Properties

Label 1638.2.y.c
Level $1638$
Weight $2$
Character orbit 1638.y
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(827,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.827"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 20 x^{14} - 12 x^{13} + 40 x^{12} + 40 x^{11} + 82 x^{10} + 104 x^{9} + 537 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{5} q^{4} + \beta_{7} q^{5} + \beta_1 q^{7} + \beta_{4} q^{8} + \beta_{11} q^{10} + ( - \beta_{14} - \beta_{12} + \beta_{6} + \cdots + 1) q^{11} + (\beta_{15} + \beta_{10} + \cdots + \beta_{4}) q^{13}+ \cdots + \beta_{4} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{5} + 8 q^{11} + 4 q^{13} - 16 q^{16} + 8 q^{17} + 16 q^{19} + 4 q^{20} - 8 q^{22} - 24 q^{23} - 8 q^{26} - 8 q^{31} + 4 q^{34} - 4 q^{37} - 16 q^{38} + 16 q^{41} + 8 q^{44} - 4 q^{47} + 16 q^{50}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 8 x^{15} + 20 x^{14} - 12 x^{13} + 40 x^{12} + 40 x^{11} + 82 x^{10} + 104 x^{9} + 537 x^{8} + \cdots + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 88\!\cdots\!87 \nu^{15} + \cdots - 12\!\cdots\!20 ) / 29\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 11\!\cdots\!23 \nu^{15} + \cdots - 10\!\cdots\!28 ) / 29\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 70\!\cdots\!13 \nu^{15} + \cdots - 68\!\cdots\!36 ) / 14\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 15\!\cdots\!81 \nu^{15} + \cdots + 58\!\cdots\!56 ) / 29\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 17629042972135 \nu^{15} + 138301296365753 \nu^{14} - 330704749144585 \nu^{13} + \cdots + 11\!\cdots\!76 ) / 211731643404256 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 27\!\cdots\!77 \nu^{15} + \cdots - 54\!\cdots\!56 ) / 29\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 29\!\cdots\!85 \nu^{15} + \cdots - 27\!\cdots\!16 ) / 22\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 21\!\cdots\!35 \nu^{15} + \cdots + 23\!\cdots\!88 ) / 14\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 49\!\cdots\!43 \nu^{15} + \cdots + 45\!\cdots\!12 ) / 29\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 38\!\cdots\!03 \nu^{15} + \cdots - 17\!\cdots\!00 ) / 22\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 12\!\cdots\!92 \nu^{15} + \cdots - 86\!\cdots\!40 ) / 63\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 63\!\cdots\!17 \nu^{15} + \cdots + 28\!\cdots\!88 ) / 29\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 37\!\cdots\!34 \nu^{15} + \cdots - 25\!\cdots\!84 ) / 14\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 97\!\cdots\!63 \nu^{15} + \cdots - 89\!\cdots\!60 ) / 29\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 25\!\cdots\!77 \nu^{15} + \cdots + 12\!\cdots\!92 ) / 63\!\cdots\!72 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{12} + \beta_{10} - \beta_{4} + \beta_{3} - \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2 \beta_{15} - \beta_{13} + 2 \beta_{12} + 3 \beta_{11} + 4 \beta_{10} + 2 \beta_{8} - \beta_{5} + \cdots + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 6 \beta_{15} - 4 \beta_{14} - 12 \beta_{13} + 12 \beta_{12} + 20 \beta_{11} + 20 \beta_{10} + 3 \beta_{9} + \cdots + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 16 \beta_{15} - 16 \beta_{14} - 24 \beta_{13} + 16 \beta_{12} + 47 \beta_{11} + 34 \beta_{10} + \cdots + 41 \beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 100 \beta_{15} - 142 \beta_{14} - 220 \beta_{13} + 83 \beta_{12} + 414 \beta_{11} + 167 \beta_{10} + \cdots - 211 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 250 \beta_{15} - 634 \beta_{14} - 735 \beta_{13} + 1453 \beta_{11} + 1050 \beta_{9} - 250 \beta_{8} + \cdots - 1809 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 2188 \beta_{14} - 1852 \beta_{13} - 1852 \beta_{12} + 3620 \beta_{11} - 3620 \beta_{10} + \cdots - 10939 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 2736 \beta_{15} - 2736 \beta_{14} - 7955 \beta_{12} - 15504 \beta_{10} + 7955 \beta_{9} + \cdots - 27595 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 46918 \beta_{15} + 39848 \beta_{13} - 96507 \beta_{12} - 77484 \beta_{11} - 187229 \beta_{10} + \cdots - 234351 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 283736 \beta_{15} + 117332 \beta_{14} + 340559 \beta_{13} - 481754 \beta_{12} - 661931 \beta_{11} + \cdots - 829369 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 1417662 \beta_{15} + 1002490 \beta_{14} + 2057836 \beta_{13} - 2057836 \beta_{12} - 3996234 \beta_{11} + \cdots - 2074251 ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 3027035 \beta_{15} + 3027035 \beta_{14} + 5143960 \beta_{13} - 3637174 \beta_{12} + \cdots - 8854439 \beta_1 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 21405892 \beta_{15} + 30272086 \beta_{14} + 43923136 \beta_{13} - 18191625 \beta_{12} + \cdots + 44284357 ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 53528366 \beta_{15} + 129236330 \beta_{14} + 155317897 \beta_{13} - 301699343 \beta_{11} + \cdots + 378082599 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 457017240 \beta_{14} + 388396692 \beta_{13} + 388396692 \beta_{12} - 754432232 \beta_{11} + \cdots + 2282489621 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(-\beta_{5}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
827.1
−0.777611 + 1.87732i
0.162053 0.391230i
0.743579 1.79516i
0.457766 1.10514i
0.213522 + 0.0884436i
4.26883 + 1.76821i
−1.90660 0.789738i
0.838459 + 0.347301i
−0.777611 1.87732i
0.162053 + 0.391230i
0.743579 + 1.79516i
0.457766 + 1.10514i
0.213522 0.0884436i
4.26883 1.76821i
−1.90660 + 0.789738i
0.838459 0.347301i
−0.707107 + 0.707107i 0 1.00000i −3.00337 + 3.00337i 0 0.707107 0.707107i 0.707107 + 0.707107i 0 4.24741i
827.2 −0.707107 + 0.707107i 0 1.00000i −0.509458 + 0.509458i 0 0.707107 0.707107i 0.707107 + 0.707107i 0 0.720483i
827.3 −0.707107 + 0.707107i 0 1.00000i 0.162918 0.162918i 0 0.707107 0.707107i 0.707107 + 0.707107i 0 0.230401i
827.4 −0.707107 + 0.707107i 0 1.00000i 2.34991 2.34991i 0 0.707107 0.707107i 0.707107 + 0.707107i 0 3.32328i
827.5 0.707107 0.707107i 0 1.00000i −1.98814 + 1.98814i 0 −0.707107 + 0.707107i −0.707107 0.707107i 0 2.81166i
827.6 0.707107 0.707107i 0 1.00000i −1.40096 + 1.40096i 0 −0.707107 + 0.707107i −0.707107 0.707107i 0 1.98125i
827.7 0.707107 0.707107i 0 1.00000i 0.746053 0.746053i 0 −0.707107 + 0.707107i −0.707107 0.707107i 0 1.05508i
827.8 0.707107 0.707107i 0 1.00000i 1.64304 1.64304i 0 −0.707107 + 0.707107i −0.707107 0.707107i 0 2.32362i
1331.1 −0.707107 0.707107i 0 1.00000i −3.00337 3.00337i 0 0.707107 + 0.707107i 0.707107 0.707107i 0 4.24741i
1331.2 −0.707107 0.707107i 0 1.00000i −0.509458 0.509458i 0 0.707107 + 0.707107i 0.707107 0.707107i 0 0.720483i
1331.3 −0.707107 0.707107i 0 1.00000i 0.162918 + 0.162918i 0 0.707107 + 0.707107i 0.707107 0.707107i 0 0.230401i
1331.4 −0.707107 0.707107i 0 1.00000i 2.34991 + 2.34991i 0 0.707107 + 0.707107i 0.707107 0.707107i 0 3.32328i
1331.5 0.707107 + 0.707107i 0 1.00000i −1.98814 1.98814i 0 −0.707107 0.707107i −0.707107 + 0.707107i 0 2.81166i
1331.6 0.707107 + 0.707107i 0 1.00000i −1.40096 1.40096i 0 −0.707107 0.707107i −0.707107 + 0.707107i 0 1.98125i
1331.7 0.707107 + 0.707107i 0 1.00000i 0.746053 + 0.746053i 0 −0.707107 0.707107i −0.707107 + 0.707107i 0 1.05508i
1331.8 0.707107 + 0.707107i 0 1.00000i 1.64304 + 1.64304i 0 −0.707107 0.707107i −0.707107 + 0.707107i 0 2.32362i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 827.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
39.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1638.2.y.c 16
3.b odd 2 1 1638.2.y.d yes 16
13.d odd 4 1 1638.2.y.d yes 16
39.f even 4 1 inner 1638.2.y.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1638.2.y.c 16 1.a even 1 1 trivial
1638.2.y.c 16 39.f even 4 1 inner
1638.2.y.d yes 16 3.b odd 2 1
1638.2.y.d yes 16 13.d odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{16} + 4 T_{5}^{15} + 8 T_{5}^{14} - 16 T_{5}^{13} + 182 T_{5}^{12} + 592 T_{5}^{11} + 1040 T_{5}^{10} + \cdots + 1024 \) acting on \(S_{2}^{\mathrm{new}}(1638, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( T^{16} + 4 T^{15} + \cdots + 1024 \) Copy content Toggle raw display
$7$ \( (T^{4} + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{16} - 8 T^{15} + \cdots + 65536 \) Copy content Toggle raw display
$13$ \( T^{16} + \cdots + 815730721 \) Copy content Toggle raw display
$17$ \( (T^{8} - 4 T^{7} + \cdots - 2312)^{2} \) Copy content Toggle raw display
$19$ \( T^{16} - 16 T^{15} + \cdots + 12845056 \) Copy content Toggle raw display
$23$ \( (T^{8} + 12 T^{7} + \cdots + 4096)^{2} \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 359548941376 \) Copy content Toggle raw display
$31$ \( T^{16} + 8 T^{15} + \cdots + 262144 \) Copy content Toggle raw display
$37$ \( T^{16} + 4 T^{15} + \cdots + 64 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 685182976 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 2842169344 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 27518828544 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 67051995136 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 268435456 \) Copy content Toggle raw display
$61$ \( (T^{8} + 20 T^{7} + \cdots - 5768)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 268435456 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 112810000384 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 31085921344 \) Copy content Toggle raw display
$79$ \( (T^{8} - 8 T^{7} + \cdots - 210944)^{2} \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 53396107165696 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 2699475288064 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 41943040000 \) Copy content Toggle raw display
show more
show less