Properties

Label 1638.2.y.d.1331.1
Level $1638$
Weight $2$
Character 1638.1331
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(827,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.827"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 20 x^{14} - 12 x^{13} + 40 x^{12} + 40 x^{11} + 82 x^{10} + 104 x^{9} + 537 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1331.1
Root \(0.838459 + 0.347301i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1331
Dual form 1638.2.y.d.827.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-1.64304 - 1.64304i) q^{5} +(-0.707107 - 0.707107i) q^{7} +(0.707107 - 0.707107i) q^{8} +2.32362i q^{10} +(1.53031 - 1.53031i) q^{11} +(-0.148739 + 3.60248i) q^{13} +1.00000i q^{14} -1.00000 q^{16} +5.58470 q^{17} +(-0.269765 + 0.269765i) q^{19} +(1.64304 - 1.64304i) q^{20} -2.16419 q^{22} +4.44768 q^{23} +0.399189i q^{25} +(2.65251 - 2.44217i) q^{26} +(0.707107 - 0.707107i) q^{28} -6.10807i q^{29} +(-0.476750 + 0.476750i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-3.94898 - 3.94898i) q^{34} +2.32362i q^{35} +(2.38034 + 2.38034i) q^{37} +0.381505 q^{38} -2.32362 q^{40} +(-7.88217 - 7.88217i) q^{41} -4.01105i q^{43} +(1.53031 + 1.53031i) q^{44} +(-3.14498 - 3.14498i) q^{46} +(-1.17580 + 1.17580i) q^{47} +1.00000i q^{49} +(0.282269 - 0.282269i) q^{50} +(-3.60248 - 0.148739i) q^{52} +2.66798i q^{53} -5.02874 q^{55} -1.00000 q^{56} +(-4.31906 + 4.31906i) q^{58} +(1.84687 - 1.84687i) q^{59} -1.03753 q^{61} +0.674226 q^{62} -1.00000i q^{64} +(6.16342 - 5.67465i) q^{65} +(-2.08222 + 2.08222i) q^{67} +5.58470i q^{68} +(1.64304 - 1.64304i) q^{70} +(-5.32146 - 5.32146i) q^{71} +(-5.80507 - 5.80507i) q^{73} -3.36631i q^{74} +(-0.269765 - 0.269765i) q^{76} -2.16419 q^{77} -2.05100 q^{79} +(1.64304 + 1.64304i) q^{80} +11.1471i q^{82} +(-8.82822 - 8.82822i) q^{83} +(-9.17590 - 9.17590i) q^{85} +(-2.83624 + 2.83624i) q^{86} -2.16419i q^{88} +(4.84471 - 4.84471i) q^{89} +(2.65251 - 2.44217i) q^{91} +4.44768i q^{92} +1.66284 q^{94} +0.886471 q^{95} +(0.753379 - 0.753379i) q^{97} +(0.707107 - 0.707107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{5} - 8 q^{11} + 4 q^{13} - 16 q^{16} - 8 q^{17} + 16 q^{19} - 4 q^{20} - 8 q^{22} + 24 q^{23} + 8 q^{26} - 8 q^{31} + 4 q^{34} - 4 q^{37} + 16 q^{38} - 16 q^{41} - 8 q^{44} + 4 q^{47} - 16 q^{50}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.64304 1.64304i −0.734792 0.734792i 0.236773 0.971565i \(-0.423910\pi\)
−0.971565 + 0.236773i \(0.923910\pi\)
\(6\) 0 0
\(7\) −0.707107 0.707107i −0.267261 0.267261i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 2.32362i 0.734792i
\(11\) 1.53031 1.53031i 0.461406 0.461406i −0.437710 0.899116i \(-0.644210\pi\)
0.899116 + 0.437710i \(0.144210\pi\)
\(12\) 0 0
\(13\) −0.148739 + 3.60248i −0.0412526 + 0.999149i
\(14\) 1.00000i 0.267261i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 5.58470 1.35449 0.677244 0.735759i \(-0.263174\pi\)
0.677244 + 0.735759i \(0.263174\pi\)
\(18\) 0 0
\(19\) −0.269765 + 0.269765i −0.0618883 + 0.0618883i −0.737374 0.675485i \(-0.763934\pi\)
0.675485 + 0.737374i \(0.263934\pi\)
\(20\) 1.64304 1.64304i 0.367396 0.367396i
\(21\) 0 0
\(22\) −2.16419 −0.461406
\(23\) 4.44768 0.927405 0.463702 0.885991i \(-0.346521\pi\)
0.463702 + 0.885991i \(0.346521\pi\)
\(24\) 0 0
\(25\) 0.399189i 0.0798378i
\(26\) 2.65251 2.44217i 0.520201 0.478948i
\(27\) 0 0
\(28\) 0.707107 0.707107i 0.133631 0.133631i
\(29\) 6.10807i 1.13424i −0.823635 0.567120i \(-0.808058\pi\)
0.823635 0.567120i \(-0.191942\pi\)
\(30\) 0 0
\(31\) −0.476750 + 0.476750i −0.0856267 + 0.0856267i −0.748623 0.662996i \(-0.769285\pi\)
0.662996 + 0.748623i \(0.269285\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −3.94898 3.94898i −0.677244 0.677244i
\(35\) 2.32362i 0.392763i
\(36\) 0 0
\(37\) 2.38034 + 2.38034i 0.391325 + 0.391325i 0.875160 0.483834i \(-0.160756\pi\)
−0.483834 + 0.875160i \(0.660756\pi\)
\(38\) 0.381505 0.0618883
\(39\) 0 0
\(40\) −2.32362 −0.367396
\(41\) −7.88217 7.88217i −1.23099 1.23099i −0.963585 0.267404i \(-0.913834\pi\)
−0.267404 0.963585i \(-0.586166\pi\)
\(42\) 0 0
\(43\) 4.01105i 0.611680i −0.952083 0.305840i \(-0.901063\pi\)
0.952083 0.305840i \(-0.0989372\pi\)
\(44\) 1.53031 + 1.53031i 0.230703 + 0.230703i
\(45\) 0 0
\(46\) −3.14498 3.14498i −0.463702 0.463702i
\(47\) −1.17580 + 1.17580i −0.171509 + 0.171509i −0.787642 0.616133i \(-0.788698\pi\)
0.616133 + 0.787642i \(0.288698\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0.282269 0.282269i 0.0399189 0.0399189i
\(51\) 0 0
\(52\) −3.60248 0.148739i −0.499574 0.0206263i
\(53\) 2.66798i 0.366475i 0.983069 + 0.183238i \(0.0586577\pi\)
−0.983069 + 0.183238i \(0.941342\pi\)
\(54\) 0 0
\(55\) −5.02874 −0.678075
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) −4.31906 + 4.31906i −0.567120 + 0.567120i
\(59\) 1.84687 1.84687i 0.240441 0.240441i −0.576591 0.817033i \(-0.695617\pi\)
0.817033 + 0.576591i \(0.195617\pi\)
\(60\) 0 0
\(61\) −1.03753 −0.132842 −0.0664209 0.997792i \(-0.521158\pi\)
−0.0664209 + 0.997792i \(0.521158\pi\)
\(62\) 0.674226 0.0856267
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 6.16342 5.67465i 0.764478 0.703854i
\(66\) 0 0
\(67\) −2.08222 + 2.08222i −0.254384 + 0.254384i −0.822765 0.568381i \(-0.807570\pi\)
0.568381 + 0.822765i \(0.307570\pi\)
\(68\) 5.58470i 0.677244i
\(69\) 0 0
\(70\) 1.64304 1.64304i 0.196381 0.196381i
\(71\) −5.32146 5.32146i −0.631541 0.631541i 0.316914 0.948454i \(-0.397353\pi\)
−0.948454 + 0.316914i \(0.897353\pi\)
\(72\) 0 0
\(73\) −5.80507 5.80507i −0.679432 0.679432i 0.280439 0.959872i \(-0.409520\pi\)
−0.959872 + 0.280439i \(0.909520\pi\)
\(74\) 3.36631i 0.391325i
\(75\) 0 0
\(76\) −0.269765 0.269765i −0.0309441 0.0309441i
\(77\) −2.16419 −0.246632
\(78\) 0 0
\(79\) −2.05100 −0.230755 −0.115378 0.993322i \(-0.536808\pi\)
−0.115378 + 0.993322i \(0.536808\pi\)
\(80\) 1.64304 + 1.64304i 0.183698 + 0.183698i
\(81\) 0 0
\(82\) 11.1471i 1.23099i
\(83\) −8.82822 8.82822i −0.969023 0.969023i 0.0305119 0.999534i \(-0.490286\pi\)
−0.999534 + 0.0305119i \(0.990286\pi\)
\(84\) 0 0
\(85\) −9.17590 9.17590i −0.995266 0.995266i
\(86\) −2.83624 + 2.83624i −0.305840 + 0.305840i
\(87\) 0 0
\(88\) 2.16419i 0.230703i
\(89\) 4.84471 4.84471i 0.513538 0.513538i −0.402071 0.915609i \(-0.631709\pi\)
0.915609 + 0.402071i \(0.131709\pi\)
\(90\) 0 0
\(91\) 2.65251 2.44217i 0.278059 0.256009i
\(92\) 4.44768i 0.463702i
\(93\) 0 0
\(94\) 1.66284 0.171509
\(95\) 0.886471 0.0909500
\(96\) 0 0
\(97\) 0.753379 0.753379i 0.0764941 0.0764941i −0.667825 0.744319i \(-0.732774\pi\)
0.744319 + 0.667825i \(0.232774\pi\)
\(98\) 0.707107 0.707107i 0.0714286 0.0714286i
\(99\) 0 0
\(100\) −0.399189 −0.0399189
\(101\) 1.48794 0.148056 0.0740280 0.997256i \(-0.476415\pi\)
0.0740280 + 0.997256i \(0.476415\pi\)
\(102\) 0 0
\(103\) 3.36590i 0.331652i −0.986155 0.165826i \(-0.946971\pi\)
0.986155 0.165826i \(-0.0530290\pi\)
\(104\) 2.44217 + 2.65251i 0.239474 + 0.260100i
\(105\) 0 0
\(106\) 1.88655 1.88655i 0.183238 0.183238i
\(107\) 1.38366i 0.133764i −0.997761 0.0668819i \(-0.978695\pi\)
0.997761 0.0668819i \(-0.0213051\pi\)
\(108\) 0 0
\(109\) 4.22721 4.22721i 0.404893 0.404893i −0.475060 0.879953i \(-0.657574\pi\)
0.879953 + 0.475060i \(0.157574\pi\)
\(110\) 3.55585 + 3.55585i 0.339037 + 0.339037i
\(111\) 0 0
\(112\) 0.707107 + 0.707107i 0.0668153 + 0.0668153i
\(113\) 16.5111i 1.55323i −0.629976 0.776615i \(-0.716935\pi\)
0.629976 0.776615i \(-0.283065\pi\)
\(114\) 0 0
\(115\) −7.30773 7.30773i −0.681449 0.681449i
\(116\) 6.10807 0.567120
\(117\) 0 0
\(118\) −2.61186 −0.240441
\(119\) −3.94898 3.94898i −0.362002 0.362002i
\(120\) 0 0
\(121\) 6.31630i 0.574209i
\(122\) 0.733642 + 0.733642i 0.0664209 + 0.0664209i
\(123\) 0 0
\(124\) −0.476750 0.476750i −0.0428134 0.0428134i
\(125\) −7.55934 + 7.55934i −0.676128 + 0.676128i
\(126\) 0 0
\(127\) 19.9525i 1.77050i −0.465116 0.885250i \(-0.653987\pi\)
0.465116 0.885250i \(-0.346013\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −8.37078 0.345611i −0.734166 0.0303121i
\(131\) 12.1986i 1.06580i 0.846180 + 0.532898i \(0.178897\pi\)
−0.846180 + 0.532898i \(0.821103\pi\)
\(132\) 0 0
\(133\) 0.381505 0.0330807
\(134\) 2.94471 0.254384
\(135\) 0 0
\(136\) 3.94898 3.94898i 0.338622 0.338622i
\(137\) 4.13022 4.13022i 0.352868 0.352868i −0.508307 0.861176i \(-0.669729\pi\)
0.861176 + 0.508307i \(0.169729\pi\)
\(138\) 0 0
\(139\) 12.9729 1.10035 0.550173 0.835051i \(-0.314562\pi\)
0.550173 + 0.835051i \(0.314562\pi\)
\(140\) −2.32362 −0.196381
\(141\) 0 0
\(142\) 7.52568i 0.631541i
\(143\) 5.28530 + 5.74053i 0.441979 + 0.480047i
\(144\) 0 0
\(145\) −10.0358 + 10.0358i −0.833430 + 0.833430i
\(146\) 8.20961i 0.679432i
\(147\) 0 0
\(148\) −2.38034 + 2.38034i −0.195663 + 0.195663i
\(149\) −8.89445 8.89445i −0.728662 0.728662i 0.241691 0.970353i \(-0.422298\pi\)
−0.970353 + 0.241691i \(0.922298\pi\)
\(150\) 0 0
\(151\) −4.19184 4.19184i −0.341127 0.341127i 0.515664 0.856791i \(-0.327545\pi\)
−0.856791 + 0.515664i \(0.827545\pi\)
\(152\) 0.381505i 0.0309441i
\(153\) 0 0
\(154\) 1.53031 + 1.53031i 0.123316 + 0.123316i
\(155\) 1.56664 0.125836
\(156\) 0 0
\(157\) 19.1147 1.52552 0.762760 0.646682i \(-0.223844\pi\)
0.762760 + 0.646682i \(0.223844\pi\)
\(158\) 1.45027 + 1.45027i 0.115378 + 0.115378i
\(159\) 0 0
\(160\) 2.32362i 0.183698i
\(161\) −3.14498 3.14498i −0.247859 0.247859i
\(162\) 0 0
\(163\) −13.3438 13.3438i −1.04516 1.04516i −0.998931 0.0462337i \(-0.985278\pi\)
−0.0462337 0.998931i \(-0.514722\pi\)
\(164\) 7.88217 7.88217i 0.615494 0.615494i
\(165\) 0 0
\(166\) 12.4850i 0.969023i
\(167\) −6.12142 + 6.12142i −0.473690 + 0.473690i −0.903106 0.429417i \(-0.858719\pi\)
0.429417 + 0.903106i \(0.358719\pi\)
\(168\) 0 0
\(169\) −12.9558 1.07166i −0.996596 0.0824350i
\(170\) 12.9767i 0.995266i
\(171\) 0 0
\(172\) 4.01105 0.305840
\(173\) 4.73310 0.359851 0.179925 0.983680i \(-0.442414\pi\)
0.179925 + 0.983680i \(0.442414\pi\)
\(174\) 0 0
\(175\) 0.282269 0.282269i 0.0213375 0.0213375i
\(176\) −1.53031 + 1.53031i −0.115351 + 0.115351i
\(177\) 0 0
\(178\) −6.85145 −0.513538
\(179\) 6.35128 0.474717 0.237359 0.971422i \(-0.423718\pi\)
0.237359 + 0.971422i \(0.423718\pi\)
\(180\) 0 0
\(181\) 12.9313i 0.961173i 0.876947 + 0.480586i \(0.159576\pi\)
−0.876947 + 0.480586i \(0.840424\pi\)
\(182\) −3.60248 0.148739i −0.267034 0.0110252i
\(183\) 0 0
\(184\) 3.14498 3.14498i 0.231851 0.231851i
\(185\) 7.82201i 0.575085i
\(186\) 0 0
\(187\) 8.54632 8.54632i 0.624969 0.624969i
\(188\) −1.17580 1.17580i −0.0857543 0.0857543i
\(189\) 0 0
\(190\) −0.626830 0.626830i −0.0454750 0.0454750i
\(191\) 16.8092i 1.21627i −0.793832 0.608137i \(-0.791917\pi\)
0.793832 0.608137i \(-0.208083\pi\)
\(192\) 0 0
\(193\) 5.83733 + 5.83733i 0.420180 + 0.420180i 0.885266 0.465086i \(-0.153976\pi\)
−0.465086 + 0.885266i \(0.653976\pi\)
\(194\) −1.06544 −0.0764941
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) −3.11368 3.11368i −0.221841 0.221841i 0.587432 0.809273i \(-0.300139\pi\)
−0.809273 + 0.587432i \(0.800139\pi\)
\(198\) 0 0
\(199\) 18.0613i 1.28033i 0.768238 + 0.640165i \(0.221134\pi\)
−0.768238 + 0.640165i \(0.778866\pi\)
\(200\) 0.282269 + 0.282269i 0.0199594 + 0.0199594i
\(201\) 0 0
\(202\) −1.05214 1.05214i −0.0740280 0.0740280i
\(203\) −4.31906 + 4.31906i −0.303138 + 0.303138i
\(204\) 0 0
\(205\) 25.9015i 1.80904i
\(206\) −2.38005 + 2.38005i −0.165826 + 0.165826i
\(207\) 0 0
\(208\) 0.148739 3.60248i 0.0103132 0.249787i
\(209\) 0.825648i 0.0571112i
\(210\) 0 0
\(211\) −4.56632 −0.314358 −0.157179 0.987570i \(-0.550240\pi\)
−0.157179 + 0.987570i \(0.550240\pi\)
\(212\) −2.66798 −0.183238
\(213\) 0 0
\(214\) −0.978398 + 0.978398i −0.0668819 + 0.0668819i
\(215\) −6.59034 + 6.59034i −0.449457 + 0.449457i
\(216\) 0 0
\(217\) 0.674226 0.0457694
\(218\) −5.97817 −0.404893
\(219\) 0 0
\(220\) 5.02874i 0.339037i
\(221\) −0.830659 + 20.1188i −0.0558762 + 1.35333i
\(222\) 0 0
\(223\) 12.2953 12.2953i 0.823354 0.823354i −0.163234 0.986587i \(-0.552192\pi\)
0.986587 + 0.163234i \(0.0521924\pi\)
\(224\) 1.00000i 0.0668153i
\(225\) 0 0
\(226\) −11.6751 + 11.6751i −0.776615 + 0.776615i
\(227\) −13.2910 13.2910i −0.882153 0.882153i 0.111600 0.993753i \(-0.464402\pi\)
−0.993753 + 0.111600i \(0.964402\pi\)
\(228\) 0 0
\(229\) 8.61423 + 8.61423i 0.569244 + 0.569244i 0.931917 0.362672i \(-0.118136\pi\)
−0.362672 + 0.931917i \(0.618136\pi\)
\(230\) 10.3347i 0.681449i
\(231\) 0 0
\(232\) −4.31906 4.31906i −0.283560 0.283560i
\(233\) −2.94207 −0.192742 −0.0963708 0.995346i \(-0.530723\pi\)
−0.0963708 + 0.995346i \(0.530723\pi\)
\(234\) 0 0
\(235\) 3.86379 0.252046
\(236\) 1.84687 + 1.84687i 0.120221 + 0.120221i
\(237\) 0 0
\(238\) 5.58470i 0.362002i
\(239\) 11.1260 + 11.1260i 0.719682 + 0.719682i 0.968540 0.248858i \(-0.0800552\pi\)
−0.248858 + 0.968540i \(0.580055\pi\)
\(240\) 0 0
\(241\) −8.50173 8.50173i −0.547644 0.547644i 0.378115 0.925759i \(-0.376573\pi\)
−0.925759 + 0.378115i \(0.876573\pi\)
\(242\) 4.46630 4.46630i 0.287105 0.287105i
\(243\) 0 0
\(244\) 1.03753i 0.0664209i
\(245\) 1.64304 1.64304i 0.104970 0.104970i
\(246\) 0 0
\(247\) −0.931698 1.01195i −0.0592825 0.0643886i
\(248\) 0.674226i 0.0428134i
\(249\) 0 0
\(250\) 10.6905 0.676128
\(251\) −23.1026 −1.45822 −0.729110 0.684396i \(-0.760066\pi\)
−0.729110 + 0.684396i \(0.760066\pi\)
\(252\) 0 0
\(253\) 6.80633 6.80633i 0.427910 0.427910i
\(254\) −14.1086 + 14.1086i −0.885250 + 0.885250i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −2.22951 −0.139073 −0.0695365 0.997579i \(-0.522152\pi\)
−0.0695365 + 0.997579i \(0.522152\pi\)
\(258\) 0 0
\(259\) 3.36631i 0.209172i
\(260\) 5.67465 + 6.16342i 0.351927 + 0.382239i
\(261\) 0 0
\(262\) 8.62570 8.62570i 0.532898 0.532898i
\(263\) 27.0080i 1.66538i −0.553738 0.832691i \(-0.686799\pi\)
0.553738 0.832691i \(-0.313201\pi\)
\(264\) 0 0
\(265\) 4.38361 4.38361i 0.269283 0.269283i
\(266\) −0.269765 0.269765i −0.0165403 0.0165403i
\(267\) 0 0
\(268\) −2.08222 2.08222i −0.127192 0.127192i
\(269\) 19.9009i 1.21338i 0.794938 + 0.606690i \(0.207503\pi\)
−0.794938 + 0.606690i \(0.792497\pi\)
\(270\) 0 0
\(271\) 13.6851 + 13.6851i 0.831308 + 0.831308i 0.987696 0.156388i \(-0.0499850\pi\)
−0.156388 + 0.987696i \(0.549985\pi\)
\(272\) −5.58470 −0.338622
\(273\) 0 0
\(274\) −5.84101 −0.352868
\(275\) 0.610883 + 0.610883i 0.0368376 + 0.0368376i
\(276\) 0 0
\(277\) 8.95516i 0.538064i 0.963131 + 0.269032i \(0.0867037\pi\)
−0.963131 + 0.269032i \(0.913296\pi\)
\(278\) −9.17321 9.17321i −0.550173 0.550173i
\(279\) 0 0
\(280\) 1.64304 + 1.64304i 0.0981907 + 0.0981907i
\(281\) 12.4026 12.4026i 0.739878 0.739878i −0.232676 0.972554i \(-0.574748\pi\)
0.972554 + 0.232676i \(0.0747483\pi\)
\(282\) 0 0
\(283\) 22.8552i 1.35860i −0.733862 0.679299i \(-0.762284\pi\)
0.733862 0.679299i \(-0.237716\pi\)
\(284\) 5.32146 5.32146i 0.315770 0.315770i
\(285\) 0 0
\(286\) 0.321898 7.79644i 0.0190342 0.461013i
\(287\) 11.1471i 0.657991i
\(288\) 0 0
\(289\) 14.1888 0.834636
\(290\) 14.1928 0.833430
\(291\) 0 0
\(292\) 5.80507 5.80507i 0.339716 0.339716i
\(293\) −5.96950 + 5.96950i −0.348742 + 0.348742i −0.859641 0.510899i \(-0.829313\pi\)
0.510899 + 0.859641i \(0.329313\pi\)
\(294\) 0 0
\(295\) −6.06897 −0.353349
\(296\) 3.36631 0.195663
\(297\) 0 0
\(298\) 12.5787i 0.728662i
\(299\) −0.661541 + 16.0227i −0.0382579 + 0.926615i
\(300\) 0 0
\(301\) −2.83624 + 2.83624i −0.163478 + 0.163478i
\(302\) 5.92816i 0.341127i
\(303\) 0 0
\(304\) 0.269765 0.269765i 0.0154721 0.0154721i
\(305\) 1.70470 + 1.70470i 0.0976110 + 0.0976110i
\(306\) 0 0
\(307\) 17.1095 + 17.1095i 0.976492 + 0.976492i 0.999730 0.0232379i \(-0.00739751\pi\)
−0.0232379 + 0.999730i \(0.507398\pi\)
\(308\) 2.16419i 0.123316i
\(309\) 0 0
\(310\) −1.10778 1.10778i −0.0629178 0.0629178i
\(311\) −25.7952 −1.46271 −0.731356 0.681996i \(-0.761112\pi\)
−0.731356 + 0.681996i \(0.761112\pi\)
\(312\) 0 0
\(313\) 21.9022 1.23798 0.618992 0.785397i \(-0.287541\pi\)
0.618992 + 0.785397i \(0.287541\pi\)
\(314\) −13.5161 13.5161i −0.762760 0.762760i
\(315\) 0 0
\(316\) 2.05100i 0.115378i
\(317\) 13.6891 + 13.6891i 0.768855 + 0.768855i 0.977905 0.209050i \(-0.0670371\pi\)
−0.209050 + 0.977905i \(0.567037\pi\)
\(318\) 0 0
\(319\) −9.34724 9.34724i −0.523345 0.523345i
\(320\) −1.64304 + 1.64304i −0.0918490 + 0.0918490i
\(321\) 0 0
\(322\) 4.44768i 0.247859i
\(323\) −1.50655 + 1.50655i −0.0838269 + 0.0838269i
\(324\) 0 0
\(325\) −1.43807 0.0593748i −0.0797698 0.00329352i
\(326\) 18.8709i 1.04516i
\(327\) 0 0
\(328\) −11.1471 −0.615494
\(329\) 1.66284 0.0916752
\(330\) 0 0
\(331\) 1.71263 1.71263i 0.0941344 0.0941344i −0.658471 0.752606i \(-0.728797\pi\)
0.752606 + 0.658471i \(0.228797\pi\)
\(332\) 8.82822 8.82822i 0.484511 0.484511i
\(333\) 0 0
\(334\) 8.65699 0.473690
\(335\) 6.84237 0.373839
\(336\) 0 0
\(337\) 34.4232i 1.87515i −0.347783 0.937575i \(-0.613065\pi\)
0.347783 0.937575i \(-0.386935\pi\)
\(338\) 8.40333 + 9.91888i 0.457081 + 0.539516i
\(339\) 0 0
\(340\) 9.17590 9.17590i 0.497633 0.497633i
\(341\) 1.45915i 0.0790174i
\(342\) 0 0
\(343\) 0.707107 0.707107i 0.0381802 0.0381802i
\(344\) −2.83624 2.83624i −0.152920 0.152920i
\(345\) 0 0
\(346\) −3.34680 3.34680i −0.179925 0.179925i
\(347\) 29.9057i 1.60542i 0.596369 + 0.802710i \(0.296610\pi\)
−0.596369 + 0.802710i \(0.703390\pi\)
\(348\) 0 0
\(349\) 8.82539 + 8.82539i 0.472412 + 0.472412i 0.902694 0.430282i \(-0.141586\pi\)
−0.430282 + 0.902694i \(0.641586\pi\)
\(350\) −0.399189 −0.0213375
\(351\) 0 0
\(352\) 2.16419 0.115351
\(353\) −1.90896 1.90896i −0.101603 0.101603i 0.654478 0.756081i \(-0.272889\pi\)
−0.756081 + 0.654478i \(0.772889\pi\)
\(354\) 0 0
\(355\) 17.4868i 0.928102i
\(356\) 4.84471 + 4.84471i 0.256769 + 0.256769i
\(357\) 0 0
\(358\) −4.49104 4.49104i −0.237359 0.237359i
\(359\) −23.8347 + 23.8347i −1.25795 + 1.25795i −0.305880 + 0.952070i \(0.598951\pi\)
−0.952070 + 0.305880i \(0.901049\pi\)
\(360\) 0 0
\(361\) 18.8545i 0.992340i
\(362\) 9.14378 9.14378i 0.480586 0.480586i
\(363\) 0 0
\(364\) 2.44217 + 2.65251i 0.128004 + 0.139029i
\(365\) 19.0760i 0.998482i
\(366\) 0 0
\(367\) −11.6160 −0.606351 −0.303176 0.952935i \(-0.598047\pi\)
−0.303176 + 0.952935i \(0.598047\pi\)
\(368\) −4.44768 −0.231851
\(369\) 0 0
\(370\) −5.53099 + 5.53099i −0.287543 + 0.287543i
\(371\) 1.88655 1.88655i 0.0979446 0.0979446i
\(372\) 0 0
\(373\) 35.3238 1.82900 0.914498 0.404591i \(-0.132586\pi\)
0.914498 + 0.404591i \(0.132586\pi\)
\(374\) −12.0863 −0.624969
\(375\) 0 0
\(376\) 1.66284i 0.0857543i
\(377\) 22.0042 + 0.908505i 1.13327 + 0.0467904i
\(378\) 0 0
\(379\) 17.0162 17.0162i 0.874061 0.874061i −0.118851 0.992912i \(-0.537921\pi\)
0.992912 + 0.118851i \(0.0379210\pi\)
\(380\) 0.886471i 0.0454750i
\(381\) 0 0
\(382\) −11.8859 + 11.8859i −0.608137 + 0.608137i
\(383\) −6.96996 6.96996i −0.356149 0.356149i 0.506243 0.862391i \(-0.331034\pi\)
−0.862391 + 0.506243i \(0.831034\pi\)
\(384\) 0 0
\(385\) 3.55585 + 3.55585i 0.181223 + 0.181223i
\(386\) 8.25523i 0.420180i
\(387\) 0 0
\(388\) 0.753379 + 0.753379i 0.0382470 + 0.0382470i
\(389\) 31.0858 1.57611 0.788055 0.615605i \(-0.211088\pi\)
0.788055 + 0.615605i \(0.211088\pi\)
\(390\) 0 0
\(391\) 24.8389 1.25616
\(392\) 0.707107 + 0.707107i 0.0357143 + 0.0357143i
\(393\) 0 0
\(394\) 4.40341i 0.221841i
\(395\) 3.36988 + 3.36988i 0.169557 + 0.169557i
\(396\) 0 0
\(397\) −0.920019 0.920019i −0.0461744 0.0461744i 0.683643 0.729817i \(-0.260395\pi\)
−0.729817 + 0.683643i \(0.760395\pi\)
\(398\) 12.7712 12.7712i 0.640165 0.640165i
\(399\) 0 0
\(400\) 0.399189i 0.0199594i
\(401\) 4.80873 4.80873i 0.240137 0.240137i −0.576770 0.816907i \(-0.695687\pi\)
0.816907 + 0.576770i \(0.195687\pi\)
\(402\) 0 0
\(403\) −1.64657 1.78839i −0.0820215 0.0890862i
\(404\) 1.48794i 0.0740280i
\(405\) 0 0
\(406\) 6.10807 0.303138
\(407\) 7.28532 0.361120
\(408\) 0 0
\(409\) 12.9718 12.9718i 0.641413 0.641413i −0.309490 0.950903i \(-0.600158\pi\)
0.950903 + 0.309490i \(0.100158\pi\)
\(410\) 18.3151 18.3151i 0.904520 0.904520i
\(411\) 0 0
\(412\) 3.36590 0.165826
\(413\) −2.61186 −0.128521
\(414\) 0 0
\(415\) 29.0103i 1.42406i
\(416\) −2.65251 + 2.44217i −0.130050 + 0.119737i
\(417\) 0 0
\(418\) 0.583821 0.583821i 0.0285556 0.0285556i
\(419\) 3.44464i 0.168282i −0.996454 0.0841408i \(-0.973185\pi\)
0.996454 0.0841408i \(-0.0268145\pi\)
\(420\) 0 0
\(421\) 4.79318 4.79318i 0.233605 0.233605i −0.580591 0.814196i \(-0.697178\pi\)
0.814196 + 0.580591i \(0.197178\pi\)
\(422\) 3.22888 + 3.22888i 0.157179 + 0.157179i
\(423\) 0 0
\(424\) 1.88655 + 1.88655i 0.0916188 + 0.0916188i
\(425\) 2.22935i 0.108139i
\(426\) 0 0
\(427\) 0.733642 + 0.733642i 0.0355034 + 0.0355034i
\(428\) 1.38366 0.0668819
\(429\) 0 0
\(430\) 9.32014 0.449457
\(431\) 15.4940 + 15.4940i 0.746318 + 0.746318i 0.973786 0.227467i \(-0.0730445\pi\)
−0.227467 + 0.973786i \(0.573044\pi\)
\(432\) 0 0
\(433\) 41.1947i 1.97969i 0.142147 + 0.989846i \(0.454599\pi\)
−0.142147 + 0.989846i \(0.545401\pi\)
\(434\) −0.476750 0.476750i −0.0228847 0.0228847i
\(435\) 0 0
\(436\) 4.22721 + 4.22721i 0.202446 + 0.202446i
\(437\) −1.19983 + 1.19983i −0.0573955 + 0.0573955i
\(438\) 0 0
\(439\) 16.2888i 0.777421i 0.921360 + 0.388710i \(0.127079\pi\)
−0.921360 + 0.388710i \(0.872921\pi\)
\(440\) −3.55585 + 3.55585i −0.169519 + 0.169519i
\(441\) 0 0
\(442\) 14.8135 13.6387i 0.704605 0.648729i
\(443\) 30.0869i 1.42947i −0.699395 0.714735i \(-0.746547\pi\)
0.699395 0.714735i \(-0.253453\pi\)
\(444\) 0 0
\(445\) −15.9201 −0.754687
\(446\) −17.3882 −0.823354
\(447\) 0 0
\(448\) −0.707107 + 0.707107i −0.0334077 + 0.0334077i
\(449\) 22.6406 22.6406i 1.06848 1.06848i 0.0710006 0.997476i \(-0.477381\pi\)
0.997476 0.0710006i \(-0.0226192\pi\)
\(450\) 0 0
\(451\) −24.1243 −1.13597
\(452\) 16.5111 0.776615
\(453\) 0 0
\(454\) 18.7963i 0.882153i
\(455\) −8.37078 0.345611i −0.392428 0.0162025i
\(456\) 0 0
\(457\) 21.8016 21.8016i 1.01983 1.01983i 0.0200351 0.999799i \(-0.493622\pi\)
0.999799 0.0200351i \(-0.00637779\pi\)
\(458\) 12.1824i 0.569244i
\(459\) 0 0
\(460\) 7.30773 7.30773i 0.340725 0.340725i
\(461\) −14.3854 14.3854i −0.669994 0.669994i 0.287720 0.957714i \(-0.407103\pi\)
−0.957714 + 0.287720i \(0.907103\pi\)
\(462\) 0 0
\(463\) 2.64406 + 2.64406i 0.122880 + 0.122880i 0.765872 0.642993i \(-0.222307\pi\)
−0.642993 + 0.765872i \(0.722307\pi\)
\(464\) 6.10807i 0.283560i
\(465\) 0 0
\(466\) 2.08036 + 2.08036i 0.0963708 + 0.0963708i
\(467\) −26.6599 −1.23367 −0.616837 0.787091i \(-0.711586\pi\)
−0.616837 + 0.787091i \(0.711586\pi\)
\(468\) 0 0
\(469\) 2.94471 0.135974
\(470\) −2.73212 2.73212i −0.126023 0.126023i
\(471\) 0 0
\(472\) 2.61186i 0.120221i
\(473\) −6.13816 6.13816i −0.282233 0.282233i
\(474\) 0 0
\(475\) −0.107687 0.107687i −0.00494102 0.00494102i
\(476\) 3.94898 3.94898i 0.181001 0.181001i
\(477\) 0 0
\(478\) 15.7346i 0.719682i
\(479\) −7.79650 + 7.79650i −0.356231 + 0.356231i −0.862422 0.506190i \(-0.831053\pi\)
0.506190 + 0.862422i \(0.331053\pi\)
\(480\) 0 0
\(481\) −8.92918 + 8.22108i −0.407136 + 0.374849i
\(482\) 12.0233i 0.547644i
\(483\) 0 0
\(484\) −6.31630 −0.287105
\(485\) −2.47567 −0.112414
\(486\) 0 0
\(487\) −12.0844 + 12.0844i −0.547595 + 0.547595i −0.925744 0.378150i \(-0.876560\pi\)
0.378150 + 0.925744i \(0.376560\pi\)
\(488\) −0.733642 + 0.733642i −0.0332104 + 0.0332104i
\(489\) 0 0
\(490\) −2.32362 −0.104970
\(491\) 43.7467 1.97426 0.987131 0.159911i \(-0.0511207\pi\)
0.987131 + 0.159911i \(0.0511207\pi\)
\(492\) 0 0
\(493\) 34.1117i 1.53631i
\(494\) −0.0567445 + 1.37436i −0.00255305 + 0.0618356i
\(495\) 0 0
\(496\) 0.476750 0.476750i 0.0214067 0.0214067i
\(497\) 7.52568i 0.337573i
\(498\) 0 0
\(499\) 6.66476 6.66476i 0.298356 0.298356i −0.542014 0.840370i \(-0.682338\pi\)
0.840370 + 0.542014i \(0.182338\pi\)
\(500\) −7.55934 7.55934i −0.338064 0.338064i
\(501\) 0 0
\(502\) 16.3360 + 16.3360i 0.729110 + 0.729110i
\(503\) 13.8865i 0.619167i 0.950872 + 0.309584i \(0.100190\pi\)
−0.950872 + 0.309584i \(0.899810\pi\)
\(504\) 0 0
\(505\) −2.44476 2.44476i −0.108790 0.108790i
\(506\) −9.62560 −0.427910
\(507\) 0 0
\(508\) 19.9525 0.885250
\(509\) 26.3768 + 26.3768i 1.16913 + 1.16913i 0.982413 + 0.186719i \(0.0597855\pi\)
0.186719 + 0.982413i \(0.440214\pi\)
\(510\) 0 0
\(511\) 8.20961i 0.363172i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 1.57650 + 1.57650i 0.0695365 + 0.0695365i
\(515\) −5.53032 + 5.53032i −0.243695 + 0.243695i
\(516\) 0 0
\(517\) 3.59869i 0.158270i
\(518\) −2.38034 + 2.38034i −0.104586 + 0.104586i
\(519\) 0 0
\(520\) 0.345611 8.37078i 0.0151560 0.367083i
\(521\) 8.95627i 0.392381i 0.980566 + 0.196191i \(0.0628572\pi\)
−0.980566 + 0.196191i \(0.937143\pi\)
\(522\) 0 0
\(523\) −0.956586 −0.0418286 −0.0209143 0.999781i \(-0.506658\pi\)
−0.0209143 + 0.999781i \(0.506658\pi\)
\(524\) −12.1986 −0.532898
\(525\) 0 0
\(526\) −19.0975 + 19.0975i −0.832691 + 0.832691i
\(527\) −2.66250 + 2.66250i −0.115980 + 0.115980i
\(528\) 0 0
\(529\) −3.21817 −0.139920
\(530\) −6.19936 −0.269283
\(531\) 0 0
\(532\) 0.381505i 0.0165403i
\(533\) 29.5678 27.2230i 1.28072 1.17916i
\(534\) 0 0
\(535\) −2.27342 + 2.27342i −0.0982886 + 0.0982886i
\(536\) 2.94471i 0.127192i
\(537\) 0 0
\(538\) 14.0721 14.0721i 0.606690 0.606690i
\(539\) 1.53031 + 1.53031i 0.0659151 + 0.0659151i
\(540\) 0 0
\(541\) 30.1258 + 30.1258i 1.29521 + 1.29521i 0.931522 + 0.363686i \(0.118482\pi\)
0.363686 + 0.931522i \(0.381518\pi\)
\(542\) 19.3536i 0.831308i
\(543\) 0 0
\(544\) 3.94898 + 3.94898i 0.169311 + 0.169311i
\(545\) −13.8910 −0.595024
\(546\) 0 0
\(547\) −33.0740 −1.41414 −0.707071 0.707143i \(-0.749984\pi\)
−0.707071 + 0.707143i \(0.749984\pi\)
\(548\) 4.13022 + 4.13022i 0.176434 + 0.176434i
\(549\) 0 0
\(550\) 0.863919i 0.0368376i
\(551\) 1.64774 + 1.64774i 0.0701962 + 0.0701962i
\(552\) 0 0
\(553\) 1.45027 + 1.45027i 0.0616719 + 0.0616719i
\(554\) 6.33226 6.33226i 0.269032 0.269032i
\(555\) 0 0
\(556\) 12.9729i 0.550173i
\(557\) 19.4197 19.4197i 0.822841 0.822841i −0.163674 0.986515i \(-0.552334\pi\)
0.986515 + 0.163674i \(0.0523344\pi\)
\(558\) 0 0
\(559\) 14.4497 + 0.596598i 0.611159 + 0.0252334i
\(560\) 2.32362i 0.0981907i
\(561\) 0 0
\(562\) −17.5399 −0.739878
\(563\) −3.91292 −0.164910 −0.0824550 0.996595i \(-0.526276\pi\)
−0.0824550 + 0.996595i \(0.526276\pi\)
\(564\) 0 0
\(565\) −27.1284 + 27.1284i −1.14130 + 1.14130i
\(566\) −16.1610 + 16.1610i −0.679299 + 0.679299i
\(567\) 0 0
\(568\) −7.52568 −0.315770
\(569\) 14.2555 0.597620 0.298810 0.954313i \(-0.403410\pi\)
0.298810 + 0.954313i \(0.403410\pi\)
\(570\) 0 0
\(571\) 9.15631i 0.383180i 0.981475 + 0.191590i \(0.0613643\pi\)
−0.981475 + 0.191590i \(0.938636\pi\)
\(572\) −5.74053 + 5.28530i −0.240024 + 0.220990i
\(573\) 0 0
\(574\) 7.88217 7.88217i 0.328996 0.328996i
\(575\) 1.77546i 0.0740420i
\(576\) 0 0
\(577\) 8.79359 8.79359i 0.366082 0.366082i −0.499964 0.866046i \(-0.666653\pi\)
0.866046 + 0.499964i \(0.166653\pi\)
\(578\) −10.0330 10.0330i −0.417318 0.417318i
\(579\) 0 0
\(580\) −10.0358 10.0358i −0.416715 0.416715i
\(581\) 12.4850i 0.517964i
\(582\) 0 0
\(583\) 4.08284 + 4.08284i 0.169094 + 0.169094i
\(584\) −8.20961 −0.339716
\(585\) 0 0
\(586\) 8.44214 0.348742
\(587\) −9.59316 9.59316i −0.395952 0.395952i 0.480850 0.876803i \(-0.340328\pi\)
−0.876803 + 0.480850i \(0.840328\pi\)
\(588\) 0 0
\(589\) 0.257220i 0.0105986i
\(590\) 4.29141 + 4.29141i 0.176674 + 0.176674i
\(591\) 0 0
\(592\) −2.38034 2.38034i −0.0978314 0.0978314i
\(593\) 10.1705 10.1705i 0.417651 0.417651i −0.466742 0.884393i \(-0.654572\pi\)
0.884393 + 0.466742i \(0.154572\pi\)
\(594\) 0 0
\(595\) 12.9767i 0.531992i
\(596\) 8.89445 8.89445i 0.364331 0.364331i
\(597\) 0 0
\(598\) 11.7975 10.8620i 0.482437 0.444179i
\(599\) 8.66779i 0.354156i 0.984197 + 0.177078i \(0.0566645\pi\)
−0.984197 + 0.177078i \(0.943335\pi\)
\(600\) 0 0
\(601\) −23.5504 −0.960642 −0.480321 0.877093i \(-0.659480\pi\)
−0.480321 + 0.877093i \(0.659480\pi\)
\(602\) 4.01105 0.163478
\(603\) 0 0
\(604\) 4.19184 4.19184i 0.170564 0.170564i
\(605\) 10.3780 10.3780i 0.421924 0.421924i
\(606\) 0 0
\(607\) −47.7045 −1.93626 −0.968132 0.250439i \(-0.919425\pi\)
−0.968132 + 0.250439i \(0.919425\pi\)
\(608\) −0.381505 −0.0154721
\(609\) 0 0
\(610\) 2.41081i 0.0976110i
\(611\) −4.06092 4.41070i −0.164287 0.178438i
\(612\) 0 0
\(613\) −15.2912 + 15.2912i −0.617604 + 0.617604i −0.944916 0.327312i \(-0.893857\pi\)
0.327312 + 0.944916i \(0.393857\pi\)
\(614\) 24.1965i 0.976492i
\(615\) 0 0
\(616\) −1.53031 + 1.53031i −0.0616580 + 0.0616580i
\(617\) −0.424342 0.424342i −0.0170834 0.0170834i 0.698514 0.715597i \(-0.253845\pi\)
−0.715597 + 0.698514i \(0.753845\pi\)
\(618\) 0 0
\(619\) −8.73769 8.73769i −0.351197 0.351197i 0.509358 0.860555i \(-0.329883\pi\)
−0.860555 + 0.509358i \(0.829883\pi\)
\(620\) 1.56664i 0.0629178i
\(621\) 0 0
\(622\) 18.2400 + 18.2400i 0.731356 + 0.731356i
\(623\) −6.85145 −0.274498
\(624\) 0 0
\(625\) 26.8366 1.07346
\(626\) −15.4872 15.4872i −0.618992 0.618992i
\(627\) 0 0
\(628\) 19.1147i 0.762760i
\(629\) 13.2935 + 13.2935i 0.530045 + 0.530045i
\(630\) 0 0
\(631\) −28.1191 28.1191i −1.11940 1.11940i −0.991829 0.127574i \(-0.959281\pi\)
−0.127574 0.991829i \(-0.540719\pi\)
\(632\) −1.45027 + 1.45027i −0.0576888 + 0.0576888i
\(633\) 0 0
\(634\) 19.3593i 0.768855i
\(635\) −32.7829 + 32.7829i −1.30095 + 1.30095i
\(636\) 0 0
\(637\) −3.60248 0.148739i −0.142736 0.00589323i
\(638\) 13.2190i 0.523345i
\(639\) 0 0
\(640\) 2.32362 0.0918490
\(641\) −23.4505 −0.926239 −0.463120 0.886296i \(-0.653270\pi\)
−0.463120 + 0.886296i \(0.653270\pi\)
\(642\) 0 0
\(643\) −14.1136 + 14.1136i −0.556586 + 0.556586i −0.928334 0.371748i \(-0.878759\pi\)
0.371748 + 0.928334i \(0.378759\pi\)
\(644\) 3.14498 3.14498i 0.123930 0.123930i
\(645\) 0 0
\(646\) 2.13059 0.0838269
\(647\) 16.5537 0.650794 0.325397 0.945578i \(-0.394502\pi\)
0.325397 + 0.945578i \(0.394502\pi\)
\(648\) 0 0
\(649\) 5.65256i 0.221882i
\(650\) 0.974886 + 1.05885i 0.0382382 + 0.0415317i
\(651\) 0 0
\(652\) 13.3438 13.3438i 0.522582 0.522582i
\(653\) 25.6224i 1.00268i −0.865250 0.501341i \(-0.832840\pi\)
0.865250 0.501341i \(-0.167160\pi\)
\(654\) 0 0
\(655\) 20.0428 20.0428i 0.783138 0.783138i
\(656\) 7.88217 + 7.88217i 0.307747 + 0.307747i
\(657\) 0 0
\(658\) −1.17580 1.17580i −0.0458376 0.0458376i
\(659\) 11.5715i 0.450762i 0.974271 + 0.225381i \(0.0723626\pi\)
−0.974271 + 0.225381i \(0.927637\pi\)
\(660\) 0 0
\(661\) −23.5822 23.5822i −0.917243 0.917243i 0.0795854 0.996828i \(-0.474640\pi\)
−0.996828 + 0.0795854i \(0.974640\pi\)
\(662\) −2.42202 −0.0941344
\(663\) 0 0
\(664\) −12.4850 −0.484511
\(665\) −0.626830 0.626830i −0.0243074 0.0243074i
\(666\) 0 0
\(667\) 27.1667i 1.05190i
\(668\) −6.12142 6.12142i −0.236845 0.236845i
\(669\) 0 0
\(670\) −4.83829 4.83829i −0.186919 0.186919i
\(671\) −1.58774 + 1.58774i −0.0612940 + 0.0612940i
\(672\) 0 0
\(673\) 46.1492i 1.77892i 0.457012 + 0.889461i \(0.348920\pi\)
−0.457012 + 0.889461i \(0.651080\pi\)
\(674\) −24.3409 + 24.3409i −0.937575 + 0.937575i
\(675\) 0 0
\(676\) 1.07166 12.9558i 0.0412175 0.498298i
\(677\) 5.39786i 0.207457i 0.994606 + 0.103728i \(0.0330772\pi\)
−0.994606 + 0.103728i \(0.966923\pi\)
\(678\) 0 0
\(679\) −1.06544 −0.0408878
\(680\) −12.9767 −0.497633
\(681\) 0 0
\(682\) 1.03177 1.03177i 0.0395087 0.0395087i
\(683\) −10.3603 + 10.3603i −0.396425 + 0.396425i −0.876970 0.480545i \(-0.840439\pi\)
0.480545 + 0.876970i \(0.340439\pi\)
\(684\) 0 0
\(685\) −13.5723 −0.518569
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) 4.01105i 0.152920i
\(689\) −9.61134 0.396831i −0.366163 0.0151181i
\(690\) 0 0
\(691\) −13.8730 + 13.8730i −0.527753 + 0.527753i −0.919902 0.392149i \(-0.871732\pi\)
0.392149 + 0.919902i \(0.371732\pi\)
\(692\) 4.73310i 0.179925i
\(693\) 0 0
\(694\) 21.1465 21.1465i 0.802710 0.802710i
\(695\) −21.3150 21.3150i −0.808525 0.808525i
\(696\) 0 0
\(697\) −44.0195 44.0195i −1.66736 1.66736i
\(698\) 12.4810i 0.472412i
\(699\) 0 0
\(700\) 0.282269 + 0.282269i 0.0106688 + 0.0106688i
\(701\) −3.76297 −0.142126 −0.0710628 0.997472i \(-0.522639\pi\)
−0.0710628 + 0.997472i \(0.522639\pi\)
\(702\) 0 0
\(703\) −1.28426 −0.0484369
\(704\) −1.53031 1.53031i −0.0576757 0.0576757i
\(705\) 0 0
\(706\) 2.69967i 0.101603i
\(707\) −1.05214 1.05214i −0.0395696 0.0395696i
\(708\) 0 0
\(709\) −33.9937 33.9937i −1.27666 1.27666i −0.942526 0.334134i \(-0.891556\pi\)
−0.334134 0.942526i \(-0.608444\pi\)
\(710\) 12.3650 12.3650i 0.464051 0.464051i
\(711\) 0 0
\(712\) 6.85145i 0.256769i
\(713\) −2.12043 + 2.12043i −0.0794106 + 0.0794106i
\(714\) 0 0
\(715\) 0.747967 18.1159i 0.0279724 0.677497i
\(716\) 6.35128i 0.237359i
\(717\) 0 0
\(718\) 33.7074 1.25795
\(719\) −37.8616 −1.41200 −0.706001 0.708211i \(-0.749502\pi\)
−0.706001 + 0.708211i \(0.749502\pi\)
\(720\) 0 0
\(721\) −2.38005 + 2.38005i −0.0886377 + 0.0886377i
\(722\) 13.3321 13.3321i 0.496170 0.496170i
\(723\) 0 0
\(724\) −12.9313 −0.480586
\(725\) 2.43827 0.0905552
\(726\) 0 0
\(727\) 26.5558i 0.984899i −0.870341 0.492449i \(-0.836102\pi\)
0.870341 0.492449i \(-0.163898\pi\)
\(728\) 0.148739 3.60248i 0.00551262 0.133517i
\(729\) 0 0
\(730\) 13.4888 13.4888i 0.499241 0.499241i
\(731\) 22.4005i 0.828512i
\(732\) 0 0
\(733\) 16.9806 16.9806i 0.627193 0.627193i −0.320168 0.947361i \(-0.603739\pi\)
0.947361 + 0.320168i \(0.103739\pi\)
\(734\) 8.21377 + 8.21377i 0.303176 + 0.303176i
\(735\) 0 0
\(736\) 3.14498 + 3.14498i 0.115926 + 0.115926i
\(737\) 6.37290i 0.234749i
\(738\) 0 0
\(739\) 13.4039 + 13.4039i 0.493070 + 0.493070i 0.909272 0.416202i \(-0.136639\pi\)
−0.416202 + 0.909272i \(0.636639\pi\)
\(740\) 7.82201 0.287543
\(741\) 0 0
\(742\) −2.66798 −0.0979446
\(743\) 17.6664 + 17.6664i 0.648116 + 0.648116i 0.952537 0.304421i \(-0.0984631\pi\)
−0.304421 + 0.952537i \(0.598463\pi\)
\(744\) 0 0
\(745\) 29.2279i 1.07083i
\(746\) −24.9777 24.9777i −0.914498 0.914498i
\(747\) 0 0
\(748\) 8.54632 + 8.54632i 0.312484 + 0.312484i
\(749\) −0.978398 + 0.978398i −0.0357499 + 0.0357499i
\(750\) 0 0
\(751\) 33.6709i 1.22867i 0.789045 + 0.614335i \(0.210576\pi\)
−0.789045 + 0.614335i \(0.789424\pi\)
\(752\) 1.17580 1.17580i 0.0428771 0.0428771i
\(753\) 0 0
\(754\) −14.9169 16.2017i −0.543242 0.590033i
\(755\) 13.7748i 0.501315i
\(756\) 0 0
\(757\) −25.3843 −0.922607 −0.461304 0.887242i \(-0.652618\pi\)
−0.461304 + 0.887242i \(0.652618\pi\)
\(758\) −24.0645 −0.874061
\(759\) 0 0
\(760\) 0.626830 0.626830i 0.0227375 0.0227375i
\(761\) −14.0445 + 14.0445i −0.509114 + 0.509114i −0.914254 0.405140i \(-0.867223\pi\)
0.405140 + 0.914254i \(0.367223\pi\)
\(762\) 0 0
\(763\) −5.97817 −0.216424
\(764\) 16.8092 0.608137
\(765\) 0 0
\(766\) 9.85702i 0.356149i
\(767\) 6.37860 + 6.92800i 0.230318 + 0.250156i
\(768\) 0 0
\(769\) 16.9392 16.9392i 0.610844 0.610844i −0.332322 0.943166i \(-0.607832\pi\)
0.943166 + 0.332322i \(0.107832\pi\)
\(770\) 5.02874i 0.181223i
\(771\) 0 0
\(772\) −5.83733 + 5.83733i −0.210090 + 0.210090i
\(773\) 7.82875 + 7.82875i 0.281581 + 0.281581i 0.833739 0.552158i \(-0.186196\pi\)
−0.552158 + 0.833739i \(0.686196\pi\)
\(774\) 0 0
\(775\) −0.190313 0.190313i −0.00683625 0.00683625i
\(776\) 1.06544i 0.0382470i
\(777\) 0 0
\(778\) −21.9809 21.9809i −0.788055 0.788055i
\(779\) 4.25266 0.152368
\(780\) 0 0
\(781\) −16.2870 −0.582793
\(782\) −17.5638 17.5638i −0.628079 0.628079i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) −31.4063 31.4063i −1.12094 1.12094i
\(786\) 0 0
\(787\) −35.4794 35.4794i −1.26470 1.26470i −0.948787 0.315918i \(-0.897688\pi\)
−0.315918 0.948787i \(-0.602312\pi\)
\(788\) 3.11368 3.11368i 0.110920 0.110920i
\(789\) 0 0
\(790\) 4.76573i 0.169557i
\(791\) −11.6751 + 11.6751i −0.415118 + 0.415118i
\(792\) 0 0
\(793\) 0.154320 3.73767i 0.00548007 0.132729i
\(794\) 1.30110i 0.0461744i
\(795\) 0 0
\(796\) −18.0613 −0.640165
\(797\) 42.1947 1.49461 0.747307 0.664479i \(-0.231346\pi\)
0.747307 + 0.664479i \(0.231346\pi\)
\(798\) 0 0
\(799\) −6.56650 + 6.56650i −0.232306 + 0.232306i
\(800\) −0.282269 + 0.282269i −0.00997972 + 0.00997972i
\(801\) 0 0
\(802\) −6.80058 −0.240137
\(803\) −17.7671 −0.626988
\(804\) 0 0
\(805\) 10.3347i 0.364250i
\(806\) −0.100283 + 2.42889i −0.00353233 + 0.0855538i
\(807\) 0 0
\(808\) 1.05214 1.05214i 0.0370140 0.0370140i
\(809\) 44.4852i 1.56402i −0.623268 0.782009i \(-0.714195\pi\)
0.623268 0.782009i \(-0.285805\pi\)
\(810\) 0 0
\(811\) −27.3005 + 27.3005i −0.958652 + 0.958652i −0.999178 0.0405265i \(-0.987096\pi\)
0.0405265 + 0.999178i \(0.487096\pi\)
\(812\) −4.31906 4.31906i −0.151569 0.151569i
\(813\) 0 0
\(814\) −5.15150 5.15150i −0.180560 0.180560i
\(815\) 43.8488i 1.53596i
\(816\) 0 0
\(817\) 1.08204 + 1.08204i 0.0378558 + 0.0378558i
\(818\) −18.3449 −0.641413
\(819\) 0 0
\(820\) −25.9015 −0.904520
\(821\) 21.6541 + 21.6541i 0.755735 + 0.755735i 0.975543 0.219808i \(-0.0705431\pi\)
−0.219808 + 0.975543i \(0.570543\pi\)
\(822\) 0 0
\(823\) 46.1645i 1.60919i −0.593822 0.804596i \(-0.702382\pi\)
0.593822 0.804596i \(-0.297618\pi\)
\(824\) −2.38005 2.38005i −0.0829130 0.0829130i
\(825\) 0 0
\(826\) 1.84687 + 1.84687i 0.0642607 + 0.0642607i
\(827\) −3.44205 + 3.44205i −0.119692 + 0.119692i −0.764416 0.644724i \(-0.776972\pi\)
0.644724 + 0.764416i \(0.276972\pi\)
\(828\) 0 0
\(829\) 0.659377i 0.0229011i −0.999934 0.0114506i \(-0.996355\pi\)
0.999934 0.0114506i \(-0.00364491\pi\)
\(830\) 20.5134 20.5134i 0.712030 0.712030i
\(831\) 0 0
\(832\) 3.60248 + 0.148739i 0.124894 + 0.00515658i
\(833\) 5.58470i 0.193498i
\(834\) 0 0
\(835\) 20.1155 0.696126
\(836\) −0.825648 −0.0285556
\(837\) 0 0
\(838\) −2.43573 + 2.43573i −0.0841408 + 0.0841408i
\(839\) 4.33493 4.33493i 0.149658 0.149658i −0.628307 0.777965i \(-0.716252\pi\)
0.777965 + 0.628307i \(0.216252\pi\)
\(840\) 0 0
\(841\) −8.30852 −0.286501
\(842\) −6.77858 −0.233605
\(843\) 0 0
\(844\) 4.56632i 0.157179i
\(845\) 19.5261 + 23.0477i 0.671718 + 0.792863i
\(846\) 0 0
\(847\) 4.46630 4.46630i 0.153464 0.153464i
\(848\) 2.66798i 0.0916188i
\(849\) 0 0
\(850\) 1.57639 1.57639i 0.0540696 0.0540696i
\(851\) 10.5870 + 10.5870i 0.362917 + 0.362917i
\(852\) 0 0
\(853\) 9.33289 + 9.33289i 0.319552 + 0.319552i 0.848595 0.529043i \(-0.177449\pi\)
−0.529043 + 0.848595i \(0.677449\pi\)
\(854\) 1.03753i 0.0355034i
\(855\) 0 0
\(856\) −0.978398 0.978398i −0.0334410 0.0334410i
\(857\) 10.9256 0.373211 0.186605 0.982435i \(-0.440251\pi\)
0.186605 + 0.982435i \(0.440251\pi\)
\(858\) 0 0
\(859\) 35.8523 1.22326 0.611632 0.791142i \(-0.290513\pi\)
0.611632 + 0.791142i \(0.290513\pi\)
\(860\) −6.59034 6.59034i −0.224729 0.224729i
\(861\) 0 0
\(862\) 21.9118i 0.746318i
\(863\) 6.58473 + 6.58473i 0.224147 + 0.224147i 0.810242 0.586095i \(-0.199336\pi\)
−0.586095 + 0.810242i \(0.699336\pi\)
\(864\) 0 0
\(865\) −7.77669 7.77669i −0.264415 0.264415i
\(866\) 29.1291 29.1291i 0.989846 0.989846i
\(867\) 0 0
\(868\) 0.674226i 0.0228847i
\(869\) −3.13866 + 3.13866i −0.106472 + 0.106472i
\(870\) 0 0
\(871\) −7.19146 7.81088i −0.243673 0.264661i
\(872\) 5.97817i 0.202446i
\(873\) 0 0
\(874\) 1.69681 0.0573955
\(875\) 10.6905 0.361405
\(876\) 0 0
\(877\) −34.9867 + 34.9867i −1.18142 + 1.18142i −0.202040 + 0.979377i \(0.564757\pi\)
−0.979377 + 0.202040i \(0.935243\pi\)
\(878\) 11.5179 11.5179i 0.388710 0.388710i
\(879\) 0 0
\(880\) 5.02874 0.169519
\(881\) 23.5610 0.793791 0.396896 0.917864i \(-0.370087\pi\)
0.396896 + 0.917864i \(0.370087\pi\)
\(882\) 0 0
\(883\) 1.36002i 0.0457684i 0.999738 + 0.0228842i \(0.00728491\pi\)
−0.999738 + 0.0228842i \(0.992715\pi\)
\(884\) −20.1188 0.830659i −0.676667 0.0279381i
\(885\) 0 0
\(886\) −21.2746 + 21.2746i −0.714735 + 0.714735i
\(887\) 10.8692i 0.364954i −0.983210 0.182477i \(-0.941589\pi\)
0.983210 0.182477i \(-0.0584115\pi\)
\(888\) 0 0
\(889\) −14.1086 + 14.1086i −0.473186 + 0.473186i
\(890\) 11.2572 + 11.2572i 0.377343 + 0.377343i
\(891\) 0 0
\(892\) 12.2953 + 12.2953i 0.411677 + 0.411677i
\(893\) 0.634381i 0.0212287i
\(894\) 0 0
\(895\) −10.4354 10.4354i −0.348818 0.348818i
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −32.0187 −1.06848
\(899\) 2.91202 + 2.91202i 0.0971213 + 0.0971213i
\(900\) 0 0
\(901\) 14.8998i 0.496386i
\(902\) 17.0585 + 17.0585i 0.567985 + 0.567985i
\(903\) 0 0
\(904\) −11.6751 11.6751i −0.388307 0.388307i
\(905\) 21.2466 21.2466i 0.706262 0.706262i
\(906\) 0 0
\(907\) 12.3624i 0.410487i 0.978711 + 0.205244i \(0.0657986\pi\)
−0.978711 + 0.205244i \(0.934201\pi\)
\(908\) 13.2910 13.2910i 0.441077 0.441077i
\(909\) 0 0
\(910\) 5.67465 + 6.16342i 0.188113 + 0.204315i
\(911\) 22.7992i 0.755371i −0.925934 0.377685i \(-0.876720\pi\)
0.925934 0.377685i \(-0.123280\pi\)
\(912\) 0 0
\(913\) −27.0198 −0.894226
\(914\) −30.8321 −1.01983
\(915\) 0 0
\(916\) −8.61423 + 8.61423i −0.284622 + 0.284622i
\(917\) 8.62570 8.62570i 0.284846 0.284846i
\(918\) 0 0
\(919\) −22.8130 −0.752532 −0.376266 0.926512i \(-0.622792\pi\)
−0.376266 + 0.926512i \(0.622792\pi\)
\(920\) −10.3347 −0.340725
\(921\) 0 0
\(922\) 20.3440i 0.669994i
\(923\) 19.9620 18.3789i 0.657056 0.604950i
\(924\) 0 0
\(925\) −0.950205 + 0.950205i −0.0312426 + 0.0312426i
\(926\) 3.73926i 0.122880i
\(927\) 0 0
\(928\) 4.31906 4.31906i 0.141780 0.141780i
\(929\) −27.1722 27.1722i −0.891490 0.891490i 0.103173 0.994663i \(-0.467100\pi\)
−0.994663 + 0.103173i \(0.967100\pi\)
\(930\) 0 0
\(931\) −0.269765 0.269765i −0.00884118 0.00884118i
\(932\) 2.94207i 0.0963708i
\(933\) 0 0
\(934\) 18.8514 + 18.8514i 0.616837 + 0.616837i
\(935\) −28.0840 −0.918444
\(936\) 0 0
\(937\) 23.5920 0.770719 0.385359 0.922767i \(-0.374078\pi\)
0.385359 + 0.922767i \(0.374078\pi\)
\(938\) −2.08222 2.08222i −0.0679870 0.0679870i
\(939\) 0 0
\(940\) 3.86379i 0.126023i
\(941\) 33.9675 + 33.9675i 1.10731 + 1.10731i 0.993503 + 0.113805i \(0.0363038\pi\)
0.113805 + 0.993503i \(0.463696\pi\)
\(942\) 0 0
\(943\) −35.0574 35.0574i −1.14162 1.14162i
\(944\) −1.84687 + 1.84687i −0.0601104 + 0.0601104i
\(945\) 0 0
\(946\) 8.68066i 0.282233i
\(947\) −24.0942 + 24.0942i −0.782956 + 0.782956i −0.980329 0.197373i \(-0.936759\pi\)
0.197373 + 0.980329i \(0.436759\pi\)
\(948\) 0 0
\(949\) 21.7761 20.0492i 0.706882 0.650825i
\(950\) 0.152293i 0.00494102i
\(951\) 0 0
\(952\) −5.58470 −0.181001
\(953\) −47.4433 −1.53684 −0.768419 0.639947i \(-0.778956\pi\)
−0.768419 + 0.639947i \(0.778956\pi\)
\(954\) 0 0
\(955\) −27.6183 + 27.6183i −0.893708 + 0.893708i
\(956\) −11.1260 + 11.1260i −0.359841 + 0.359841i
\(957\) 0 0
\(958\) 11.0259 0.356231
\(959\) −5.84101 −0.188616
\(960\) 0 0
\(961\) 30.5454i 0.985336i
\(962\) 12.1271 + 0.500700i 0.390992 + 0.0161432i
\(963\) 0 0
\(964\) 8.50173 8.50173i 0.273822 0.273822i
\(965\) 19.1820i 0.617490i
\(966\) 0 0
\(967\) 35.9011 35.9011i 1.15450 1.15450i 0.168863 0.985640i \(-0.445990\pi\)
0.985640 0.168863i \(-0.0540095\pi\)
\(968\) 4.46630 + 4.46630i 0.143552 + 0.143552i
\(969\) 0 0
\(970\) 1.75056 + 1.75056i 0.0562072 + 0.0562072i
\(971\) 23.9787i 0.769512i −0.923018 0.384756i \(-0.874286\pi\)
0.923018 0.384756i \(-0.125714\pi\)
\(972\) 0 0
\(973\) −9.17321 9.17321i −0.294080 0.294080i
\(974\) 17.0899 0.547595
\(975\) 0 0
\(976\) 1.03753 0.0332104
\(977\) 8.45109 + 8.45109i 0.270374 + 0.270374i 0.829251 0.558876i \(-0.188767\pi\)
−0.558876 + 0.829251i \(0.688767\pi\)
\(978\) 0 0
\(979\) 14.8278i 0.473899i
\(980\) 1.64304 + 1.64304i 0.0524851 + 0.0524851i
\(981\) 0 0
\(982\) −30.9336 30.9336i −0.987131 0.987131i
\(983\) 33.2491 33.2491i 1.06048 1.06048i 0.0624314 0.998049i \(-0.480115\pi\)
0.998049 0.0624314i \(-0.0198855\pi\)
\(984\) 0 0
\(985\) 10.2318i 0.326014i
\(986\) −24.1206 + 24.1206i −0.768157 + 0.768157i
\(987\) 0 0
\(988\) 1.01195 0.931698i 0.0321943 0.0296413i
\(989\) 17.8399i 0.567275i
\(990\) 0 0
\(991\) −18.1429 −0.576327 −0.288164 0.957581i \(-0.593045\pi\)
−0.288164 + 0.957581i \(0.593045\pi\)
\(992\) −0.674226 −0.0214067
\(993\) 0 0
\(994\) 5.32146 5.32146i 0.168786 0.168786i
\(995\) 29.6755 29.6755i 0.940775 0.940775i
\(996\) 0 0
\(997\) 25.5884 0.810393 0.405197 0.914230i \(-0.367203\pi\)
0.405197 + 0.914230i \(0.367203\pi\)
\(998\) −9.42540 −0.298356
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.y.d.1331.1 yes 16
3.2 odd 2 1638.2.y.c.1331.8 yes 16
13.8 odd 4 1638.2.y.c.827.8 16
39.8 even 4 inner 1638.2.y.d.827.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1638.2.y.c.827.8 16 13.8 odd 4
1638.2.y.c.1331.8 yes 16 3.2 odd 2
1638.2.y.d.827.1 yes 16 39.8 even 4 inner
1638.2.y.d.1331.1 yes 16 1.1 even 1 trivial