
\(453\) 0 0
\(454\) 5.53894i 0.259955i
\(455\) −11.7763 + 2.21196i −0.552082 + 0.103698i
\(456\) 0 0
\(457\) −1.07515 1.07515i −0.0502932 0.0502932i 0.681513 0.731806i \(-0.261322\pi\)
−0.731806 + 0.681513i \(0.761322\pi\)
\(458\) 14.6437i 0.684256i
\(459\) 0 0
\(460\) 0.149213 + 0.149213i 0.00695708 + 0.00695708i
\(461\) 8.12530 8.12530i 0.378433 0.378433i −0.492104 0.870537i \(-0.663772\pi\)
0.870537 + 0.492104i \(0.163772\pi\)
\(462\) 0 0
\(463\) −7.26506 + 7.26506i −0.337636 + 0.337636i −0.855477 0.517841i \(-0.826736\pi\)
0.517841 + 0.855477i \(0.326736\pi\)
\(464\) 4.93529i 0.229115i
\(465\) 0 0
\(466\) −6.51357 + 6.51357i −0.301736 + 0.301736i
\(467\) −16.6533 −0.770623 −0.385311 0.922787i \(-0.625906\pi\)
−0.385311 + 0.922787i \(0.625906\pi\)
\(468\) 0 0
\(469\) −7.31536 −0.337792
\(470\) 24.5880 24.5880i 1.13416 1.13416i
\(471\) 0 0
\(472\) 4.39492i 0.202293i
\(473\) 0.858754 0.858754i 0.0394856 0.0394856i
\(474\) 0 0
\(475\) 34.9176 34.9176i 1.60213 1.60213i
\(476\) −1.15245 1.15245i −0.0528226 0.0528226i
\(477\) 0 0
\(478\) 17.7262i 0.810780i
\(479\) 15.1218 + 15.1218i 0.690932 + 0.690932i 0.962437 0.271505i \(-0.0875215\pi\)
−0.271505 + 0.962437i \(0.587521\pi\)
\(480\) 0 0
\(481\) −4.29407 2.93603i −0.195793 0.133871i
\(482\) 6.19543i 0.282194i
\(483\) 0 0
\(484\) −10.7899 −0.490448
\(485\) −7.34247 −0.333404
\(486\) 0 0
\(487\) 6.57561 + 6.57561i 0.297969 + 0.297969i 0.840218 0.542249i \(-0.182427\pi\)
−0.542249 + 0.840218i \(0.682427\pi\)
\(488\) 4.25898 + 4.25898i 0.192795 + 0.192795i
\(489\) 0 0
\(490\) 3.32328 0.150130
\(491\) 10.5855 0.477715 0.238857 0.971055i \(-0.423227\pi\)
0.238857 + 0.971055i \(0.423227\pi\)
\(492\) 0 0
\(493\) 8.04361i 0.362266i
\(494\) 5.43792 + 28.9511i 0.244664 + 1.30257i
\(495\) 0 0
\(496\) −6.43095 6.43095i −0.288758 0.288758i
\(497\) 3.46226i 0.155304i
\(498\) 0 0
\(499\) −6.72637 6.72637i −0.301114 0.301114i 0.540336 0.841450i \(-0.318297\pi\)
−0.841450 + 0.540336i \(0.818297\pi\)
\(500\) −2.45373 + 2.45373i −0.109734 + 0.109734i
\(501\) 0 0
\(502\) 11.8139 11.8139i 0.527282 0.527282i
\(503\) 0.511519i 0.0228075i 0.999935 + 0.0114037i \(0.00363000\pi\)
−0.999935 + 0.0114037i \(0.996370\pi\)
\(504\) 0 0
\(505\) −37.2162 + 37.2162i −1.65610 + 1.65610i
\(506\) −0.0291081 −0.00129401
\(507\) 0 0
\(508\) −0.345230 −0.0153171
\(509\) −0.247912 + 0.247912i −0.0109885 + 0.0109885i −0.712580 0.701591i \(-0.752473\pi\)
0.701591 + 0.712580i \(0.252473\pi\)
\(510\) 0 0
\(511\) 9.42285i 0.416842i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 16.7693 16.7693i 0.739662 0.739662i
\(515\) −21.0081 21.0081i −0.925726 0.925726i
\(516\) 0 0
\(517\) 4.79657i 0.210953i
\(518\) 1.02017 + 1.02017i 0.0448236 + 0.0448236i
\(519\) 0 0
\(520\) −2.21196 11.7763i −0.0970009 0.516426i
\(521\) 36.1949i 1.58573i 0.609399 + 0.792864i \(0.291411\pi\)
−0.609399 + 0.792864i \(0.708589\pi\)
\(522\) 0 0
\(523\) −16.7958 −0.734429 −0.367214 0.930136i \(-0.619688\pi\)
−0.367214 + 0.930136i \(0.619688\pi\)
\(524\) −5.61993 −0.245508
\(525\) 0 0
\(526\) 17.3308 + 17.3308i 0.755659 + 0.755659i
\(527\) 10.4813 + 10.4813i 0.456571 + 0.456571i
\(528\) 0 0
\(529\) −22.9960 −0.999825
\(530\) 19.2372 0.835611
\(531\) 0 0
\(532\) 8.17000i 0.354214i
\(533\) −7.16140 4.89654i −0.310195 0.212093i
\(534\) 0 0
\(535\) −15.0360 15.0360i −0.650063 0.650063i
\(536\) 7.31536i 0.315976i
\(537\) 0 0
\(538\) 1.87136 + 1.87136i 0.0806800 + 0.0806800i
\(539\) −0.324149 + 0.324149i −0.0139621 + 0.0139621i
\(540\) 0 0
\(541\) 13.8904 13.8904i 0.597197 0.597197i −0.342369 0.939566i \(-0.611229\pi\)
0.939566 + 0.342369i \(0.111229\pi\)
\(542\) 25.2179i 1.08320i
\(543\) 0 0
\(544\) 1.15245 1.15245i 0.0494110 0.0494110i
\(545\) 19.4001 0.831011
\(546\) 0 0
\(547\) −4.42168 −0.189057 −0.0945286 0.995522i \(-0.530134\pi\)
−0.0945286 + 0.995522i \(0.530134\pi\)
\(548\) 10.4753 10.4753i 0.447481 0.447481i
\(549\) 0 0
\(550\) 2.77074i 0.118145i
\(551\) 28.5115 28.5115i 1.21463 1.21463i
\(552\) 0 0
\(553\) 0.241410 0.241410i 0.0102658 0.0102658i
\(554\) 1.56312 + 1.56312i 0.0664106 + 0.0664106i
\(555\) 0 0
\(556\) 15.6420i 0.663370i
\(557\) −5.48894 5.48894i −0.232574 0.232574i 0.581192 0.813766i \(-0.302586\pi\)
−0.813766 + 0.581192i \(0.802586\pi\)
\(558\) 0 0
\(559\) 9.38788 1.76334i 0.397065 0.0745813i
\(560\) 3.32328i 0.140434i
\(561\) 0 0
\(562\) 11.4643 0.483591
\(563\) 17.7500 0.748074 0.374037 0.927414i \(-0.377973\pi\)
0.374037 + 0.927414i \(0.377973\pi\)
\(564\) 0 0
\(565\) 18.0497 + 18.0497i 0.759356 + 0.759356i
\(566\) −17.4564 17.4564i −0.733745 0.733745i
\(567\) 0 0
\(568\) 3.46226 0.145273
\(569\) −31.3344 −1.31361 −0.656803 0.754063i \(-0.728091\pi\)
−0.656803 + 0.754063i \(0.728091\pi\)
\(570\) 0 0
\(571\) 0.467596i 0.0195683i −0.999952 0.00978413i \(-0.996886\pi\)
0.999952 0.00978413i \(-0.00311444\pi\)
\(572\) 1.36440 + 0.932895i 0.0570484 + 0.0390063i
\(573\) 0 0
\(574\) 1.70138 + 1.70138i 0.0710141 + 0.0710141i
\(575\) 0.383788i 0.0160051i
\(576\) 0 0
\(577\) −21.0902 21.0902i −0.877996 0.877996i 0.115331 0.993327i \(-0.463207\pi\)
−0.993327 + 0.115331i \(0.963207\pi\)
\(578\) 10.1425 10.1425i 0.421874 0.421874i
\(579\) 0 0
\(580\) −11.5975 + 11.5975i −0.481560 + 0.481560i
\(581\) 1.87187i 0.0776585i
\(582\) 0 0
\(583\) −1.87637 + 1.87637i −0.0777115 + 0.0777115i
\(584\) −9.42285 −0.389920
\(585\) 0 0
\(586\) 19.6496 0.811718
\(587\) −10.8388 + 10.8388i −0.447365 + 0.447365i −0.894478 0.447112i \(-0.852452\pi\)
0.447112 + 0.894478i \(0.352452\pi\)
\(588\) 0 0
\(589\) 74.3040i 3.06164i
\(590\) 10.3277 10.3277i 0.425184 0.425184i
\(591\) 0 0
\(592\) −1.02017 + 1.02017i −0.0419286 + 0.0419286i
\(593\) −3.31352 3.31352i −0.136070 0.136070i 0.635791 0.771861i \(-0.280674\pi\)
−0.771861 + 0.635791i \(0.780674\pi\)
\(594\) 0 0
\(595\) 5.41633i 0.222048i
\(596\) 7.62823 + 7.62823i 0.312464 + 0.312464i
\(597\) 0 0
\(598\) −0.188989 0.129220i −0.00772834 0.00528418i
\(599\) 35.4039i 1.44657i 0.690552 + 0.723283i \(0.257368\pi\)
−0.690552 + 0.723283i \(0.742632\pi\)
\(600\) 0 0
\(601\) 38.1203 1.55496 0.777480 0.628908i \(-0.216498\pi\)
0.777480 + 0.628908i \(0.216498\pi\)
\(602\) −2.64926 −0.107976
\(603\) 0 0
\(604\) −2.40058 2.40058i −0.0976783 0.0976783i
\(605\) −25.3552 25.3552i −1.03084 1.03084i
\(606\) 0 0
\(607\) −1.19850 −0.0486457 −0.0243229 0.999704i \(-0.507743\pi\)
−0.0243229 + 0.999704i \(0.507743\pi\)
\(608\) 8.17000 0.331337
\(609\) 0 0
\(610\) 20.0165i 0.810442i
\(611\) −21.2934 + 31.1426i −0.861440 + 1.25989i
\(612\) 0 0
\(613\) 31.8712 + 31.8712i 1.28726 + 1.28726i 0.936442 + 0.350823i \(0.114098\pi\)
0.350823 + 0.936442i \(0.385902\pi\)
\(614\) 17.3136i 0.698718i
\(615\) 0 0
\(616\) −0.324149 0.324149i −0.0130603 0.0130603i
\(617\) 1.01263 1.01263i 0.0407670 0.0407670i −0.686429 0.727196i \(-0.740823\pi\)
0.727196 + 0.686429i \(0.240823\pi\)
\(618\) 0 0
\(619\) 26.8814 26.8814i 1.08046 1.08046i 0.0839891 0.996467i \(-0.473234\pi\)
0.996467 0.0839891i \(-0.0267661\pi\)
\(620\) 30.2244i 1.21384i
\(621\) 0 0
\(622\) −19.4347 + 19.4347i −0.779262 + 0.779262i
\(623\) −12.5570 −0.503086
\(624\) 0 0
\(625\) 18.6888 0.747552
\(626\) 24.5766 24.5766i 0.982279 0.982279i
\(627\) 0 0
\(628\) 6.14017i 0.245019i
\(629\) 1.66269 1.66269i 0.0662956 0.0662956i
\(630\) 0 0
\(631\) 1.03671 1.03671i 0.0412709 0.0412709i −0.686170 0.727441i \(-0.740709\pi\)
0.727441 + 0.686170i \(0.240709\pi\)
\(632\) 0.241410 + 0.241410i 0.00960278 + 0.00960278i
\(633\) 0 0
\(634\) 11.1956i 0.444633i
\(635\) −0.811260 0.811260i −0.0321939 0.0321939i
\(636\) 0 0
\(637\) −3.54358 + 0.665596i −0.140402 + 0.0263719i
\(638\) 2.26241i 0.0895697i
\(639\) 0 0
\(640\) −3.32328 −0.131364
\(641\) 37.0824 1.46467 0.732333 0.680946i \(-0.238431\pi\)
0.732333 + 0.680946i \(0.238431\pi\)
\(642\) 0 0
\(643\) −3.90601 3.90601i −0.154038 0.154038i 0.625881 0.779919i \(-0.284740\pi\)
−0.779919 + 0.625881i \(0.784740\pi\)
\(644\) 0.0448993 + 0.0448993i 0.00176928 + 0.00176928i
\(645\) 0 0
\(646\) −13.3156 −0.523895
\(647\) 21.6049 0.849377 0.424689 0.905339i \(-0.360384\pi\)
0.424689 + 0.905339i \(0.360384\pi\)
\(648\) 0 0
\(649\) 2.01470i 0.0790838i
\(650\) 12.3002 17.9895i 0.482452 0.705607i
\(651\) 0 0
\(652\) −8.31791 8.31791i −0.325755 0.325755i
\(653\) 2.85031i 0.111541i 0.998444 + 0.0557705i \(0.0177615\pi\)
−0.998444 + 0.0557705i \(0.982238\pi\)
\(654\) 0 0
\(655\) −13.2064 13.2064i −0.516015 0.516015i
\(656\) −1.70138 + 1.70138i −0.0664276 + 0.0664276i
\(657\) 0 0
\(658\) 7.39872 7.39872i 0.288432 0.288432i
\(659\) 32.7638i 1.27629i 0.769914 + 0.638147i \(0.220299\pi\)
−0.769914 + 0.638147i \(0.779701\pi\)
\(660\) 0 0
\(661\) −27.0495 + 27.0495i −1.05211 + 1.05211i −0.0535393 + 0.998566i \(0.517050\pi\)
−0.998566 + 0.0535393i \(0.982950\pi\)
\(662\) −31.1803 −1.21186
\(663\) 0 0
\(664\) 1.87187 0.0726428
\(665\) 19.1988 19.1988i 0.744497 0.744497i
\(666\) 0 0
\(667\) 0.313377i 0.0121340i
\(668\) 16.1126 16.1126i 0.623417 0.623417i
\(669\) 0 0
\(670\) 17.1905 17.1905i 0.664126 0.664126i
\(671\) −1.95238 1.95238i −0.0753708 0.0753708i
\(672\) 0 0
\(673\) 4.59738i 0.177216i −0.996067 0.0886080i \(-0.971758\pi\)
0.996067 0.0886080i \(-0.0282418\pi\)
\(674\) −25.4161 25.4161i −0.978991 0.978991i
\(675\) 0 0
\(676\) 4.71719 + 12.1140i 0.181430 + 0.465922i
\(677\) 3.00267i 0.115402i −0.998334 0.0577010i \(-0.981623\pi\)
0.998334 0.0577010i \(-0.0183770\pi\)
\(678\) 0 0
\(679\) −2.20941 −0.0847892
\(680\) 5.41633 0.207707
\(681\) 0 0
\(682\) 2.94805 + 2.94805i 0.112887 + 0.112887i
\(683\) 22.8496 + 22.8496i 0.874314 + 0.874314i 0.992939 0.118625i \(-0.0378486\pi\)
−0.118625 + 0.992939i \(0.537849\pi\)
\(684\) 0 0
\(685\) 49.2318 1.88105
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 2.64926i 0.101002i
\(689\) −20.5125 + 3.85289i −0.781463 + 0.146783i
\(690\) 0 0
\(691\) 30.2769 + 30.2769i 1.15179 + 1.15179i 0.986194 + 0.165594i \(0.0529541\pi\)
0.165594 + 0.986194i \(0.447046\pi\)
\(692\) 22.3436i 0.849378i
\(693\) 0 0
\(694\) −16.5092 16.5092i −0.626680 0.626680i
\(695\) 36.7574 36.7574i 1.39429 1.39429i
\(696\) 0 0
\(697\) 2.77293 2.77293i 0.105032 0.105032i
\(698\) 5.25717i 0.198987i
\(699\) 0 0
\(700\) −4.27388 + 4.27388i −0.161537 + 0.161537i
\(701\) 44.8135 1.69258 0.846291 0.532721i \(-0.178831\pi\)
0.846291 + 0.532721i \(0.178831\pi\)
\(702\) 0 0
\(703\) 11.7871 0.444561
\(704\) 0.324149 0.324149i 0.0122168 0.0122168i
\(705\) 0 0
\(706\) 19.2258i 0.723574i
\(707\) −11.1986 + 11.1986i −0.421168 + 0.421168i
\(708\) 0 0
\(709\) 0.247922 0.247922i 0.00931089 0.00931089i −0.702436 0.711747i \(-0.747904\pi\)
0.711747 + 0.702436i \(0.247904\pi\)
\(710\) 8.13601 + 8.13601i 0.305339 + 0.305339i
\(711\) 0 0
\(712\) 12.5570i 0.470594i
\(713\) −0.408348 0.408348i −0.0152927 0.0152927i
\(714\) 0 0
\(715\) 1.01400 + 5.39844i 0.0379213 + 0.201890i
\(716\) 18.6770i 0.697992i
\(717\) 0 0
\(718\) −0.722392 −0.0269594
\(719\) −35.7000 −1.33139 −0.665693 0.746225i \(-0.731864\pi\)
−0.665693 + 0.746225i \(0.731864\pi\)
\(720\) 0 0
\(721\) −6.32149 6.32149i −0.235425 0.235425i
\(722\) −33.7636 33.7636i −1.25655 1.25655i
\(723\) 0 0
\(724\) 22.6676 0.842436
\(725\) −29.8298 −1.10785
\(726\) 0 0
\(727\) 27.3342i 1.01377i −0.862014 0.506885i \(-0.830797\pi\)
0.862014 0.506885i \(-0.169203\pi\)
\(728\) −0.665596 3.54358i −0.0246686 0.131334i
\(729\) 0 0
\(730\) −22.1429 22.1429i −0.819545 0.819545i
\(731\) 4.31781i 0.159700i
\(732\) 0 0
\(733\) −17.2102 17.2102i −0.635675 0.635675i 0.313811 0.949485i \(-0.398394\pi\)
−0.949485 + 0.313811i \(0.898394\pi\)
\(734\) 1.47245 1.47245i 0.0543491 0.0543491i
\(735\) 0 0
\(736\) −0.0448993 + 0.0448993i −0.00165501 + 0.00165501i
\(737\) 3.35348i 0.123527i
\(738\) 0 0
\(739\) −6.32632 + 6.32632i −0.232718 + 0.232718i −0.813826 0.581108i \(-0.802619\pi\)
0.581108 + 0.813826i \(0.302619\pi\)
\(740\) −4.79461 −0.176253
\(741\) 0 0
\(742\) 5.78862 0.212507
\(743\) −7.15604 + 7.15604i −0.262530 + 0.262530i −0.826081 0.563551i \(-0.809435\pi\)
0.563551 + 0.826081i \(0.309435\pi\)
\(744\) 0 0
\(745\) 35.8513i 1.31349i
\(746\) −11.5030 + 11.5030i −0.421155 + 0.421155i
\(747\) 0 0
\(748\) −0.528302 + 0.528302i −0.0193166 + 0.0193166i
\(749\) −4.52445 4.52445i −0.165320 0.165320i
\(750\) 0 0
\(751\) 22.5613i 0.823273i 0.911348 + 0.411637i \(0.135043\pi\)
−0.911348 + 0.411637i \(0.864957\pi\)
\(752\) 7.39872 + 7.39872i 0.269804 + 0.269804i
\(753\) 0 0
\(754\) 10.0435 14.6891i 0.365764 0.534945i
\(755\) 11.2823i 0.410606i
\(756\) 0 0
\(757\) 49.8330 1.81121 0.905605 0.424123i \(-0.139417\pi\)
0.905605 + 0.424123i \(0.139417\pi\)
\(758\) 13.5809 0.493282
\(759\) 0 0
\(760\) 19.1988 + 19.1988i 0.696413 + 0.696413i
\(761\) −32.0627 32.0627i −1.16227 1.16227i −0.983977 0.178294i \(-0.942942\pi\)
−0.178294 0.983977i \(-0.557058\pi\)
\(762\) 0 0
\(763\) 5.83765 0.211337
\(764\) 17.1930 0.622022
\(765\) 0 0
\(766\) 10.3386i 0.373550i
\(767\) −8.94385 + 13.0808i −0.322944 + 0.472319i
\(768\) 0 0
\(769\) −33.8870 33.8870i −1.22200 1.22200i −0.966921 0.255076i \(-0.917900\pi\)
−0.255076 0.966921i \(-0.582100\pi\)
\(770\) 1.52344i 0.0549010i
\(771\) 0 0
\(772\) −2.65661 2.65661i −0.0956135 0.0956135i
\(773\) −3.31434 + 3.31434i −0.119209 + 0.119209i −0.764194 0.644986i \(-0.776863\pi\)
0.644986 + 0.764194i \(0.276863\pi\)
\(774\) 0 0
\(775\) 38.8698 38.8698i 1.39625 1.39625i
\(776\) 2.20941i 0.0793130i
\(777\) 0 0
\(778\) 14.6501 14.6501i 0.525231 0.525231i
\(779\) 19.6579 0.704318
\(780\) 0 0
\(781\) −1.58715 −0.0567928
\(782\) 0.0731776 0.0731776i 0.00261682 0.00261682i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) −14.4289 + 14.4289i −0.514988 + 0.514988i
\(786\) 0 0
\(787\) 16.1443 16.1443i 0.575481 0.575481i −0.358174 0.933655i \(-0.616601\pi\)
0.933655 + 0.358174i \(0.116601\pi\)
\(788\) 4.66485 + 4.66485i 0.166178 + 0.166178i
\(789\) 0 0
\(790\) 1.13458i 0.0403667i
\(791\) 5.43129 + 5.43129i 0.193115 + 0.193115i
\(792\) 0 0
\(793\) −4.00896 21.3434i −0.142362 0.757925i
\(794\) 38.4954i 1.36615i
\(795\) 0 0
\(796\) 22.2752 0.789525
\(797\) −53.0289 −1.87838 −0.939190 0.343398i \(-0.888422\pi\)
−0.939190 + 0.343398i \(0.888422\pi\)
\(798\) 0 0
\(799\) −12.0586 12.0586i −0.426601 0.426601i
\(800\) −4.27388 4.27388i −0.151104 0.151104i
\(801\) 0 0
\(802\) −21.2085 −0.748899
\(803\) 4.31958 0.152435
\(804\) 0 0
\(805\) 0.211019i 0.00743744i
\(806\) 6.05343 + 32.2280i 0.213223 + 1.13518i
\(807\) 0 0
\(808\) −11.1986 11.1986i −0.393966 0.393966i
\(809\) 32.1044i 1.12873i −0.825525 0.564365i \(-0.809121\pi\)
0.825525 0.564365i \(-0.190879\pi\)
\(810\) 0 0
\(811\) 18.4043 + 18.4043i 0.646262 + 0.646262i 0.952087 0.305826i \(-0.0989325\pi\)
−0.305826 + 0.952087i \(0.598933\pi\)
\(812\) −3.48978 + 3.48978i −0.122467 + 0.122467i
\(813\) 0 0
\(814\) 0.467661 0.467661i 0.0163915 0.0163915i
\(815\) 39.0927i 1.36936i
\(816\) 0 0
\(817\) −15.3049 + 15.3049i −0.535452 + 0.535452i
\(818\) 39.6063 1.38480
\(819\) 0 0
\(820\) −7.99618 −0.279239
\(821\) −28.0434 + 28.0434i −0.978721 + 0.978721i −0.999778 0.0210570i \(-0.993297\pi\)
0.0210570 + 0.999778i \(0.493297\pi\)
\(822\) 0 0
\(823\) 20.4780i 0.713818i 0.934139 + 0.356909i \(0.116169\pi\)
−0.934139 + 0.356909i \(0.883831\pi\)
\(824\) 6.32149 6.32149i 0.220219 0.220219i
\(825\) 0 0
\(826\) 3.10768 3.10768i 0.108130 0.108130i
\(827\) 11.5479 + 11.5479i 0.401561 + 0.401561i 0.878783 0.477222i \(-0.158356\pi\)
−0.477222 + 0.878783i \(0.658356\pi\)
\(828\) 0 0
\(829\) 30.8426i 1.07121i 0.844470 + 0.535603i \(0.179916\pi\)
−0.844470 + 0.535603i \(0.820084\pi\)
\(830\) 4.39874 + 4.39874i 0.152683 + 0.152683i
\(831\) 0 0
\(832\) 3.54358 0.665596i 0.122852 0.0230754i
\(833\) 1.62982i 0.0564698i
\(834\) 0 0
\(835\) 75.7266 2.62063
\(836\) −3.74525 −0.129532
\(837\) 0 0
\(838\) −26.4104 26.4104i −0.912330 0.912330i
\(839\) −17.9743 17.9743i −0.620540 0.620540i 0.325129 0.945670i \(-0.394592\pi\)
−0.945670 + 0.325129i \(0.894592\pi\)
\(840\) 0 0
\(841\) 4.64293 0.160101
\(842\) −29.0092 −0.999723
\(843\) 0 0
\(844\) 15.1062i 0.519977i
\(845\) −17.3818 + 39.5517i −0.597951 + 1.36062i
\(846\) 0 0
\(847\) −7.62958 7.62958i −0.262155 0.262155i
\(848\) 5.78862i 0.198782i
\(849\) 0 0
\(850\) 6.96564 + 6.96564i 0.238919 + 0.238919i
\(851\) −0.0647778 + 0.0647778i −0.00222055 + 0.00222055i
\(852\) 0 0
\(853\) 9.15287 9.15287i 0.313388 0.313388i −0.532833 0.846221i \(-0.678872\pi\)
0.846221 + 0.532833i \(0.178872\pi\)
\(854\) 6.02310i 0.206106i
\(855\) 0 0
\(856\) 4.52445 4.52445i 0.154642 0.154642i
\(857\) 29.6346 1.01230 0.506149 0.862446i \(-0.331069\pi\)
0.506149 + 0.862446i \(0.331069\pi\)
\(858\) 0 0
\(859\) −49.5643 −1.69111 −0.845556 0.533887i \(-0.820731\pi\)
−0.845556 + 0.533887i \(0.820731\pi\)
\(860\) 6.22553 6.22553i 0.212289 0.212289i
\(861\) 0 0
\(862\) 39.3780i 1.34122i
\(863\) −20.7245 + 20.7245i −0.705472 + 0.705472i −0.965580 0.260108i \(-0.916242\pi\)
0.260108 + 0.965580i \(0.416242\pi\)
\(864\) 0 0
\(865\) 52.5056 52.5056i 1.78524 1.78524i
\(866\) −16.7376 16.7376i −0.568767 0.568767i
\(867\) 0 0
\(868\) 9.09474i 0.308696i
\(869\) −0.110666 0.110666i −0.00375409 0.00375409i
\(870\) 0 0
\(871\) −14.8871 + 21.7730i −0.504430 + 0.737750i
\(872\) 5.83765i 0.197688i
\(873\) 0 0
\(874\) 0.518772 0.0175477
\(875\) −3.47010 −0.117311
\(876\) 0 0
\(877\) 7.26081 + 7.26081i 0.245180 + 0.245180i 0.818989 0.573809i \(-0.194535\pi\)
−0.573809 + 0.818989i \(0.694535\pi\)
\(878\) −1.98342 1.98342i −0.0669371 0.0669371i
\(879\) 0 0
\(880\) 1.52344 0.0513552
\(881\) 44.7712 1.50838 0.754191 0.656656i \(-0.228029\pi\)
0.754191 + 0.656656i \(0.228029\pi\)
\(882\) 0 0
\(883\) 34.4466i 1.15922i −0.814894 0.579609i \(-0.803205\pi\)
0.814894 0.579609i \(-0.196795\pi\)
\(884\) −5.77539 + 1.08480i −0.194247 + 0.0364857i
\(885\) 0 0
\(886\) 3.81546 + 3.81546i 0.128183 + 0.128183i
\(887\) 35.4251i 1.18946i −0.803926 0.594729i \(-0.797259\pi\)
0.803926 0.594729i \(-0.202741\pi\)
\(888\) 0 0
\(889\) −0.244114 0.244114i −0.00818733 0.00818733i
\(890\) 29.5079 29.5079i 0.989106 0.989106i
\(891\) 0 0
\(892\) −6.75687 + 6.75687i −0.226237 + 0.226237i
\(893\) 85.4858i 2.86067i
\(894\) 0 0
\(895\) 43.8893 43.8893i 1.46706 1.46706i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 0.109479 0.00365337
\(899\) 31.7386 31.7386i 1.05854 1.05854i
\(900\) 0 0
\(901\) 9.43439i 0.314305i
\(902\) 0.779937 0.779937i 0.0259691 0.0259691i
\(903\) 0 0
\(904\) −5.43129 + 5.43129i −0.180642 + 0.180642i
\(905\) 53.2670 + 53.2670i 1.77065 + 1.77065i
\(906\) 0 0
\(907\) 33.1702i 1.10140i −0.834703 0.550700i \(-0.814361\pi\)
0.834703 0.550700i \(-0.185639\pi\)
\(908\) 3.91662 + 3.91662i 0.129978 + 0.129978i
\(909\) 0 0
\(910\) 6.76302 9.89120i 0.224192 0.327890i
\(911\) 11.7245i 0.388450i 0.980957 + 0.194225i \(0.0622192\pi\)
−0.980957 + 0.194225i \(0.937781\pi\)
\(912\) 0 0
\(913\) −0.858096 −0.0283988
\(914\) 1.52049 0.0502932
\(915\) 0 0
\(916\) −10.3547 10.3547i −0.342128 0.342128i
\(917\) −3.97389 3.97389i −0.131230 0.131230i
\(918\) 0 0
\(919\) 38.9310 1.28421 0.642107 0.766615i \(-0.278061\pi\)
0.642107 + 0.766615i \(0.278061\pi\)
\(920\) −0.211019 −0.00695708
\(921\) 0 0
\(922\) 11.4909i 0.378433i
\(923\) −10.3049 7.04585i −0.339189 0.231917i
\(924\) 0 0
\(925\) −6.16608 6.16608i −0.202739 0.202739i
\(926\) 10.2744i 0.337636i
\(927\) 0 0
\(928\) −3.48978 3.48978i −0.114557 0.114557i
\(929\) 12.1389 12.1389i 0.398264 0.398264i −0.479356 0.877620i \(-0.659130\pi\)
0.877620 + 0.479356i \(0.159130\pi\)
\(930\) 0 0
\(931\) 5.77706 5.77706i 0.189336 0.189336i
\(932\) 9.21159i 0.301736i
\(933\) 0 0
\(934\) 11.7757 11.7757i 0.385311 0.385311i
\(935\) −2.48293 −0.0812005
\(936\) 0 0
\(937\) 38.5000 1.25774 0.628870 0.777511i \(-0.283518\pi\)
0.628870 + 0.777511i \(0.283518\pi\)
\(938\) 5.17274 5.17274i 0.168896 0.168896i
\(939\) 0 0
\(940\) 34.7727i 1.13416i
\(941\) −18.3074 + 18.3074i −0.596803 + 0.596803i −0.939460 0.342657i \(-0.888673\pi\)
0.342657 + 0.939460i \(0.388673\pi\)
\(942\) 0 0
\(943\) −0.108033 + 0.108033i −0.00351803 + 0.00351803i
\(944\) 3.10768 + 3.10768i 0.101146 + 0.101146i
\(945\) 0 0
\(946\) 1.21446i 0.0394856i
\(947\) −34.2562 34.2562i −1.11318 1.11318i −0.992718 0.120459i \(-0.961563\pi\)
−0.120459 0.992718i \(-0.538437\pi\)
\(948\) 0 0
\(949\) 28.0456 + 19.1759i 0.910399 + 0.622477i
\(950\) 49.3809i 1.60213i
\(951\) 0 0
\(952\) 1.62982 0.0528226
\(953\) −21.6617 −0.701692 −0.350846 0.936433i \(-0.614106\pi\)
−0.350846 + 0.936433i \(0.614106\pi\)
\(954\) 0 0
\(955\) 40.4021 + 40.4021i 1.30738 + 1.30738i
\(956\) 12.5343 + 12.5343i 0.405390 + 0.405390i
\(957\) 0 0
\(958\) −21.3854 −0.690932
\(959\) 14.8142 0.478377
\(960\) 0 0
\(961\) 51.7144i 1.66821i
\(962\) 5.11245 0.960279i 0.164832 0.0309606i
\(963\) 0 0
\(964\) 4.38083 + 4.38083i 0.141097 + 0.141097i
\(965\) 12.4856i 0.401926i
\(966\) 0 0
\(967\) −6.41773 6.41773i −0.206380 0.206380i 0.596347 0.802727i \(-0.296618\pi\)
−0.802727 + 0.596347i \(0.796618\pi\)
\(968\) 7.62958 7.62958i 0.245224 0.245224i
\(969\) 0 0
\(970\) 5.19191 5.19191i 0.166702 0.166702i
\(971\) 14.3098i 0.459225i 0.973282 + 0.229612i \(0.0737458\pi\)
−0.973282 + 0.229612i \(0.926254\pi\)
\(972\) 0 0
\(973\) 11.0606 11.0606i 0.354586 0.354586i
\(974\) −9.29932 −0.297969
\(975\) 0 0
\(976\) −6.02310 −0.192795
\(977\) −38.7117 + 38.7117i −1.23850 + 1.23850i −0.277880 + 0.960616i \(0.589632\pi\)
−0.960616 + 0.277880i \(0.910368\pi\)
\(978\) 0 0
\(979\) 5.75632i 0.183973i
\(980\) −2.34991 + 2.34991i −0.0750652 + 0.0750652i
\(981\) 0 0
\(982\) −7.48504 + 7.48504i −0.238857 + 0.238857i
\(983\) 8.82770 + 8.82770i 0.281560 + 0.281560i 0.833731 0.552171i \(-0.186200\pi\)
−0.552171 + 0.833731i \(0.686200\pi\)
\(984\) 0 0
\(985\) 21.9240i 0.698556i
\(986\) 5.68769 + 5.68769i 0.181133 + 0.181133i
\(987\) 0 0
\(988\) −24.3167 16.6263i −0.773617 0.528953i
\(989\) 0.168221i 0.00534910i
\(990\) 0 0
\(991\) −21.6781 −0.688629 −0.344314 0.938854i \(-0.611889\pi\)
−0.344314 + 0.938854i \(0.611889\pi\)
\(992\) 9.09474 0.288758
\(993\) 0 0
\(994\) 2.44819 + 2.44819i 0.0776518 + 0.0776518i
\(995\) 52.3448 + 52.3448i 1.65944 + 1.65944i
\(996\) 0 0
\(997\) 4.75475 0.150584 0.0752922 0.997162i \(-0.476011\pi\)
0.0752922 + 0.997162i \(0.476011\pi\)
\(998\) 9.51253 0.301114
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.y.c.827.4 16
3.2 odd 2 1638.2.y.d.827.5 yes 16
13.5 odd 4 1638.2.y.d.1331.5 yes 16
39.5 even 4 inner 1638.2.y.c.1331.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1638.2.y.c.827.4 16 1.1 even 1 trivial
1638.2.y.c.1331.4 yes 16 39.5 even 4 inner
1638.2.y.d.827.5 yes 16 3.2 odd 2
1638.2.y.d.1331.5 yes 16 13.5 odd 4