Properties

Label 1638.2.y.c.1331.8
Level $1638$
Weight $2$
Character 1638.1331
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(827,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.827"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 20 x^{14} - 12 x^{13} + 40 x^{12} + 40 x^{11} + 82 x^{10} + 104 x^{9} + 537 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1331.8
Root \(0.838459 - 0.347301i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1331
Dual form 1638.2.y.c.827.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(1.64304 + 1.64304i) q^{5} +(-0.707107 - 0.707107i) q^{7} +(-0.707107 + 0.707107i) q^{8} +2.32362i q^{10} +(-1.53031 + 1.53031i) q^{11} +(-0.148739 + 3.60248i) q^{13} -1.00000i q^{14} -1.00000 q^{16} -5.58470 q^{17} +(-0.269765 + 0.269765i) q^{19} +(-1.64304 + 1.64304i) q^{20} -2.16419 q^{22} -4.44768 q^{23} +0.399189i q^{25} +(-2.65251 + 2.44217i) q^{26} +(0.707107 - 0.707107i) q^{28} +6.10807i q^{29} +(-0.476750 + 0.476750i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-3.94898 - 3.94898i) q^{34} -2.32362i q^{35} +(2.38034 + 2.38034i) q^{37} -0.381505 q^{38} -2.32362 q^{40} +(7.88217 + 7.88217i) q^{41} -4.01105i q^{43} +(-1.53031 - 1.53031i) q^{44} +(-3.14498 - 3.14498i) q^{46} +(1.17580 - 1.17580i) q^{47} +1.00000i q^{49} +(-0.282269 + 0.282269i) q^{50} +(-3.60248 - 0.148739i) q^{52} -2.66798i q^{53} -5.02874 q^{55} +1.00000 q^{56} +(-4.31906 + 4.31906i) q^{58} +(-1.84687 + 1.84687i) q^{59} -1.03753 q^{61} -0.674226 q^{62} -1.00000i q^{64} +(-6.16342 + 5.67465i) q^{65} +(-2.08222 + 2.08222i) q^{67} -5.58470i q^{68} +(1.64304 - 1.64304i) q^{70} +(5.32146 + 5.32146i) q^{71} +(-5.80507 - 5.80507i) q^{73} +3.36631i q^{74} +(-0.269765 - 0.269765i) q^{76} +2.16419 q^{77} -2.05100 q^{79} +(-1.64304 - 1.64304i) q^{80} +11.1471i q^{82} +(8.82822 + 8.82822i) q^{83} +(-9.17590 - 9.17590i) q^{85} +(2.83624 - 2.83624i) q^{86} -2.16419i q^{88} +(-4.84471 + 4.84471i) q^{89} +(2.65251 - 2.44217i) q^{91} -4.44768i q^{92} +1.66284 q^{94} -0.886471 q^{95} +(0.753379 - 0.753379i) q^{97} +(-0.707107 + 0.707107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{5} + 8 q^{11} + 4 q^{13} - 16 q^{16} + 8 q^{17} + 16 q^{19} + 4 q^{20} - 8 q^{22} - 24 q^{23} - 8 q^{26} - 8 q^{31} + 4 q^{34} - 4 q^{37} - 16 q^{38} + 16 q^{41} + 8 q^{44} - 4 q^{47} + 16 q^{50}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 1.64304 + 1.64304i 0.734792 + 0.734792i 0.971565 0.236773i \(-0.0760898\pi\)
−0.236773 + 0.971565i \(0.576090\pi\)
\(6\) 0 0
\(7\) −0.707107 0.707107i −0.267261 0.267261i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 2.32362i 0.734792i
\(11\) −1.53031 + 1.53031i −0.461406 + 0.461406i −0.899116 0.437710i \(-0.855790\pi\)
0.437710 + 0.899116i \(0.355790\pi\)
\(12\) 0 0
\(13\) −0.148739 + 3.60248i −0.0412526 + 0.999149i
\(14\) 1.00000i 0.267261i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −5.58470 −1.35449 −0.677244 0.735759i \(-0.736826\pi\)
−0.677244 + 0.735759i \(0.736826\pi\)
\(18\) 0 0
\(19\) −0.269765 + 0.269765i −0.0618883 + 0.0618883i −0.737374 0.675485i \(-0.763934\pi\)
0.675485 + 0.737374i \(0.263934\pi\)
\(20\) −1.64304 + 1.64304i −0.367396 + 0.367396i
\(21\) 0 0
\(22\) −2.16419 −0.461406
\(23\) −4.44768 −0.927405 −0.463702 0.885991i \(-0.653479\pi\)
−0.463702 + 0.885991i \(0.653479\pi\)
\(24\) 0 0
\(25\) 0.399189i 0.0798378i
\(26\) −2.65251 + 2.44217i −0.520201 + 0.478948i
\(27\) 0 0
\(28\) 0.707107 0.707107i 0.133631 0.133631i
\(29\) 6.10807i 1.13424i 0.823635 + 0.567120i \(0.191942\pi\)
−0.823635 + 0.567120i \(0.808058\pi\)
\(30\) 0 0
\(31\) −0.476750 + 0.476750i −0.0856267 + 0.0856267i −0.748623 0.662996i \(-0.769285\pi\)
0.662996 + 0.748623i \(0.269285\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) −3.94898 3.94898i −0.677244 0.677244i
\(35\) 2.32362i 0.392763i
\(36\) 0 0
\(37\) 2.38034 + 2.38034i 0.391325 + 0.391325i 0.875160 0.483834i \(-0.160756\pi\)
−0.483834 + 0.875160i \(0.660756\pi\)
\(38\) −0.381505 −0.0618883
\(39\) 0 0
\(40\) −2.32362 −0.367396
\(41\) 7.88217 + 7.88217i 1.23099 + 1.23099i 0.963585 + 0.267404i \(0.0861658\pi\)
0.267404 + 0.963585i \(0.413834\pi\)
\(42\) 0 0
\(43\) 4.01105i 0.611680i −0.952083 0.305840i \(-0.901063\pi\)
0.952083 0.305840i \(-0.0989372\pi\)
\(44\) −1.53031 1.53031i −0.230703 0.230703i
\(45\) 0 0
\(46\) −3.14498 3.14498i −0.463702 0.463702i
\(47\) 1.17580 1.17580i 0.171509 0.171509i −0.616133 0.787642i \(-0.711302\pi\)
0.787642 + 0.616133i \(0.211302\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) −0.282269 + 0.282269i −0.0399189 + 0.0399189i
\(51\) 0 0
\(52\) −3.60248 0.148739i −0.499574 0.0206263i
\(53\) 2.66798i 0.366475i −0.983069 0.183238i \(-0.941342\pi\)
0.983069 0.183238i \(-0.0586577\pi\)
\(54\) 0 0
\(55\) −5.02874 −0.678075
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −4.31906 + 4.31906i −0.567120 + 0.567120i
\(59\) −1.84687 + 1.84687i −0.240441 + 0.240441i −0.817033 0.576591i \(-0.804383\pi\)
0.576591 + 0.817033i \(0.304383\pi\)
\(60\) 0 0
\(61\) −1.03753 −0.132842 −0.0664209 0.997792i \(-0.521158\pi\)
−0.0664209 + 0.997792i \(0.521158\pi\)
\(62\) −0.674226 −0.0856267
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −6.16342 + 5.67465i −0.764478 + 0.703854i
\(66\) 0 0
\(67\) −2.08222 + 2.08222i −0.254384 + 0.254384i −0.822765 0.568381i \(-0.807570\pi\)
0.568381 + 0.822765i \(0.307570\pi\)
\(68\) 5.58470i 0.677244i
\(69\) 0 0
\(70\) 1.64304 1.64304i 0.196381 0.196381i
\(71\) 5.32146 + 5.32146i 0.631541 + 0.631541i 0.948454 0.316914i \(-0.102647\pi\)
−0.316914 + 0.948454i \(0.602647\pi\)
\(72\) 0 0
\(73\) −5.80507 5.80507i −0.679432 0.679432i 0.280439 0.959872i \(-0.409520\pi\)
−0.959872 + 0.280439i \(0.909520\pi\)
\(74\) 3.36631i 0.391325i
\(75\) 0 0
\(76\) −0.269765 0.269765i −0.0309441 0.0309441i
\(77\) 2.16419 0.246632
\(78\) 0 0
\(79\) −2.05100 −0.230755 −0.115378 0.993322i \(-0.536808\pi\)
−0.115378 + 0.993322i \(0.536808\pi\)
\(80\) −1.64304 1.64304i −0.183698 0.183698i
\(81\) 0 0
\(82\) 11.1471i 1.23099i
\(83\) 8.82822 + 8.82822i 0.969023 + 0.969023i 0.999534 0.0305119i \(-0.00971374\pi\)
−0.0305119 + 0.999534i \(0.509714\pi\)
\(84\) 0 0
\(85\) −9.17590 9.17590i −0.995266 0.995266i
\(86\) 2.83624 2.83624i 0.305840 0.305840i
\(87\) 0 0
\(88\) 2.16419i 0.230703i
\(89\) −4.84471 + 4.84471i −0.513538 + 0.513538i −0.915609 0.402071i \(-0.868291\pi\)
0.402071 + 0.915609i \(0.368291\pi\)
\(90\) 0 0
\(91\) 2.65251 2.44217i 0.278059 0.256009i
\(92\) 4.44768i 0.463702i
\(93\) 0 0
\(94\) 1.66284 0.171509
\(95\) −0.886471 −0.0909500
\(96\) 0 0
\(97\) 0.753379 0.753379i 0.0764941 0.0764941i −0.667825 0.744319i \(-0.732774\pi\)
0.744319 + 0.667825i \(0.232774\pi\)
\(98\) −0.707107 + 0.707107i −0.0714286 + 0.0714286i
\(99\) 0 0
\(100\) −0.399189 −0.0399189
\(101\) −1.48794 −0.148056 −0.0740280 0.997256i \(-0.523585\pi\)
−0.0740280 + 0.997256i \(0.523585\pi\)
\(102\) 0 0
\(103\) 3.36590i 0.331652i −0.986155 0.165826i \(-0.946971\pi\)
0.986155 0.165826i \(-0.0530290\pi\)
\(104\) −2.44217 2.65251i −0.239474 0.260100i
\(105\) 0 0
\(106\) 1.88655 1.88655i 0.183238 0.183238i
\(107\) 1.38366i 0.133764i 0.997761 + 0.0668819i \(0.0213051\pi\)
−0.997761 + 0.0668819i \(0.978695\pi\)
\(108\) 0 0
\(109\) 4.22721 4.22721i 0.404893 0.404893i −0.475060 0.879953i \(-0.657574\pi\)
0.879953 + 0.475060i \(0.157574\pi\)
\(110\) −3.55585 3.55585i −0.339037 0.339037i
\(111\) 0 0
\(112\) 0.707107 + 0.707107i 0.0668153 + 0.0668153i
\(113\) 16.5111i 1.55323i 0.629976 + 0.776615i \(0.283065\pi\)
−0.629976 + 0.776615i \(0.716935\pi\)
\(114\) 0 0
\(115\) −7.30773 7.30773i −0.681449 0.681449i
\(116\) −6.10807 −0.567120
\(117\) 0 0
\(118\) −2.61186 −0.240441
\(119\) 3.94898 + 3.94898i 0.362002 + 0.362002i
\(120\) 0 0
\(121\) 6.31630i 0.574209i
\(122\) −0.733642 0.733642i −0.0664209 0.0664209i
\(123\) 0 0
\(124\) −0.476750 0.476750i −0.0428134 0.0428134i
\(125\) 7.55934 7.55934i 0.676128 0.676128i
\(126\) 0 0
\(127\) 19.9525i 1.77050i −0.465116 0.885250i \(-0.653987\pi\)
0.465116 0.885250i \(-0.346013\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −8.37078 0.345611i −0.734166 0.0303121i
\(131\) 12.1986i 1.06580i −0.846180 0.532898i \(-0.821103\pi\)
0.846180 0.532898i \(-0.178897\pi\)
\(132\) 0 0
\(133\) 0.381505 0.0330807
\(134\) −2.94471 −0.254384
\(135\) 0 0
\(136\) 3.94898 3.94898i 0.338622 0.338622i
\(137\) −4.13022 + 4.13022i −0.352868 + 0.352868i −0.861176 0.508307i \(-0.830271\pi\)
0.508307 + 0.861176i \(0.330271\pi\)
\(138\) 0 0
\(139\) 12.9729 1.10035 0.550173 0.835051i \(-0.314562\pi\)
0.550173 + 0.835051i \(0.314562\pi\)
\(140\) 2.32362 0.196381
\(141\) 0 0
\(142\) 7.52568i 0.631541i
\(143\) −5.28530 5.74053i −0.441979 0.480047i
\(144\) 0 0
\(145\) −10.0358 + 10.0358i −0.833430 + 0.833430i
\(146\) 8.20961i 0.679432i
\(147\) 0 0
\(148\) −2.38034 + 2.38034i −0.195663 + 0.195663i
\(149\) 8.89445 + 8.89445i 0.728662 + 0.728662i 0.970353 0.241691i \(-0.0777022\pi\)
−0.241691 + 0.970353i \(0.577702\pi\)
\(150\) 0 0
\(151\) −4.19184 4.19184i −0.341127 0.341127i 0.515664 0.856791i \(-0.327545\pi\)
−0.856791 + 0.515664i \(0.827545\pi\)
\(152\) 0.381505i 0.0309441i
\(153\) 0 0
\(154\) 1.53031 + 1.53031i 0.123316 + 0.123316i
\(155\) −1.56664 −0.125836
\(156\) 0 0
\(157\) 19.1147 1.52552 0.762760 0.646682i \(-0.223844\pi\)
0.762760 + 0.646682i \(0.223844\pi\)
\(158\) −1.45027 1.45027i −0.115378 0.115378i
\(159\) 0 0
\(160\) 2.32362i 0.183698i
\(161\) 3.14498 + 3.14498i 0.247859 + 0.247859i
\(162\) 0 0
\(163\) −13.3438 13.3438i −1.04516 1.04516i −0.998931 0.0462337i \(-0.985278\pi\)
−0.0462337 0.998931i \(-0.514722\pi\)
\(164\) −7.88217 + 7.88217i −0.615494 + 0.615494i
\(165\) 0 0
\(166\) 12.4850i 0.969023i
\(167\) 6.12142 6.12142i 0.473690 0.473690i −0.429417 0.903106i \(-0.641281\pi\)
0.903106 + 0.429417i \(0.141281\pi\)
\(168\) 0 0
\(169\) −12.9558 1.07166i −0.996596 0.0824350i
\(170\) 12.9767i 0.995266i
\(171\) 0 0
\(172\) 4.01105 0.305840
\(173\) −4.73310 −0.359851 −0.179925 0.983680i \(-0.557586\pi\)
−0.179925 + 0.983680i \(0.557586\pi\)
\(174\) 0 0
\(175\) 0.282269 0.282269i 0.0213375 0.0213375i
\(176\) 1.53031 1.53031i 0.115351 0.115351i
\(177\) 0 0
\(178\) −6.85145 −0.513538
\(179\) −6.35128 −0.474717 −0.237359 0.971422i \(-0.576282\pi\)
−0.237359 + 0.971422i \(0.576282\pi\)
\(180\) 0 0
\(181\) 12.9313i 0.961173i 0.876947 + 0.480586i \(0.159576\pi\)
−0.876947 + 0.480586i \(0.840424\pi\)
\(182\) 3.60248 + 0.148739i 0.267034 + 0.0110252i
\(183\) 0 0
\(184\) 3.14498 3.14498i 0.231851 0.231851i
\(185\) 7.82201i 0.575085i
\(186\) 0 0
\(187\) 8.54632 8.54632i 0.624969 0.624969i
\(188\) 1.17580 + 1.17580i 0.0857543 + 0.0857543i
\(189\) 0 0
\(190\) −0.626830 0.626830i −0.0454750 0.0454750i
\(191\) 16.8092i 1.21627i 0.793832 + 0.608137i \(0.208083\pi\)
−0.793832 + 0.608137i \(0.791917\pi\)
\(192\) 0 0
\(193\) 5.83733 + 5.83733i 0.420180 + 0.420180i 0.885266 0.465086i \(-0.153976\pi\)
−0.465086 + 0.885266i \(0.653976\pi\)
\(194\) 1.06544 0.0764941
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) 3.11368 + 3.11368i 0.221841 + 0.221841i 0.809273 0.587432i \(-0.199861\pi\)
−0.587432 + 0.809273i \(0.699861\pi\)
\(198\) 0 0
\(199\) 18.0613i 1.28033i 0.768238 + 0.640165i \(0.221134\pi\)
−0.768238 + 0.640165i \(0.778866\pi\)
\(200\) −0.282269 0.282269i −0.0199594 0.0199594i
\(201\) 0 0
\(202\) −1.05214 1.05214i −0.0740280 0.0740280i
\(203\) 4.31906 4.31906i 0.303138 0.303138i
\(204\) 0 0
\(205\) 25.9015i 1.80904i
\(206\) 2.38005 2.38005i 0.165826 0.165826i
\(207\) 0 0
\(208\) 0.148739 3.60248i 0.0103132 0.249787i
\(209\) 0.825648i 0.0571112i
\(210\) 0 0
\(211\) −4.56632 −0.314358 −0.157179 0.987570i \(-0.550240\pi\)
−0.157179 + 0.987570i \(0.550240\pi\)
\(212\) 2.66798 0.183238
\(213\) 0 0
\(214\) −0.978398 + 0.978398i −0.0668819 + 0.0668819i
\(215\) 6.59034 6.59034i 0.449457 0.449457i
\(216\) 0 0
\(217\) 0.674226 0.0457694
\(218\) 5.97817 0.404893
\(219\) 0 0
\(220\) 5.02874i 0.339037i
\(221\) 0.830659 20.1188i 0.0558762 1.35333i
\(222\) 0 0
\(223\) 12.2953 12.2953i 0.823354 0.823354i −0.163234 0.986587i \(-0.552192\pi\)
0.986587 + 0.163234i \(0.0521924\pi\)
\(224\) 1.00000i 0.0668153i
\(225\) 0 0
\(226\) −11.6751 + 11.6751i −0.776615 + 0.776615i
\(227\) 13.2910 + 13.2910i 0.882153 + 0.882153i 0.993753 0.111600i \(-0.0355975\pi\)
−0.111600 + 0.993753i \(0.535598\pi\)
\(228\) 0 0
\(229\) 8.61423 + 8.61423i 0.569244 + 0.569244i 0.931917 0.362672i \(-0.118136\pi\)
−0.362672 + 0.931917i \(0.618136\pi\)
\(230\) 10.3347i 0.681449i
\(231\) 0 0
\(232\) −4.31906 4.31906i −0.283560 0.283560i
\(233\) 2.94207 0.192742 0.0963708 0.995346i \(-0.469277\pi\)
0.0963708 + 0.995346i \(0.469277\pi\)
\(234\) 0 0
\(235\) 3.86379 0.252046
\(236\) −1.84687 1.84687i −0.120221 0.120221i
\(237\) 0 0
\(238\) 5.58470i 0.362002i
\(239\) −11.1260 11.1260i −0.719682 0.719682i 0.248858 0.968540i \(-0.419945\pi\)
−0.968540 + 0.248858i \(0.919945\pi\)
\(240\) 0 0
\(241\) −8.50173 8.50173i −0.547644 0.547644i 0.378115 0.925759i \(-0.376573\pi\)
−0.925759 + 0.378115i \(0.876573\pi\)
\(242\) −4.46630 + 4.46630i −0.287105 + 0.287105i
\(243\) 0 0
\(244\) 1.03753i 0.0664209i
\(245\) −1.64304 + 1.64304i −0.104970 + 0.104970i
\(246\) 0 0
\(247\) −0.931698 1.01195i −0.0592825 0.0643886i
\(248\) 0.674226i 0.0428134i
\(249\) 0 0
\(250\) 10.6905 0.676128
\(251\) 23.1026 1.45822 0.729110 0.684396i \(-0.239934\pi\)
0.729110 + 0.684396i \(0.239934\pi\)
\(252\) 0 0
\(253\) 6.80633 6.80633i 0.427910 0.427910i
\(254\) 14.1086 14.1086i 0.885250 0.885250i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 2.22951 0.139073 0.0695365 0.997579i \(-0.477848\pi\)
0.0695365 + 0.997579i \(0.477848\pi\)
\(258\) 0 0
\(259\) 3.36631i 0.209172i
\(260\) −5.67465 6.16342i −0.351927 0.382239i
\(261\) 0 0
\(262\) 8.62570 8.62570i 0.532898 0.532898i
\(263\) 27.0080i 1.66538i 0.553738 + 0.832691i \(0.313201\pi\)
−0.553738 + 0.832691i \(0.686799\pi\)
\(264\) 0 0
\(265\) 4.38361 4.38361i 0.269283 0.269283i
\(266\) 0.269765 + 0.269765i 0.0165403 + 0.0165403i
\(267\) 0 0
\(268\) −2.08222 2.08222i −0.127192 0.127192i
\(269\) 19.9009i 1.21338i −0.794938 0.606690i \(-0.792497\pi\)
0.794938 0.606690i \(-0.207503\pi\)
\(270\) 0 0
\(271\) 13.6851 + 13.6851i 0.831308 + 0.831308i 0.987696 0.156388i \(-0.0499850\pi\)
−0.156388 + 0.987696i \(0.549985\pi\)
\(272\) 5.58470 0.338622
\(273\) 0 0
\(274\) −5.84101 −0.352868
\(275\) −0.610883 0.610883i −0.0368376 0.0368376i
\(276\) 0 0
\(277\) 8.95516i 0.538064i 0.963131 + 0.269032i \(0.0867037\pi\)
−0.963131 + 0.269032i \(0.913296\pi\)
\(278\) 9.17321 + 9.17321i 0.550173 + 0.550173i
\(279\) 0 0
\(280\) 1.64304 + 1.64304i 0.0981907 + 0.0981907i
\(281\) −12.4026 + 12.4026i −0.739878 + 0.739878i −0.972554 0.232676i \(-0.925252\pi\)
0.232676 + 0.972554i \(0.425252\pi\)
\(282\) 0 0
\(283\) 22.8552i 1.35860i −0.733862 0.679299i \(-0.762284\pi\)
0.733862 0.679299i \(-0.237716\pi\)
\(284\) −5.32146 + 5.32146i −0.315770 + 0.315770i
\(285\) 0 0
\(286\) 0.321898 7.79644i 0.0190342 0.461013i
\(287\) 11.1471i 0.657991i
\(288\) 0 0
\(289\) 14.1888 0.834636
\(290\) −14.1928 −0.833430
\(291\) 0 0
\(292\) 5.80507 5.80507i 0.339716 0.339716i
\(293\) 5.96950 5.96950i 0.348742 0.348742i −0.510899 0.859641i \(-0.670687\pi\)
0.859641 + 0.510899i \(0.170687\pi\)
\(294\) 0 0
\(295\) −6.06897 −0.353349
\(296\) −3.36631 −0.195663
\(297\) 0 0
\(298\) 12.5787i 0.728662i
\(299\) 0.661541 16.0227i 0.0382579 0.926615i
\(300\) 0 0
\(301\) −2.83624 + 2.83624i −0.163478 + 0.163478i
\(302\) 5.92816i 0.341127i
\(303\) 0 0
\(304\) 0.269765 0.269765i 0.0154721 0.0154721i
\(305\) −1.70470 1.70470i −0.0976110 0.0976110i
\(306\) 0 0
\(307\) 17.1095 + 17.1095i 0.976492 + 0.976492i 0.999730 0.0232379i \(-0.00739751\pi\)
−0.0232379 + 0.999730i \(0.507398\pi\)
\(308\) 2.16419i 0.123316i
\(309\) 0 0
\(310\) −1.10778 1.10778i −0.0629178 0.0629178i
\(311\) 25.7952 1.46271 0.731356 0.681996i \(-0.238888\pi\)
0.731356 + 0.681996i \(0.238888\pi\)
\(312\) 0 0
\(313\) 21.9022 1.23798 0.618992 0.785397i \(-0.287541\pi\)
0.618992 + 0.785397i \(0.287541\pi\)
\(314\) 13.5161 + 13.5161i 0.762760 + 0.762760i
\(315\) 0 0
\(316\) 2.05100i 0.115378i
\(317\) −13.6891 13.6891i −0.768855 0.768855i 0.209050 0.977905i \(-0.432963\pi\)
−0.977905 + 0.209050i \(0.932963\pi\)
\(318\) 0 0
\(319\) −9.34724 9.34724i −0.523345 0.523345i
\(320\) 1.64304 1.64304i 0.0918490 0.0918490i
\(321\) 0 0
\(322\) 4.44768i 0.247859i
\(323\) 1.50655 1.50655i 0.0838269 0.0838269i
\(324\) 0 0
\(325\) −1.43807 0.0593748i −0.0797698 0.00329352i
\(326\) 18.8709i 1.04516i
\(327\) 0 0
\(328\) −11.1471 −0.615494
\(329\) −1.66284 −0.0916752
\(330\) 0 0
\(331\) 1.71263 1.71263i 0.0941344 0.0941344i −0.658471 0.752606i \(-0.728797\pi\)
0.752606 + 0.658471i \(0.228797\pi\)
\(332\) −8.82822 + 8.82822i −0.484511 + 0.484511i
\(333\) 0 0
\(334\) 8.65699 0.473690
\(335\) −6.84237 −0.373839
\(336\) 0 0
\(337\) 34.4232i 1.87515i −0.347783 0.937575i \(-0.613065\pi\)
0.347783 0.937575i \(-0.386935\pi\)
\(338\) −8.40333 9.91888i −0.457081 0.539516i
\(339\) 0 0
\(340\) 9.17590 9.17590i 0.497633 0.497633i
\(341\) 1.45915i 0.0790174i
\(342\) 0 0
\(343\) 0.707107 0.707107i 0.0381802 0.0381802i
\(344\) 2.83624 + 2.83624i 0.152920 + 0.152920i
\(345\) 0 0
\(346\) −3.34680 3.34680i −0.179925 0.179925i
\(347\) 29.9057i 1.60542i −0.596369 0.802710i \(-0.703390\pi\)
0.596369 0.802710i \(-0.296610\pi\)
\(348\) 0 0
\(349\) 8.82539 + 8.82539i 0.472412 + 0.472412i 0.902694 0.430282i \(-0.141586\pi\)
−0.430282 + 0.902694i \(0.641586\pi\)
\(350\) 0.399189 0.0213375
\(351\) 0 0
\(352\) 2.16419 0.115351
\(353\) 1.90896 + 1.90896i 0.101603 + 0.101603i 0.756081 0.654478i \(-0.227111\pi\)
−0.654478 + 0.756081i \(0.727111\pi\)
\(354\) 0 0
\(355\) 17.4868i 0.928102i
\(356\) −4.84471 4.84471i −0.256769 0.256769i
\(357\) 0 0
\(358\) −4.49104 4.49104i −0.237359 0.237359i
\(359\) 23.8347 23.8347i 1.25795 1.25795i 0.305880 0.952070i \(-0.401049\pi\)
0.952070 0.305880i \(-0.0989505\pi\)
\(360\) 0 0
\(361\) 18.8545i 0.992340i
\(362\) −9.14378 + 9.14378i −0.480586 + 0.480586i
\(363\) 0 0
\(364\) 2.44217 + 2.65251i 0.128004 + 0.139029i
\(365\) 19.0760i 0.998482i
\(366\) 0 0
\(367\) −11.6160 −0.606351 −0.303176 0.952935i \(-0.598047\pi\)
−0.303176 + 0.952935i \(0.598047\pi\)
\(368\) 4.44768 0.231851
\(369\) 0 0
\(370\) −5.53099 + 5.53099i −0.287543 + 0.287543i
\(371\) −1.88655 + 1.88655i −0.0979446 + 0.0979446i
\(372\) 0 0
\(373\) 35.3238 1.82900 0.914498 0.404591i \(-0.132586\pi\)
0.914498 + 0.404591i \(0.132586\pi\)
\(374\) 12.0863 0.624969
\(375\) 0 0
\(376\) 1.66284i 0.0857543i
\(377\) −22.0042 0.908505i −1.13327 0.0467904i
\(378\) 0 0
\(379\) 17.0162 17.0162i 0.874061 0.874061i −0.118851 0.992912i \(-0.537921\pi\)
0.992912 + 0.118851i \(0.0379210\pi\)
\(380\) 0.886471i 0.0454750i
\(381\) 0 0
\(382\) −11.8859 + 11.8859i −0.608137 + 0.608137i
\(383\) 6.96996 + 6.96996i 0.356149 + 0.356149i 0.862391 0.506243i \(-0.168966\pi\)
−0.506243 + 0.862391i \(0.668966\pi\)
\(384\) 0 0
\(385\) 3.55585 + 3.55585i 0.181223 + 0.181223i
\(386\) 8.25523i 0.420180i
\(387\) 0 0
\(388\) 0.753379 + 0.753379i 0.0382470 + 0.0382470i
\(389\) −31.0858 −1.57611 −0.788055 0.615605i \(-0.788912\pi\)
−0.788055 + 0.615605i \(0.788912\pi\)
\(390\) 0 0
\(391\) 24.8389 1.25616
\(392\) −0.707107 0.707107i −0.0357143 0.0357143i
\(393\) 0 0
\(394\) 4.40341i 0.221841i
\(395\) −3.36988 3.36988i −0.169557 0.169557i
\(396\) 0 0
\(397\) −0.920019 0.920019i −0.0461744 0.0461744i 0.683643 0.729817i \(-0.260395\pi\)
−0.729817 + 0.683643i \(0.760395\pi\)
\(398\) −12.7712 + 12.7712i −0.640165 + 0.640165i
\(399\) 0 0
\(400\) 0.399189i 0.0199594i
\(401\) −4.80873 + 4.80873i −0.240137 + 0.240137i −0.816907 0.576770i \(-0.804313\pi\)
0.576770 + 0.816907i \(0.304313\pi\)
\(402\) 0 0
\(403\) −1.64657 1.78839i −0.0820215 0.0890862i
\(404\) 1.48794i 0.0740280i
\(405\) 0 0
\(406\) 6.10807 0.303138
\(407\) −7.28532 −0.361120
\(408\) 0 0
\(409\) 12.9718 12.9718i 0.641413 0.641413i −0.309490 0.950903i \(-0.600158\pi\)
0.950903 + 0.309490i \(0.100158\pi\)
\(410\) −18.3151 + 18.3151i −0.904520 + 0.904520i
\(411\) 0 0
\(412\) 3.36590 0.165826
\(413\) 2.61186 0.128521
\(414\) 0 0
\(415\) 29.0103i 1.42406i
\(416\) 2.65251 2.44217i 0.130050 0.119737i
\(417\) 0 0
\(418\) 0.583821 0.583821i 0.0285556 0.0285556i
\(419\) 3.44464i 0.168282i 0.996454 + 0.0841408i \(0.0268145\pi\)
−0.996454 + 0.0841408i \(0.973185\pi\)
\(420\) 0 0
\(421\) 4.79318 4.79318i 0.233605 0.233605i −0.580591 0.814196i \(-0.697178\pi\)
0.814196 + 0.580591i \(0.197178\pi\)
\(422\) −3.22888 3.22888i −0.157179 0.157179i
\(423\) 0 0
\(424\) 1.88655 + 1.88655i 0.0916188 + 0.0916188i
\(425\) 2.22935i 0.108139i
\(426\) 0 0
\(427\) 0.733642 + 0.733642i 0.0355034 + 0.0355034i
\(428\) −1.38366 −0.0668819
\(429\) 0 0
\(430\) 9.32014 0.449457
\(431\) −15.4940 15.4940i −0.746318 0.746318i 0.227467 0.973786i \(-0.426956\pi\)
−0.973786 + 0.227467i \(0.926956\pi\)
\(432\) 0 0
\(433\) 41.1947i 1.97969i 0.142147 + 0.989846i \(0.454599\pi\)
−0.142147 + 0.989846i \(0.545401\pi\)
\(434\) 0.476750 + 0.476750i 0.0228847 + 0.0228847i
\(435\) 0 0
\(436\) 4.22721 + 4.22721i 0.202446 + 0.202446i
\(437\) 1.19983 1.19983i 0.0573955 0.0573955i
\(438\) 0 0
\(439\) 16.2888i 0.777421i 0.921360 + 0.388710i \(0.127079\pi\)
−0.921360 + 0.388710i \(0.872921\pi\)
\(440\) 3.55585 3.55585i 0.169519 0.169519i
\(441\) 0 0
\(442\) 14.8135 13.6387i 0.704605 0.648729i
\(443\) 30.0869i 1.42947i 0.699395 + 0.714735i \(0.253453\pi\)
−0.699395 + 0.714735i \(0.746547\pi\)
\(444\) 0 0
\(445\) −15.9201 −0.754687
\(446\) 17.3882 0.823354
\(447\) 0 0
\(448\) −0.707107 + 0.707107i −0.0334077 + 0.0334077i
\(449\) −22.6406 + 22.6406i −1.06848 + 1.06848i −0.0710006 + 0.997476i \(0.522619\pi\)
−0.997476 + 0.0710006i \(0.977381\pi\)
\(450\) 0 0
\(451\) −24.1243 −1.13597
\(452\) −16.5111 −0.776615
\(453\) 0 0
\(454\) 18.7963i 0.882153i
\(455\) 8.37078 + 0.345611i 0.392428 + 0.0162025i
\(456\) 0 0
\(457\) 21.8016 21.8016i 1.01983 1.01983i 0.0200351 0.999799i \(-0.493622\pi\)
0.999799 0.0200351i \(-0.00637779\pi\)
\(458\) 12.1824i 0.569244i
\(459\) 0 0
\(460\) 7.30773 7.30773i 0.340725 0.340725i
\(461\) 14.3854 + 14.3854i 0.669994 + 0.669994i 0.957714 0.287720i \(-0.0928973\pi\)
−0.287720 + 0.957714i \(0.592897\pi\)
\(462\) 0 0
\(463\) 2.64406 + 2.64406i 0.122880 + 0.122880i 0.765872 0.642993i \(-0.222307\pi\)
−0.642993 + 0.765872i \(0.722307\pi\)
\(464\) 6.10807i 0.283560i
\(465\) 0 0
\(466\) 2.08036 + 2.08036i 0.0963708 + 0.0963708i
\(467\) 26.6599 1.23367 0.616837 0.787091i \(-0.288414\pi\)
0.616837 + 0.787091i \(0.288414\pi\)
\(468\) 0 0
\(469\) 2.94471 0.135974
\(470\) 2.73212 + 2.73212i 0.126023 + 0.126023i
\(471\) 0 0
\(472\) 2.61186i 0.120221i
\(473\) 6.13816 + 6.13816i 0.282233 + 0.282233i
\(474\) 0 0
\(475\) −0.107687 0.107687i −0.00494102 0.00494102i
\(476\) −3.94898 + 3.94898i −0.181001 + 0.181001i
\(477\) 0 0
\(478\) 15.7346i 0.719682i
\(479\) 7.79650 7.79650i 0.356231 0.356231i −0.506190 0.862422i \(-0.668947\pi\)
0.862422 + 0.506190i \(0.168947\pi\)
\(480\) 0 0
\(481\) −8.92918 + 8.22108i −0.407136 + 0.374849i
\(482\) 12.0233i 0.547644i
\(483\) 0 0
\(484\) −6.31630 −0.287105
\(485\) 2.47567 0.112414
\(486\) 0 0
\(487\) −12.0844 + 12.0844i −0.547595 + 0.547595i −0.925744 0.378150i \(-0.876560\pi\)
0.378150 + 0.925744i \(0.376560\pi\)
\(488\) 0.733642 0.733642i 0.0332104 0.0332104i
\(489\) 0 0
\(490\) −2.32362 −0.104970
\(491\) −43.7467 −1.97426 −0.987131 0.159911i \(-0.948879\pi\)
−0.987131 + 0.159911i \(0.948879\pi\)
\(492\) 0 0
\(493\) 34.1117i 1.53631i
\(494\) 0.0567445 1.37436i 0.00255305 0.0618356i
\(495\) 0 0
\(496\) 0.476750 0.476750i 0.0214067 0.0214067i
\(497\) 7.52568i 0.337573i
\(498\) 0 0
\(499\) 6.66476 6.66476i 0.298356 0.298356i −0.542014 0.840370i \(-0.682338\pi\)
0.840370 + 0.542014i \(0.182338\pi\)
\(500\) 7.55934 + 7.55934i 0.338064 + 0.338064i
\(501\) 0 0
\(502\) 16.3360 + 16.3360i 0.729110 + 0.729110i
\(503\) 13.8865i 0.619167i −0.950872 0.309584i \(-0.899810\pi\)
0.950872 0.309584i \(-0.100190\pi\)
\(504\) 0 0
\(505\) −2.44476 2.44476i −0.108790 0.108790i
\(506\) 9.62560 0.427910
\(507\) 0 0
\(508\) 19.9525 0.885250
\(509\) −26.3768 26.3768i −1.16913 1.16913i −0.982413 0.186719i \(-0.940214\pi\)
−0.186719 0.982413i \(-0.559786\pi\)
\(510\) 0 0
\(511\) 8.20961i 0.363172i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 1.57650 + 1.57650i 0.0695365 + 0.0695365i
\(515\) 5.53032 5.53032i 0.243695 0.243695i
\(516\) 0 0
\(517\) 3.59869i 0.158270i
\(518\) 2.38034 2.38034i 0.104586 0.104586i
\(519\) 0 0
\(520\) 0.345611 8.37078i 0.0151560 0.367083i
\(521\) 8.95627i 0.392381i −0.980566 0.196191i \(-0.937143\pi\)
0.980566 0.196191i \(-0.0628572\pi\)
\(522\) 0 0
\(523\) −0.956586 −0.0418286 −0.0209143 0.999781i \(-0.506658\pi\)
−0.0209143 + 0.999781i \(0.506658\pi\)
\(524\) 12.1986 0.532898
\(525\) 0 0
\(526\) −19.0975 + 19.0975i −0.832691 + 0.832691i
\(527\) 2.66250 2.66250i 0.115980 0.115980i
\(528\) 0 0
\(529\) −3.21817 −0.139920
\(530\) 6.19936 0.269283
\(531\) 0 0
\(532\) 0.381505i 0.0165403i
\(533\) −29.5678 + 27.2230i −1.28072 + 1.17916i
\(534\) 0 0
\(535\) −2.27342 + 2.27342i −0.0982886 + 0.0982886i
\(536\) 2.94471i 0.127192i
\(537\) 0 0
\(538\) 14.0721 14.0721i 0.606690 0.606690i
\(539\) −1.53031 1.53031i −0.0659151 0.0659151i
\(540\) 0 0
\(541\) 30.1258 + 30.1258i 1.29521 + 1.29521i 0.931522 + 0.363686i \(0.118482\pi\)
0.363686 + 0.931522i \(0.381518\pi\)
\(542\) 19.3536i 0.831308i
\(543\) 0 0
\(544\) 3.94898 + 3.94898i 0.169311 + 0.169311i
\(545\) 13.8910 0.595024
\(546\) 0 0
\(547\) −33.0740 −1.41414 −0.707071 0.707143i \(-0.749984\pi\)
−0.707071 + 0.707143i \(0.749984\pi\)
\(548\) −4.13022 4.13022i −0.176434 0.176434i
\(549\) 0 0
\(550\) 0.863919i 0.0368376i
\(551\) −1.64774 1.64774i −0.0701962 0.0701962i
\(552\) 0 0
\(553\) 1.45027 + 1.45027i 0.0616719 + 0.0616719i
\(554\) −6.33226 + 6.33226i −0.269032 + 0.269032i
\(555\) 0 0
\(556\) 12.9729i 0.550173i
\(557\) −19.4197 + 19.4197i −0.822841 + 0.822841i −0.986515 0.163674i \(-0.947666\pi\)
0.163674 + 0.986515i \(0.447666\pi\)
\(558\) 0 0
\(559\) 14.4497 + 0.596598i 0.611159 + 0.0252334i
\(560\) 2.32362i 0.0981907i
\(561\) 0 0
\(562\) −17.5399 −0.739878
\(563\) 3.91292 0.164910 0.0824550 0.996595i \(-0.473724\pi\)
0.0824550 + 0.996595i \(0.473724\pi\)
\(564\) 0 0
\(565\) −27.1284 + 27.1284i −1.14130 + 1.14130i
\(566\) 16.1610 16.1610i 0.679299 0.679299i
\(567\) 0 0
\(568\) −7.52568 −0.315770
\(569\) −14.2555 −0.597620 −0.298810 0.954313i \(-0.596590\pi\)
−0.298810 + 0.954313i \(0.596590\pi\)
\(570\) 0 0
\(571\) 9.15631i 0.383180i 0.981475 + 0.191590i \(0.0613643\pi\)
−0.981475 + 0.191590i \(0.938636\pi\)
\(572\) 5.74053 5.28530i 0.240024 0.220990i
\(573\) 0 0
\(574\) 7.88217 7.88217i 0.328996 0.328996i
\(575\) 1.77546i 0.0740420i
\(576\) 0 0
\(577\) 8.79359 8.79359i 0.366082 0.366082i −0.499964 0.866046i \(-0.666653\pi\)
0.866046 + 0.499964i \(0.166653\pi\)
\(578\) 10.0330 + 10.0330i 0.417318 + 0.417318i
\(579\) 0 0
\(580\) −10.0358 10.0358i −0.416715 0.416715i
\(581\) 12.4850i 0.517964i
\(582\) 0 0
\(583\) 4.08284 + 4.08284i 0.169094 + 0.169094i
\(584\) 8.20961 0.339716
\(585\) 0 0
\(586\) 8.44214 0.348742
\(587\) 9.59316 + 9.59316i 0.395952 + 0.395952i 0.876803 0.480850i \(-0.159672\pi\)
−0.480850 + 0.876803i \(0.659672\pi\)
\(588\) 0 0
\(589\) 0.257220i 0.0105986i
\(590\) −4.29141 4.29141i −0.176674 0.176674i
\(591\) 0 0
\(592\) −2.38034 2.38034i −0.0978314 0.0978314i
\(593\) −10.1705 + 10.1705i −0.417651 + 0.417651i −0.884393 0.466742i \(-0.845428\pi\)
0.466742 + 0.884393i \(0.345428\pi\)
\(594\) 0 0
\(595\) 12.9767i 0.531992i
\(596\) −8.89445 + 8.89445i −0.364331 + 0.364331i
\(597\) 0 0
\(598\) 11.7975 10.8620i 0.482437 0.444179i
\(599\) 8.66779i 0.354156i −0.984197 0.177078i \(-0.943335\pi\)
0.984197 0.177078i \(-0.0566645\pi\)
\(600\) 0 0
\(601\) −23.5504 −0.960642 −0.480321 0.877093i \(-0.659480\pi\)
−0.480321 + 0.877093i \(0.659480\pi\)
\(602\) −4.01105 −0.163478
\(603\) 0 0
\(604\) 4.19184 4.19184i 0.170564 0.170564i
\(605\) −10.3780 + 10.3780i −0.421924 + 0.421924i
\(606\) 0 0
\(607\) −47.7045 −1.93626 −0.968132 0.250439i \(-0.919425\pi\)
−0.968132 + 0.250439i \(0.919425\pi\)
\(608\) 0.381505 0.0154721
\(609\) 0 0
\(610\) 2.41081i 0.0976110i
\(611\) 4.06092 + 4.41070i 0.164287 + 0.178438i
\(612\) 0 0
\(613\) −15.2912 + 15.2912i −0.617604 + 0.617604i −0.944916 0.327312i \(-0.893857\pi\)
0.327312 + 0.944916i \(0.393857\pi\)
\(614\) 24.1965i 0.976492i
\(615\) 0 0
\(616\) −1.53031 + 1.53031i −0.0616580 + 0.0616580i
\(617\) 0.424342 + 0.424342i 0.0170834 + 0.0170834i 0.715597 0.698514i \(-0.246155\pi\)
−0.698514 + 0.715597i \(0.746155\pi\)
\(618\) 0 0
\(619\) −8.73769 8.73769i −0.351197 0.351197i 0.509358 0.860555i \(-0.329883\pi\)
−0.860555 + 0.509358i \(0.829883\pi\)
\(620\) 1.56664i 0.0629178i
\(621\) 0 0
\(622\) 18.2400 + 18.2400i 0.731356 + 0.731356i
\(623\) 6.85145 0.274498
\(624\) 0 0
\(625\) 26.8366 1.07346
\(626\) 15.4872 + 15.4872i 0.618992 + 0.618992i
\(627\) 0 0
\(628\) 19.1147i 0.762760i
\(629\) −13.2935 13.2935i −0.530045 0.530045i
\(630\) 0 0
\(631\) −28.1191 28.1191i −1.11940 1.11940i −0.991829 0.127574i \(-0.959281\pi\)
−0.127574 0.991829i \(-0.540719\pi\)
\(632\) 1.45027 1.45027i 0.0576888 0.0576888i
\(633\) 0 0
\(634\) 19.3593i 0.768855i
\(635\) 32.7829 32.7829i 1.30095 1.30095i
\(636\) 0 0
\(637\) −3.60248 0.148739i −0.142736 0.00589323i
\(638\) 13.2190i 0.523345i
\(639\) 0 0
\(640\) 2.32362 0.0918490
\(641\) 23.4505 0.926239 0.463120 0.886296i \(-0.346730\pi\)
0.463120 + 0.886296i \(0.346730\pi\)
\(642\) 0 0
\(643\) −14.1136 + 14.1136i −0.556586 + 0.556586i −0.928334 0.371748i \(-0.878759\pi\)
0.371748 + 0.928334i \(0.378759\pi\)
\(644\) −3.14498 + 3.14498i −0.123930 + 0.123930i
\(645\) 0 0
\(646\) 2.13059 0.0838269
\(647\) −16.5537 −0.650794 −0.325397 0.945578i \(-0.605498\pi\)
−0.325397 + 0.945578i \(0.605498\pi\)
\(648\) 0 0
\(649\) 5.65256i 0.221882i
\(650\) −0.974886 1.05885i −0.0382382 0.0415317i
\(651\) 0 0
\(652\) 13.3438 13.3438i 0.522582 0.522582i
\(653\) 25.6224i 1.00268i 0.865250 + 0.501341i \(0.167160\pi\)
−0.865250 + 0.501341i \(0.832840\pi\)
\(654\) 0 0
\(655\) 20.0428 20.0428i 0.783138 0.783138i
\(656\) −7.88217 7.88217i −0.307747 0.307747i
\(657\) 0 0
\(658\) −1.17580 1.17580i −0.0458376 0.0458376i
\(659\) 11.5715i 0.450762i −0.974271 0.225381i \(-0.927637\pi\)
0.974271 0.225381i \(-0.0723626\pi\)
\(660\) 0 0
\(661\) −23.5822 23.5822i −0.917243 0.917243i 0.0795854 0.996828i \(-0.474640\pi\)
−0.996828 + 0.0795854i \(0.974640\pi\)
\(662\) 2.42202 0.0941344
\(663\) 0 0
\(664\) −12.4850 −0.484511
\(665\) 0.626830 + 0.626830i 0.0243074 + 0.0243074i
\(666\) 0 0
\(667\) 27.1667i 1.05190i
\(668\) 6.12142 + 6.12142i 0.236845 + 0.236845i
\(669\) 0 0
\(670\) −4.83829 4.83829i −0.186919 0.186919i
\(671\) 1.58774 1.58774i 0.0612940 0.0612940i
\(672\) 0 0
\(673\) 46.1492i 1.77892i 0.457012 + 0.889461i \(0.348920\pi\)
−0.457012 + 0.889461i \(0.651080\pi\)
\(674\) 24.3409 24.3409i 0.937575 0.937575i
\(675\) 0 0
\(676\) 1.07166 12.9558i 0.0412175 0.498298i
\(677\) 5.39786i 0.207457i −0.994606 0.103728i \(-0.966923\pi\)
0.994606 0.103728i \(-0.0330772\pi\)
\(678\) 0 0
\(679\) −1.06544 −0.0408878
\(680\) 12.9767 0.497633
\(681\) 0 0
\(682\) 1.03177 1.03177i 0.0395087 0.0395087i
\(683\) 10.3603 10.3603i 0.396425 0.396425i −0.480545 0.876970i \(-0.659561\pi\)
0.876970 + 0.480545i \(0.159561\pi\)
\(684\) 0 0
\(685\) −13.5723 −0.518569
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 4.01105i 0.152920i
\(689\) 9.61134 + 0.396831i 0.366163 + 0.0151181i
\(690\) 0 0
\(691\) −13.8730 + 13.8730i −0.527753 + 0.527753i −0.919902 0.392149i \(-0.871732\pi\)
0.392149 + 0.919902i \(0.371732\pi\)
\(692\) 4.73310i 0.179925i
\(693\) 0 0
\(694\) 21.1465 21.1465i 0.802710 0.802710i
\(695\) 21.3150 + 21.3150i 0.808525 + 0.808525i
\(696\) 0 0
\(697\) −44.0195 44.0195i −1.66736 1.66736i
\(698\) 12.4810i 0.472412i
\(699\) 0 0
\(700\) 0.282269 + 0.282269i 0.0106688 + 0.0106688i
\(701\) 3.76297 0.142126 0.0710628 0.997472i \(-0.477361\pi\)
0.0710628 + 0.997472i \(0.477361\pi\)
\(702\) 0 0
\(703\) −1.28426 −0.0484369
\(704\) 1.53031 + 1.53031i 0.0576757 + 0.0576757i
\(705\) 0 0
\(706\) 2.69967i 0.101603i
\(707\) 1.05214 + 1.05214i 0.0395696 + 0.0395696i
\(708\) 0 0
\(709\) −33.9937 33.9937i −1.27666 1.27666i −0.942526 0.334134i \(-0.891556\pi\)
−0.334134 0.942526i \(-0.608444\pi\)
\(710\) −12.3650 + 12.3650i −0.464051 + 0.464051i
\(711\) 0 0
\(712\) 6.85145i 0.256769i
\(713\) 2.12043 2.12043i 0.0794106 0.0794106i
\(714\) 0 0
\(715\) 0.747967 18.1159i 0.0279724 0.677497i
\(716\) 6.35128i 0.237359i
\(717\) 0 0
\(718\) 33.7074 1.25795
\(719\) 37.8616 1.41200 0.706001 0.708211i \(-0.250498\pi\)
0.706001 + 0.708211i \(0.250498\pi\)
\(720\) 0 0
\(721\) −2.38005 + 2.38005i −0.0886377 + 0.0886377i
\(722\) −13.3321 + 13.3321i −0.496170 + 0.496170i
\(723\) 0 0
\(724\) −12.9313 −0.480586
\(725\) −2.43827 −0.0905552
\(726\) 0 0
\(727\) 26.5558i 0.984899i −0.870341 0.492449i \(-0.836102\pi\)
0.870341 0.492449i \(-0.163898\pi\)
\(728\) −0.148739 + 3.60248i −0.00551262 + 0.133517i
\(729\) 0 0
\(730\) 13.4888 13.4888i 0.499241 0.499241i
\(731\) 22.4005i 0.828512i
\(732\) 0 0
\(733\) 16.9806 16.9806i 0.627193 0.627193i −0.320168 0.947361i \(-0.603739\pi\)
0.947361 + 0.320168i \(0.103739\pi\)
\(734\) −8.21377 8.21377i −0.303176 0.303176i
\(735\) 0 0
\(736\) 3.14498 + 3.14498i 0.115926 + 0.115926i
\(737\) 6.37290i 0.234749i
\(738\) 0 0
\(739\) 13.4039 + 13.4039i 0.493070 + 0.493070i 0.909272 0.416202i \(-0.136639\pi\)
−0.416202 + 0.909272i \(0.636639\pi\)
\(740\) −7.82201 −0.287543
\(741\) 0 0
\(742\) −2.66798 −0.0979446
\(743\) −17.6664 17.6664i −0.648116 0.648116i 0.304421 0.952537i \(-0.401537\pi\)
−0.952537 + 0.304421i \(0.901537\pi\)
\(744\) 0 0
\(745\) 29.2279i 1.07083i
\(746\) 24.9777 + 24.9777i 0.914498 + 0.914498i
\(747\) 0 0
\(748\) 8.54632 + 8.54632i 0.312484 + 0.312484i
\(749\) 0.978398 0.978398i 0.0357499 0.0357499i
\(750\) 0 0
\(751\) 33.6709i 1.22867i 0.789045 + 0.614335i \(0.210576\pi\)
−0.789045 + 0.614335i \(0.789424\pi\)
\(752\) −1.17580 + 1.17580i −0.0428771 + 0.0428771i
\(753\) 0 0
\(754\) −14.9169 16.2017i −0.543242 0.590033i
\(755\) 13.7748i 0.501315i
\(756\) 0 0
\(757\) −25.3843 −0.922607 −0.461304 0.887242i \(-0.652618\pi\)
−0.461304 + 0.887242i \(0.652618\pi\)
\(758\) 24.0645 0.874061
\(759\) 0 0
\(760\) 0.626830 0.626830i 0.0227375 0.0227375i
\(761\) 14.0445 14.0445i 0.509114 0.509114i −0.405140 0.914254i \(-0.632777\pi\)
0.914254 + 0.405140i \(0.132777\pi\)
\(762\) 0 0
\(763\) −5.97817 −0.216424
\(764\) −16.8092 −0.608137
\(765\) 0 0
\(766\) 9.85702i 0.356149i
\(767\) −6.37860 6.92800i −0.230318 0.250156i
\(768\) 0 0
\(769\) 16.9392 16.9392i 0.610844 0.610844i −0.332322 0.943166i \(-0.607832\pi\)
0.943166 + 0.332322i \(0.107832\pi\)
\(770\) 5.02874i 0.181223i
\(771\) 0 0
\(772\) −5.83733 + 5.83733i −0.210090 + 0.210090i
\(773\) −7.82875 7.82875i −0.281581 0.281581i 0.552158 0.833739i \(-0.313804\pi\)
−0.833739 + 0.552158i \(0.813804\pi\)
\(774\) 0 0
\(775\) −0.190313 0.190313i −0.00683625 0.00683625i
\(776\) 1.06544i 0.0382470i
\(777\) 0 0
\(778\) −21.9809 21.9809i −0.788055 0.788055i
\(779\) −4.25266 −0.152368
\(780\) 0 0
\(781\) −16.2870 −0.582793
\(782\) 17.5638 + 17.5638i 0.628079 + 0.628079i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) 31.4063 + 31.4063i 1.12094 + 1.12094i
\(786\) 0 0
\(787\) −35.4794 35.4794i −1.26470 1.26470i −0.948787 0.315918i \(-0.897688\pi\)
−0.315918 0.948787i \(-0.602312\pi\)
\(788\) −3.11368 + 3.11368i −0.110920 + 0.110920i
\(789\) 0 0
\(790\) 4.76573i 0.169557i
\(791\) 11.6751 11.6751i 0.415118 0.415118i
\(792\) 0 0
\(793\) 0.154320 3.73767i 0.00548007 0.132729i
\(794\) 1.30110i 0.0461744i
\(795\) 0 0
\(796\) −18.0613 −0.640165
\(797\) −42.1947 −1.49461 −0.747307 0.664479i \(-0.768654\pi\)
−0.747307 + 0.664479i \(0.768654\pi\)
\(798\) 0 0
\(799\) −6.56650 + 6.56650i −0.232306 + 0.232306i
\(800\) 0.282269 0.282269i 0.00997972 0.00997972i
\(801\) 0 0
\(802\) −6.80058 −0.240137
\(803\) 17.7671 0.626988
\(804\) 0 0
\(805\) 10.3347i 0.364250i
\(806\) 0.100283 2.42889i 0.00353233 0.0855538i
\(807\) 0 0
\(808\) 1.05214 1.05214i 0.0370140 0.0370140i
\(809\) 44.4852i 1.56402i 0.623268 + 0.782009i \(0.285805\pi\)
−0.623268 + 0.782009i \(0.714195\pi\)
\(810\) 0 0
\(811\) −27.3005 + 27.3005i −0.958652 + 0.958652i −0.999178 0.0405265i \(-0.987096\pi\)
0.0405265 + 0.999178i \(0.487096\pi\)
\(812\) 4.31906 + 4.31906i 0.151569 + 0.151569i
\(813\) 0 0
\(814\) −5.15150 5.15150i −0.180560 0.180560i
\(815\) 43.8488i 1.53596i
\(816\) 0 0
\(817\) 1.08204 + 1.08204i 0.0378558 + 0.0378558i
\(818\) 18.3449 0.641413
\(819\) 0 0
\(820\) −25.9015 −0.904520
\(821\) −21.6541 21.6541i −0.755735 0.755735i 0.219808 0.975543i \(-0.429457\pi\)
−0.975543 + 0.219808i \(0.929457\pi\)
\(822\) 0 0
\(823\) 46.1645i 1.60919i −0.593822 0.804596i \(-0.702382\pi\)
0.593822 0.804596i \(-0.297618\pi\)
\(824\) 2.38005 + 2.38005i 0.0829130 + 0.0829130i
\(825\) 0 0
\(826\) 1.84687 + 1.84687i 0.0642607 + 0.0642607i
\(827\) 3.44205 3.44205i 0.119692 0.119692i −0.644724 0.764416i \(-0.723028\pi\)
0.764416 + 0.644724i \(0.223028\pi\)
\(828\) 0 0
\(829\) 0.659377i 0.0229011i −0.999934 0.0114506i \(-0.996355\pi\)
0.999934 0.0114506i \(-0.00364491\pi\)
\(830\) −20.5134 + 20.5134i −0.712030 + 0.712030i
\(831\) 0 0
\(832\) 3.60248 + 0.148739i 0.124894 + 0.00515658i
\(833\) 5.58470i 0.193498i
\(834\) 0 0
\(835\) 20.1155 0.696126
\(836\) 0.825648 0.0285556
\(837\) 0 0
\(838\) −2.43573 + 2.43573i −0.0841408 + 0.0841408i
\(839\) −4.33493 + 4.33493i −0.149658 + 0.149658i −0.777965 0.628307i \(-0.783748\pi\)
0.628307 + 0.777965i \(0.283748\pi\)
\(840\) 0 0
\(841\) −8.30852 −0.286501
\(842\) 6.77858 0.233605
\(843\) 0 0
\(844\) 4.56632i 0.157179i
\(845\) −19.5261 23.0477i −0.671718 0.792863i
\(846\) 0 0
\(847\) 4.46630 4.46630i 0.153464 0.153464i
\(848\) 2.66798i 0.0916188i
\(849\) 0 0
\(850\) 1.57639 1.57639i 0.0540696 0.0540696i
\(851\) −10.5870 10.5870i −0.362917 0.362917i
\(852\) 0 0
\(853\) 9.33289 + 9.33289i 0.319552 + 0.319552i 0.848595 0.529043i \(-0.177449\pi\)
−0.529043 + 0.848595i \(0.677449\pi\)
\(854\) 1.03753i 0.0355034i
\(855\) 0 0
\(856\) −0.978398 0.978398i −0.0334410 0.0334410i
\(857\) −10.9256 −0.373211 −0.186605 0.982435i \(-0.559749\pi\)
−0.186605 + 0.982435i \(0.559749\pi\)
\(858\) 0 0
\(859\) 35.8523 1.22326 0.611632 0.791142i \(-0.290513\pi\)
0.611632 + 0.791142i \(0.290513\pi\)
\(860\) 6.59034 + 6.59034i 0.224729 + 0.224729i
\(861\) 0 0
\(862\) 21.9118i 0.746318i
\(863\) −6.58473 6.58473i −0.224147 0.224147i 0.586095 0.810242i \(-0.300664\pi\)
−0.810242 + 0.586095i \(0.800664\pi\)
\(864\) 0 0
\(865\) −7.77669 7.77669i −0.264415 0.264415i
\(866\) −29.1291 + 29.1291i −0.989846 + 0.989846i
\(867\) 0 0
\(868\) 0.674226i 0.0228847i
\(869\) 3.13866 3.13866i 0.106472 0.106472i
\(870\) 0 0
\(871\) −7.19146 7.81088i −0.243673 0.264661i
\(872\) 5.97817i 0.202446i
\(873\) 0 0
\(874\) 1.69681 0.0573955
\(875\) −10.6905 −0.361405
\(876\) 0 0
\(877\) −34.9867 + 34.9867i −1.18142 + 1.18142i −0.202040 + 0.979377i \(0.564757\pi\)
−0.979377 + 0.202040i \(0.935243\pi\)
\(878\) −11.5179 + 11.5179i −0.388710 + 0.388710i
\(879\) 0 0
\(880\) 5.02874 0.169519
\(881\) −23.5610 −0.793791 −0.396896 0.917864i \(-0.629913\pi\)
−0.396896 + 0.917864i \(0.629913\pi\)
\(882\) 0 0
\(883\) 1.36002i 0.0457684i 0.999738 + 0.0228842i \(0.00728491\pi\)
−0.999738 + 0.0228842i \(0.992715\pi\)
\(884\) 20.1188 + 0.830659i 0.676667 + 0.0279381i
\(885\) 0 0
\(886\) −21.2746 + 21.2746i −0.714735 + 0.714735i
\(887\) 10.8692i 0.364954i 0.983210 + 0.182477i \(0.0584115\pi\)
−0.983210 + 0.182477i \(0.941589\pi\)
\(888\) 0 0
\(889\) −14.1086 + 14.1086i −0.473186 + 0.473186i
\(890\) −11.2572 11.2572i −0.377343 0.377343i
\(891\) 0 0
\(892\) 12.2953 + 12.2953i 0.411677 + 0.411677i
\(893\) 0.634381i 0.0212287i
\(894\) 0 0
\(895\) −10.4354 10.4354i −0.348818 0.348818i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −32.0187 −1.06848
\(899\) −2.91202 2.91202i −0.0971213 0.0971213i
\(900\) 0 0
\(901\) 14.8998i 0.496386i
\(902\) −17.0585 17.0585i −0.567985 0.567985i
\(903\) 0 0
\(904\) −11.6751 11.6751i −0.388307 0.388307i
\(905\) −21.2466 + 21.2466i −0.706262 + 0.706262i
\(906\) 0 0
\(907\) 12.3624i 0.410487i 0.978711 + 0.205244i \(0.0657986\pi\)
−0.978711 + 0.205244i \(0.934201\pi\)
\(908\) −13.2910 + 13.2910i −0.441077 + 0.441077i
\(909\) 0 0
\(910\) 5.67465 + 6.16342i 0.188113 + 0.204315i
\(911\) 22.7992i 0.755371i 0.925934 + 0.377685i \(0.123280\pi\)
−0.925934 + 0.377685i \(0.876720\pi\)
\(912\) 0 0
\(913\) −27.0198 −0.894226
\(914\) 30.8321 1.01983
\(915\) 0 0
\(916\) −8.61423 + 8.61423i −0.284622 + 0.284622i
\(917\) −8.62570 + 8.62570i −0.284846 + 0.284846i
\(918\) 0 0
\(919\) −22.8130 −0.752532 −0.376266 0.926512i \(-0.622792\pi\)
−0.376266 + 0.926512i \(0.622792\pi\)
\(920\) 10.3347 0.340725
\(921\) 0 0
\(922\) 20.3440i 0.669994i
\(923\) −19.9620 + 18.3789i −0.657056 + 0.604950i
\(924\) 0 0
\(925\) −0.950205 + 0.950205i −0.0312426 + 0.0312426i
\(926\) 3.73926i 0.122880i
\(927\) 0 0
\(928\) 4.31906 4.31906i 0.141780 0.141780i
\(929\) 27.1722 + 27.1722i 0.891490 + 0.891490i 0.994663 0.103173i \(-0.0328996\pi\)
−0.103173 + 0.994663i \(0.532900\pi\)
\(930\) 0 0
\(931\) −0.269765 0.269765i −0.00884118 0.00884118i
\(932\) 2.94207i 0.0963708i
\(933\) 0 0
\(934\) 18.8514 + 18.8514i 0.616837 + 0.616837i
\(935\) 28.0840 0.918444
\(936\) 0 0
\(937\) 23.5920 0.770719 0.385359 0.922767i \(-0.374078\pi\)
0.385359 + 0.922767i \(0.374078\pi\)
\(938\) 2.08222 + 2.08222i 0.0679870 + 0.0679870i
\(939\) 0 0
\(940\) 3.86379i 0.126023i
\(941\) −33.9675 33.9675i −1.10731 1.10731i −0.993503 0.113805i \(-0.963696\pi\)
−0.113805 0.993503i \(-0.536304\pi\)
\(942\) 0 0
\(943\) −35.0574 35.0574i −1.14162 1.14162i
\(944\) 1.84687 1.84687i 0.0601104 0.0601104i
\(945\) 0 0
\(946\) 8.68066i 0.282233i
\(947\) 24.0942 24.0942i 0.782956 0.782956i −0.197373 0.980329i \(-0.563241\pi\)
0.980329 + 0.197373i \(0.0632409\pi\)
\(948\) 0 0
\(949\) 21.7761 20.0492i 0.706882 0.650825i
\(950\) 0.152293i 0.00494102i
\(951\) 0 0
\(952\) −5.58470 −0.181001
\(953\) 47.4433 1.53684 0.768419 0.639947i \(-0.221044\pi\)
0.768419 + 0.639947i \(0.221044\pi\)
\(954\) 0 0
\(955\) −27.6183 + 27.6183i −0.893708 + 0.893708i
\(956\) 11.1260 11.1260i 0.359841 0.359841i
\(957\) 0 0
\(958\) 11.0259 0.356231
\(959\) 5.84101 0.188616
\(960\) 0 0
\(961\) 30.5454i 0.985336i
\(962\) −12.1271 0.500700i −0.390992 0.0161432i
\(963\) 0 0
\(964\) 8.50173 8.50173i 0.273822 0.273822i
\(965\) 19.1820i 0.617490i
\(966\) 0 0
\(967\) 35.9011 35.9011i 1.15450 1.15450i 0.168863 0.985640i \(-0.445990\pi\)
0.985640 0.168863i \(-0.0540095\pi\)
\(968\) −4.46630 4.46630i −0.143552 0.143552i
\(969\) 0 0
\(970\) 1.75056 + 1.75056i 0.0562072 + 0.0562072i
\(971\) 23.9787i 0.769512i 0.923018 + 0.384756i \(0.125714\pi\)
−0.923018 + 0.384756i \(0.874286\pi\)
\(972\) 0 0
\(973\) −9.17321 9.17321i −0.294080 0.294080i
\(974\) −17.0899 −0.547595
\(975\) 0 0
\(976\) 1.03753 0.0332104
\(977\) −8.45109 8.45109i −0.270374 0.270374i 0.558876 0.829251i \(-0.311233\pi\)
−0.829251 + 0.558876i \(0.811233\pi\)
\(978\) 0 0
\(979\) 14.8278i 0.473899i
\(980\) −1.64304 1.64304i −0.0524851 0.0524851i
\(981\) 0 0
\(982\) −30.9336 30.9336i −0.987131 0.987131i
\(983\) −33.2491 + 33.2491i −1.06048 + 1.06048i −0.0624314 + 0.998049i \(0.519885\pi\)
−0.998049 + 0.0624314i \(0.980115\pi\)
\(984\) 0 0
\(985\) 10.2318i 0.326014i
\(986\) 24.1206 24.1206i 0.768157 0.768157i
\(987\) 0 0
\(988\) 1.01195 0.931698i 0.0321943 0.0296413i
\(989\) 17.8399i 0.567275i
\(990\) 0 0
\(991\) −18.1429 −0.576327 −0.288164 0.957581i \(-0.593045\pi\)
−0.288164 + 0.957581i \(0.593045\pi\)
\(992\) 0.674226 0.0214067
\(993\) 0 0
\(994\) 5.32146 5.32146i 0.168786 0.168786i
\(995\) −29.6755 + 29.6755i −0.940775 + 0.940775i
\(996\) 0 0
\(997\) 25.5884 0.810393 0.405197 0.914230i \(-0.367203\pi\)
0.405197 + 0.914230i \(0.367203\pi\)
\(998\) 9.42540 0.298356
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.y.c.1331.8 yes 16
3.2 odd 2 1638.2.y.d.1331.1 yes 16
13.8 odd 4 1638.2.y.d.827.1 yes 16
39.8 even 4 inner 1638.2.y.c.827.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1638.2.y.c.827.8 16 39.8 even 4 inner
1638.2.y.c.1331.8 yes 16 1.1 even 1 trivial
1638.2.y.d.827.1 yes 16 13.8 odd 4
1638.2.y.d.1331.1 yes 16 3.2 odd 2