L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (2.34 − 2.34i)5-s + (0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + 3.32i·10-s + (−0.324 − 0.324i)11-s + (−0.665 − 3.54i)13-s + 1.00i·14-s − 1.00·16-s + 1.62·17-s + (5.77 + 5.77i)19-s + (−2.34 − 2.34i)20-s + 0.458·22-s − 0.0634·23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (1.05 − 1.05i)5-s + (0.267 − 0.267i)7-s + (0.250 + 0.250i)8-s + 1.05i·10-s + (−0.0977 − 0.0977i)11-s + (−0.184 − 0.982i)13-s + 0.267i·14-s − 0.250·16-s + 0.395·17-s + (1.32 + 1.32i)19-s + (−0.525 − 0.525i)20-s + 0.0977·22-s − 0.0132·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.749 + 0.662i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.749 + 0.662i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.680096821\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.680096821\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
| 13 | \( 1 + (0.665 + 3.54i)T \) |
good | 5 | \( 1 + (-2.34 + 2.34i)T - 5iT^{2} \) |
| 11 | \( 1 + (0.324 + 0.324i)T + 11iT^{2} \) |
| 17 | \( 1 - 1.62T + 17T^{2} \) |
| 19 | \( 1 + (-5.77 - 5.77i)T + 19iT^{2} \) |
| 23 | \( 1 + 0.0634T + 23T^{2} \) |
| 29 | \( 1 + 4.93iT - 29T^{2} \) |
| 31 | \( 1 + (-6.43 - 6.43i)T + 31iT^{2} \) |
| 37 | \( 1 + (-1.02 + 1.02i)T - 37iT^{2} \) |
| 41 | \( 1 + (-1.70 + 1.70i)T - 41iT^{2} \) |
| 43 | \( 1 - 2.64iT - 43T^{2} \) |
| 47 | \( 1 + (7.39 + 7.39i)T + 47iT^{2} \) |
| 53 | \( 1 + 5.78iT - 53T^{2} \) |
| 59 | \( 1 + (3.10 + 3.10i)T + 59iT^{2} \) |
| 61 | \( 1 - 6.02T + 61T^{2} \) |
| 67 | \( 1 + (5.17 + 5.17i)T + 67iT^{2} \) |
| 71 | \( 1 + (-2.44 + 2.44i)T - 71iT^{2} \) |
| 73 | \( 1 + (6.66 - 6.66i)T - 73iT^{2} \) |
| 79 | \( 1 - 0.341T + 79T^{2} \) |
| 83 | \( 1 + (-1.32 + 1.32i)T - 83iT^{2} \) |
| 89 | \( 1 + (8.87 + 8.87i)T + 89iT^{2} \) |
| 97 | \( 1 + (1.56 + 1.56i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.372242360353001660857094019859, −8.270140804829748079301444747311, −8.037430171938808175985624224418, −6.93925193251956816320069027436, −5.81934041995050887820740508995, −5.45613908068487179905493219688, −4.61674716400763283848669150089, −3.20257444819484410120641763142, −1.75597979474864421239097741688, −0.855850867257945694206761384512,
1.35665459498314690347122301792, 2.48697902951883048245578902899, 3.02856607010555174649994278863, 4.42734769536409114394829618989, 5.43361033294688517816195652610, 6.41948828091753337944885026734, 7.07708011034840931450576247192, 7.87012773669807399833994207946, 9.019681324126778015880782641480, 9.548850698840143387082281009018