Properties

Label 1638.2.p.k.991.1
Level $1638$
Weight $2$
Character 1638.991
Analytic conductor $13.079$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(919,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.919"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.p (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,5,0,-5,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.23207289578928.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 3x^{8} + 13x^{7} + x^{6} - 39x^{5} + 3x^{4} + 117x^{3} - 81x^{2} - 162x + 243 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 991.1
Root \(1.16412 - 1.28251i\) of defining polynomial
Character \(\chi\) \(=\) 1638.991
Dual form 1638.2.p.k.919.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-1.69274 - 2.93192i) q^{5} +(-2.60522 - 0.461340i) q^{7} -1.00000 q^{8} -3.38549 q^{10} -3.81165 q^{11} +(-3.24071 - 1.58045i) q^{13} +(-1.70214 + 2.02552i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(2.02198 + 3.50217i) q^{17} +6.15867 q^{19} +(-1.69274 + 2.93192i) q^{20} +(-1.90582 + 3.30098i) q^{22} +(0.528629 - 0.915612i) q^{23} +(-3.23077 + 5.59586i) q^{25} +(-2.98906 + 2.01631i) q^{26} +(0.903077 + 2.48686i) q^{28} +(1.15418 + 1.99910i) q^{29} +(-1.99060 + 3.44783i) q^{31} +(0.500000 + 0.866025i) q^{32} +4.04396 q^{34} +(3.05736 + 8.41923i) q^{35} +(2.71208 - 4.69745i) q^{37} +(3.07934 - 5.33357i) q^{38} +(1.69274 + 2.93192i) q^{40} +(2.26094 + 3.91606i) q^{41} +(3.46973 - 6.00975i) q^{43} +(1.90582 + 3.30098i) q^{44} +(-0.528629 - 0.915612i) q^{46} +(2.77034 + 4.79836i) q^{47} +(6.57433 + 2.40379i) q^{49} +(3.23077 + 5.59586i) q^{50} +(0.251642 + 3.59676i) q^{52} +(-3.81720 + 6.61158i) q^{53} +(6.45214 + 11.1754i) q^{55} +(2.60522 + 0.461340i) q^{56} +2.30836 q^{58} +(-3.74061 - 6.47892i) q^{59} -12.7931 q^{61} +(1.99060 + 3.44783i) q^{62} +1.00000 q^{64} +(0.851932 + 12.1768i) q^{65} -8.84811 q^{67} +(2.02198 - 3.50217i) q^{68} +(8.81994 + 1.56186i) q^{70} +(7.21308 - 12.4934i) q^{71} +(-3.61790 + 6.26639i) q^{73} +(-2.71208 - 4.69745i) q^{74} +(-3.07934 - 5.33357i) q^{76} +(9.93017 + 1.75847i) q^{77} +(0.222913 + 0.386097i) q^{79} +3.38549 q^{80} +4.52188 q^{82} -15.1718 q^{83} +(6.84539 - 11.8566i) q^{85} +(-3.46973 - 6.00975i) q^{86} +3.81165 q^{88} +(4.11790 - 7.13241i) q^{89} +(7.71362 + 5.61249i) q^{91} -1.05726 q^{92} +5.54067 q^{94} +(-10.4251 - 18.0567i) q^{95} +(-6.18181 + 10.7072i) q^{97} +(5.36890 - 4.49164i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 5 q^{2} - 5 q^{4} + 2 q^{5} - 10 q^{8} + 4 q^{10} - 8 q^{11} - 6 q^{13} + 3 q^{14} - 5 q^{16} + 3 q^{17} + 10 q^{19} + 2 q^{20} - 4 q^{22} - 4 q^{23} - 3 q^{25} - 6 q^{26} + 3 q^{28} - q^{29} - 21 q^{31}+ \cdots + 5 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.69274 2.93192i −0.757019 1.31119i −0.944365 0.328901i \(-0.893322\pi\)
0.187346 0.982294i \(-0.440011\pi\)
\(6\) 0 0
\(7\) −2.60522 0.461340i −0.984680 0.174370i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −3.38549 −1.07059
\(11\) −3.81165 −1.14925 −0.574627 0.818415i \(-0.694853\pi\)
−0.574627 + 0.818415i \(0.694853\pi\)
\(12\) 0 0
\(13\) −3.24071 1.58045i −0.898810 0.438338i
\(14\) −1.70214 + 2.02552i −0.454917 + 0.541342i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.02198 + 3.50217i 0.490402 + 0.849401i 0.999939 0.0110479i \(-0.00351672\pi\)
−0.509537 + 0.860449i \(0.670183\pi\)
\(18\) 0 0
\(19\) 6.15867 1.41290 0.706448 0.707765i \(-0.250296\pi\)
0.706448 + 0.707765i \(0.250296\pi\)
\(20\) −1.69274 + 2.93192i −0.378509 + 0.655597i
\(21\) 0 0
\(22\) −1.90582 + 3.30098i −0.406323 + 0.703772i
\(23\) 0.528629 0.915612i 0.110227 0.190918i −0.805635 0.592412i \(-0.798176\pi\)
0.915862 + 0.401494i \(0.131509\pi\)
\(24\) 0 0
\(25\) −3.23077 + 5.59586i −0.646154 + 1.11917i
\(26\) −2.98906 + 2.01631i −0.586204 + 0.395431i
\(27\) 0 0
\(28\) 0.903077 + 2.48686i 0.170665 + 0.469972i
\(29\) 1.15418 + 1.99910i 0.214326 + 0.371224i 0.953064 0.302769i \(-0.0979112\pi\)
−0.738738 + 0.673993i \(0.764578\pi\)
\(30\) 0 0
\(31\) −1.99060 + 3.44783i −0.357523 + 0.619248i −0.987546 0.157328i \(-0.949712\pi\)
0.630023 + 0.776576i \(0.283045\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 4.04396 0.693533
\(35\) 3.05736 + 8.41923i 0.516788 + 1.42311i
\(36\) 0 0
\(37\) 2.71208 4.69745i 0.445863 0.772257i −0.552249 0.833679i \(-0.686230\pi\)
0.998112 + 0.0614223i \(0.0195636\pi\)
\(38\) 3.07934 5.33357i 0.499534 0.865219i
\(39\) 0 0
\(40\) 1.69274 + 2.93192i 0.267646 + 0.463577i
\(41\) 2.26094 + 3.91606i 0.353099 + 0.611586i 0.986791 0.162000i \(-0.0517944\pi\)
−0.633691 + 0.773586i \(0.718461\pi\)
\(42\) 0 0
\(43\) 3.46973 6.00975i 0.529129 0.916479i −0.470294 0.882510i \(-0.655852\pi\)
0.999423 0.0339686i \(-0.0108146\pi\)
\(44\) 1.90582 + 3.30098i 0.287314 + 0.497642i
\(45\) 0 0
\(46\) −0.528629 0.915612i −0.0779421 0.135000i
\(47\) 2.77034 + 4.79836i 0.404095 + 0.699913i 0.994216 0.107402i \(-0.0342532\pi\)
−0.590121 + 0.807315i \(0.700920\pi\)
\(48\) 0 0
\(49\) 6.57433 + 2.40379i 0.939190 + 0.343398i
\(50\) 3.23077 + 5.59586i 0.456900 + 0.791374i
\(51\) 0 0
\(52\) 0.251642 + 3.59676i 0.0348965 + 0.498781i
\(53\) −3.81720 + 6.61158i −0.524332 + 0.908170i 0.475267 + 0.879842i \(0.342352\pi\)
−0.999599 + 0.0283281i \(0.990982\pi\)
\(54\) 0 0
\(55\) 6.45214 + 11.1754i 0.870007 + 1.50690i
\(56\) 2.60522 + 0.461340i 0.348137 + 0.0616492i
\(57\) 0 0
\(58\) 2.30836 0.303103
\(59\) −3.74061 6.47892i −0.486985 0.843483i 0.512903 0.858447i \(-0.328570\pi\)
−0.999888 + 0.0149633i \(0.995237\pi\)
\(60\) 0 0
\(61\) −12.7931 −1.63798 −0.818992 0.573805i \(-0.805467\pi\)
−0.818992 + 0.573805i \(0.805467\pi\)
\(62\) 1.99060 + 3.44783i 0.252807 + 0.437874i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.851932 + 12.1768i 0.105669 + 1.51035i
\(66\) 0 0
\(67\) −8.84811 −1.08097 −0.540484 0.841354i \(-0.681759\pi\)
−0.540484 + 0.841354i \(0.681759\pi\)
\(68\) 2.02198 3.50217i 0.245201 0.424700i
\(69\) 0 0
\(70\) 8.81994 + 1.56186i 1.05418 + 0.186678i
\(71\) 7.21308 12.4934i 0.856036 1.48270i −0.0196454 0.999807i \(-0.506254\pi\)
0.875681 0.482890i \(-0.160413\pi\)
\(72\) 0 0
\(73\) −3.61790 + 6.26639i −0.423443 + 0.733425i −0.996274 0.0862488i \(-0.972512\pi\)
0.572830 + 0.819674i \(0.305845\pi\)
\(74\) −2.71208 4.69745i −0.315273 0.546068i
\(75\) 0 0
\(76\) −3.07934 5.33357i −0.353224 0.611802i
\(77\) 9.93017 + 1.75847i 1.13165 + 0.200396i
\(78\) 0 0
\(79\) 0.222913 + 0.386097i 0.0250797 + 0.0434393i 0.878293 0.478123i \(-0.158683\pi\)
−0.853213 + 0.521562i \(0.825349\pi\)
\(80\) 3.38549 0.378509
\(81\) 0 0
\(82\) 4.52188 0.499358
\(83\) −15.1718 −1.66532 −0.832659 0.553786i \(-0.813183\pi\)
−0.832659 + 0.553786i \(0.813183\pi\)
\(84\) 0 0
\(85\) 6.84539 11.8566i 0.742486 1.28602i
\(86\) −3.46973 6.00975i −0.374151 0.648048i
\(87\) 0 0
\(88\) 3.81165 0.406323
\(89\) 4.11790 7.13241i 0.436497 0.756034i −0.560920 0.827870i \(-0.689552\pi\)
0.997416 + 0.0718359i \(0.0228858\pi\)
\(90\) 0 0
\(91\) 7.71362 + 5.61249i 0.808607 + 0.588349i
\(92\) −1.05726 −0.110227
\(93\) 0 0
\(94\) 5.54067 0.571477
\(95\) −10.4251 18.0567i −1.06959 1.85258i
\(96\) 0 0
\(97\) −6.18181 + 10.7072i −0.627668 + 1.08715i 0.360351 + 0.932817i \(0.382657\pi\)
−0.988019 + 0.154335i \(0.950676\pi\)
\(98\) 5.36890 4.49164i 0.542341 0.453725i
\(99\) 0 0
\(100\) 6.46154 0.646154
\(101\) −12.2347 −1.21740 −0.608700 0.793400i \(-0.708309\pi\)
−0.608700 + 0.793400i \(0.708309\pi\)
\(102\) 0 0
\(103\) 5.59528 + 9.69132i 0.551320 + 0.954914i 0.998180 + 0.0603098i \(0.0192089\pi\)
−0.446860 + 0.894604i \(0.647458\pi\)
\(104\) 3.24071 + 1.58045i 0.317777 + 0.154976i
\(105\) 0 0
\(106\) 3.81720 + 6.61158i 0.370759 + 0.642173i
\(107\) 0.681703 1.18074i 0.0659027 0.114147i −0.831191 0.555986i \(-0.812341\pi\)
0.897094 + 0.441840i \(0.145674\pi\)
\(108\) 0 0
\(109\) −1.56445 + 2.70970i −0.149847 + 0.259542i −0.931171 0.364583i \(-0.881211\pi\)
0.781324 + 0.624126i \(0.214545\pi\)
\(110\) 12.9043 1.23038
\(111\) 0 0
\(112\) 1.70214 2.02552i 0.160837 0.191393i
\(113\) −6.53202 + 11.3138i −0.614481 + 1.06431i 0.375995 + 0.926622i \(0.377301\pi\)
−0.990475 + 0.137690i \(0.956032\pi\)
\(114\) 0 0
\(115\) −3.57934 −0.333775
\(116\) 1.15418 1.99910i 0.107163 0.185612i
\(117\) 0 0
\(118\) −7.48121 −0.688701
\(119\) −3.65200 10.0567i −0.334779 0.921900i
\(120\) 0 0
\(121\) 3.52865 0.320786
\(122\) −6.39653 + 11.0791i −0.579115 + 1.00306i
\(123\) 0 0
\(124\) 3.98121 0.357523
\(125\) 4.94803 0.442566
\(126\) 0 0
\(127\) 1.67077 + 2.89385i 0.148257 + 0.256788i 0.930583 0.366081i \(-0.119301\pi\)
−0.782327 + 0.622868i \(0.785967\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 10.9714 + 5.35060i 0.962253 + 0.469279i
\(131\) 1.26769 + 2.19570i 0.110759 + 0.191839i 0.916076 0.401004i \(-0.131339\pi\)
−0.805318 + 0.592843i \(0.798005\pi\)
\(132\) 0 0
\(133\) −16.0447 2.84124i −1.39125 0.246367i
\(134\) −4.42405 + 7.66269i −0.382180 + 0.661955i
\(135\) 0 0
\(136\) −2.02198 3.50217i −0.173383 0.300309i
\(137\) 6.30346 + 10.9179i 0.538541 + 0.932780i 0.998983 + 0.0450901i \(0.0143575\pi\)
−0.460442 + 0.887690i \(0.652309\pi\)
\(138\) 0 0
\(139\) −9.41422 + 16.3059i −0.798504 + 1.38305i 0.122086 + 0.992520i \(0.461042\pi\)
−0.920590 + 0.390530i \(0.872292\pi\)
\(140\) 5.76258 6.85736i 0.487027 0.579553i
\(141\) 0 0
\(142\) −7.21308 12.4934i −0.605309 1.04843i
\(143\) 12.3524 + 6.02412i 1.03296 + 0.503762i
\(144\) 0 0
\(145\) 3.90747 6.76793i 0.324498 0.562046i
\(146\) 3.61790 + 6.26639i 0.299420 + 0.518610i
\(147\) 0 0
\(148\) −5.42415 −0.445863
\(149\) −0.900600 −0.0737800 −0.0368900 0.999319i \(-0.511745\pi\)
−0.0368900 + 0.999319i \(0.511745\pi\)
\(150\) 0 0
\(151\) 4.25984 7.37826i 0.346661 0.600434i −0.638993 0.769212i \(-0.720649\pi\)
0.985654 + 0.168778i \(0.0539822\pi\)
\(152\) −6.15867 −0.499534
\(153\) 0 0
\(154\) 6.48796 7.72055i 0.522815 0.622140i
\(155\) 13.4783 1.08261
\(156\) 0 0
\(157\) −8.58044 + 14.8618i −0.684794 + 1.18610i 0.288708 + 0.957417i \(0.406774\pi\)
−0.973502 + 0.228681i \(0.926559\pi\)
\(158\) 0.445826 0.0354680
\(159\) 0 0
\(160\) 1.69274 2.93192i 0.133823 0.231789i
\(161\) −1.79960 + 2.14149i −0.141829 + 0.168773i
\(162\) 0 0
\(163\) 15.3363 1.20123 0.600614 0.799539i \(-0.294923\pi\)
0.600614 + 0.799539i \(0.294923\pi\)
\(164\) 2.26094 3.91606i 0.176550 0.305793i
\(165\) 0 0
\(166\) −7.58589 + 13.1391i −0.588779 + 1.01980i
\(167\) −8.86135 15.3483i −0.685712 1.18769i −0.973212 0.229908i \(-0.926158\pi\)
0.287500 0.957780i \(-0.407176\pi\)
\(168\) 0 0
\(169\) 8.00435 + 10.2436i 0.615719 + 0.787966i
\(170\) −6.84539 11.8566i −0.525017 0.909356i
\(171\) 0 0
\(172\) −6.93946 −0.529129
\(173\) −1.13351 −0.0861791 −0.0430896 0.999071i \(-0.513720\pi\)
−0.0430896 + 0.999071i \(0.513720\pi\)
\(174\) 0 0
\(175\) 10.9985 13.0880i 0.831405 0.989356i
\(176\) 1.90582 3.30098i 0.143657 0.248821i
\(177\) 0 0
\(178\) −4.11790 7.13241i −0.308650 0.534597i
\(179\) −12.6667 −0.946753 −0.473376 0.880860i \(-0.656965\pi\)
−0.473376 + 0.880860i \(0.656965\pi\)
\(180\) 0 0
\(181\) 0.919394 0.0683380 0.0341690 0.999416i \(-0.489122\pi\)
0.0341690 + 0.999416i \(0.489122\pi\)
\(182\) 8.71737 3.87395i 0.646174 0.287156i
\(183\) 0 0
\(184\) −0.528629 + 0.915612i −0.0389710 + 0.0674998i
\(185\) −18.3634 −1.35011
\(186\) 0 0
\(187\) −7.70707 13.3490i −0.563596 0.976178i
\(188\) 2.77034 4.79836i 0.202048 0.349957i
\(189\) 0 0
\(190\) −20.8501 −1.51263
\(191\) −3.08586 −0.223285 −0.111643 0.993748i \(-0.535611\pi\)
−0.111643 + 0.993748i \(0.535611\pi\)
\(192\) 0 0
\(193\) −20.9098 −1.50512 −0.752560 0.658524i \(-0.771181\pi\)
−0.752560 + 0.658524i \(0.771181\pi\)
\(194\) 6.18181 + 10.7072i 0.443828 + 0.768733i
\(195\) 0 0
\(196\) −1.20543 6.89543i −0.0861019 0.492531i
\(197\) −1.71308 2.96714i −0.122052 0.211400i 0.798525 0.601962i \(-0.205614\pi\)
−0.920577 + 0.390562i \(0.872281\pi\)
\(198\) 0 0
\(199\) −6.44121 11.1565i −0.456605 0.790863i 0.542174 0.840266i \(-0.317601\pi\)
−0.998779 + 0.0494031i \(0.984268\pi\)
\(200\) 3.23077 5.59586i 0.228450 0.395687i
\(201\) 0 0
\(202\) −6.11736 + 10.5956i −0.430416 + 0.745503i
\(203\) −2.08463 5.74056i −0.146312 0.402909i
\(204\) 0 0
\(205\) 7.65439 13.2578i 0.534606 0.925964i
\(206\) 11.1906 0.779684
\(207\) 0 0
\(208\) 2.98906 2.01631i 0.207254 0.139806i
\(209\) −23.4747 −1.62378
\(210\) 0 0
\(211\) 2.06776 + 3.58146i 0.142350 + 0.246558i 0.928381 0.371629i \(-0.121201\pi\)
−0.786031 + 0.618187i \(0.787867\pi\)
\(212\) 7.63439 0.524332
\(213\) 0 0
\(214\) −0.681703 1.18074i −0.0466003 0.0807140i
\(215\) −23.4935 −1.60224
\(216\) 0 0
\(217\) 6.77658 8.06399i 0.460024 0.547420i
\(218\) 1.56445 + 2.70970i 0.105958 + 0.183524i
\(219\) 0 0
\(220\) 6.45214 11.1754i 0.435004 0.753448i
\(221\) −1.01763 14.5451i −0.0684532 0.978412i
\(222\) 0 0
\(223\) −1.07475 1.86151i −0.0719703 0.124656i 0.827794 0.561031i \(-0.189595\pi\)
−0.899765 + 0.436375i \(0.856262\pi\)
\(224\) −0.903077 2.48686i −0.0603394 0.166160i
\(225\) 0 0
\(226\) 6.53202 + 11.3138i 0.434503 + 0.752582i
\(227\) 3.91933 + 6.78848i 0.260135 + 0.450567i 0.966278 0.257503i \(-0.0828996\pi\)
−0.706143 + 0.708070i \(0.749566\pi\)
\(228\) 0 0
\(229\) 5.97741 + 10.3532i 0.394998 + 0.684157i 0.993101 0.117262i \(-0.0374119\pi\)
−0.598103 + 0.801419i \(0.704079\pi\)
\(230\) −1.78967 + 3.09980i −0.118007 + 0.204394i
\(231\) 0 0
\(232\) −1.15418 1.99910i −0.0757757 0.131247i
\(233\) 14.0340 + 24.3076i 0.919400 + 1.59245i 0.800329 + 0.599561i \(0.204658\pi\)
0.119071 + 0.992886i \(0.462008\pi\)
\(234\) 0 0
\(235\) 9.37894 16.2448i 0.611815 1.05969i
\(236\) −3.74061 + 6.47892i −0.243493 + 0.421742i
\(237\) 0 0
\(238\) −10.5354 1.86564i −0.682908 0.120931i
\(239\) 14.8144 0.958262 0.479131 0.877743i \(-0.340952\pi\)
0.479131 + 0.877743i \(0.340952\pi\)
\(240\) 0 0
\(241\) 0.473016 + 0.819288i 0.0304696 + 0.0527750i 0.880858 0.473380i \(-0.156966\pi\)
−0.850388 + 0.526155i \(0.823633\pi\)
\(242\) 1.76432 3.05590i 0.113415 0.196441i
\(243\) 0 0
\(244\) 6.39653 + 11.0791i 0.409496 + 0.709268i
\(245\) −4.08096 23.3444i −0.260723 1.49142i
\(246\) 0 0
\(247\) −19.9584 9.73348i −1.26993 0.619327i
\(248\) 1.99060 3.44783i 0.126403 0.218937i
\(249\) 0 0
\(250\) 2.47402 4.28512i 0.156471 0.271015i
\(251\) −6.43291 + 11.1421i −0.406042 + 0.703285i −0.994442 0.105285i \(-0.966425\pi\)
0.588400 + 0.808570i \(0.299758\pi\)
\(252\) 0 0
\(253\) −2.01495 + 3.48999i −0.126679 + 0.219414i
\(254\) 3.34153 0.209666
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −1.70763 + 2.95771i −0.106519 + 0.184497i −0.914358 0.404907i \(-0.867304\pi\)
0.807839 + 0.589404i \(0.200637\pi\)
\(258\) 0 0
\(259\) −9.23268 + 10.9867i −0.573691 + 0.682681i
\(260\) 10.1194 6.82619i 0.627581 0.423342i
\(261\) 0 0
\(262\) 2.53538 0.156636
\(263\) 0.446191 0.0275133 0.0137567 0.999905i \(-0.495621\pi\)
0.0137567 + 0.999905i \(0.495621\pi\)
\(264\) 0 0
\(265\) 25.8462 1.58772
\(266\) −10.4829 + 12.4745i −0.642750 + 0.764860i
\(267\) 0 0
\(268\) 4.42405 + 7.66269i 0.270242 + 0.468073i
\(269\) 2.05561 + 3.56043i 0.125333 + 0.217083i 0.921863 0.387516i \(-0.126667\pi\)
−0.796530 + 0.604599i \(0.793333\pi\)
\(270\) 0 0
\(271\) 6.67506 11.5615i 0.405481 0.702314i −0.588896 0.808209i \(-0.700437\pi\)
0.994377 + 0.105895i \(0.0337707\pi\)
\(272\) −4.04396 −0.245201
\(273\) 0 0
\(274\) 12.6069 0.761611
\(275\) 12.3146 21.3294i 0.742596 1.28621i
\(276\) 0 0
\(277\) −9.47805 16.4165i −0.569481 0.986369i −0.996617 0.0821822i \(-0.973811\pi\)
0.427137 0.904187i \(-0.359522\pi\)
\(278\) 9.41422 + 16.3059i 0.564628 + 0.977964i
\(279\) 0 0
\(280\) −3.05736 8.41923i −0.182712 0.503145i
\(281\) 0.101414 0.00604986 0.00302493 0.999995i \(-0.499037\pi\)
0.00302493 + 0.999995i \(0.499037\pi\)
\(282\) 0 0
\(283\) 4.87779 0.289954 0.144977 0.989435i \(-0.453689\pi\)
0.144977 + 0.989435i \(0.453689\pi\)
\(284\) −14.4262 −0.856036
\(285\) 0 0
\(286\) 11.3933 7.68545i 0.673697 0.454450i
\(287\) −4.08360 11.2453i −0.241048 0.663787i
\(288\) 0 0
\(289\) 0.323209 0.559814i 0.0190123 0.0329302i
\(290\) −3.90747 6.76793i −0.229454 0.397427i
\(291\) 0 0
\(292\) 7.23580 0.423443
\(293\) 12.4185 21.5095i 0.725497 1.25660i −0.233272 0.972412i \(-0.574943\pi\)
0.958769 0.284186i \(-0.0917234\pi\)
\(294\) 0 0
\(295\) −12.6638 + 21.9343i −0.737314 + 1.27707i
\(296\) −2.71208 + 4.69745i −0.157636 + 0.273034i
\(297\) 0 0
\(298\) −0.450300 + 0.779942i −0.0260852 + 0.0451809i
\(299\) −3.16021 + 2.13176i −0.182760 + 0.123283i
\(300\) 0 0
\(301\) −11.8120 + 14.0560i −0.680830 + 0.810174i
\(302\) −4.25984 7.37826i −0.245126 0.424571i
\(303\) 0 0
\(304\) −3.07934 + 5.33357i −0.176612 + 0.305901i
\(305\) 21.6554 + 37.5082i 1.23998 + 2.14772i
\(306\) 0 0
\(307\) −11.9098 −0.679727 −0.339864 0.940475i \(-0.610381\pi\)
−0.339864 + 0.940475i \(0.610381\pi\)
\(308\) −3.44221 9.47901i −0.196138 0.540117i
\(309\) 0 0
\(310\) 6.73917 11.6726i 0.382759 0.662958i
\(311\) −1.98193 + 3.43280i −0.112385 + 0.194656i −0.916731 0.399504i \(-0.869182\pi\)
0.804347 + 0.594160i \(0.202516\pi\)
\(312\) 0 0
\(313\) −13.7241 23.7709i −0.775733 1.34361i −0.934381 0.356275i \(-0.884047\pi\)
0.158648 0.987335i \(-0.449287\pi\)
\(314\) 8.58044 + 14.8618i 0.484222 + 0.838698i
\(315\) 0 0
\(316\) 0.222913 0.386097i 0.0125398 0.0217197i
\(317\) −12.2858 21.2796i −0.690038 1.19518i −0.971825 0.235703i \(-0.924261\pi\)
0.281788 0.959477i \(-0.409073\pi\)
\(318\) 0 0
\(319\) −4.39933 7.61986i −0.246315 0.426630i
\(320\) −1.69274 2.93192i −0.0946273 0.163899i
\(321\) 0 0
\(322\) 0.954785 + 2.62925i 0.0532081 + 0.146522i
\(323\) 12.4527 + 21.5687i 0.692887 + 1.20012i
\(324\) 0 0
\(325\) 19.3140 13.0285i 1.07135 0.722689i
\(326\) 7.66813 13.2816i 0.424698 0.735599i
\(327\) 0 0
\(328\) −2.26094 3.91606i −0.124839 0.216228i
\(329\) −5.00365 13.7789i −0.275860 0.759653i
\(330\) 0 0
\(331\) 28.6536 1.57494 0.787472 0.616350i \(-0.211389\pi\)
0.787472 + 0.616350i \(0.211389\pi\)
\(332\) 7.58589 + 13.1391i 0.416330 + 0.721104i
\(333\) 0 0
\(334\) −17.7227 −0.969743
\(335\) 14.9776 + 25.9419i 0.818313 + 1.41736i
\(336\) 0 0
\(337\) 8.86295 0.482795 0.241398 0.970426i \(-0.422394\pi\)
0.241398 + 0.970426i \(0.422394\pi\)
\(338\) 12.8734 1.81019i 0.700218 0.0984615i
\(339\) 0 0
\(340\) −13.6908 −0.742486
\(341\) 7.58747 13.1419i 0.410885 0.711673i
\(342\) 0 0
\(343\) −16.0186 9.29539i −0.864923 0.501904i
\(344\) −3.46973 + 6.00975i −0.187075 + 0.324024i
\(345\) 0 0
\(346\) −0.566755 + 0.981648i −0.0304689 + 0.0527737i
\(347\) 0.628304 + 1.08825i 0.0337291 + 0.0584205i 0.882397 0.470505i \(-0.155928\pi\)
−0.848668 + 0.528926i \(0.822595\pi\)
\(348\) 0 0
\(349\) −11.8310 20.4919i −0.633298 1.09690i −0.986873 0.161499i \(-0.948367\pi\)
0.353575 0.935406i \(-0.384966\pi\)
\(350\) −5.83527 16.0689i −0.311908 0.858920i
\(351\) 0 0
\(352\) −1.90582 3.30098i −0.101581 0.175943i
\(353\) 11.9262 0.634766 0.317383 0.948298i \(-0.397196\pi\)
0.317383 + 0.948298i \(0.397196\pi\)
\(354\) 0 0
\(355\) −48.8396 −2.59214
\(356\) −8.23580 −0.436497
\(357\) 0 0
\(358\) −6.33334 + 10.9697i −0.334728 + 0.579765i
\(359\) −1.48413 2.57060i −0.0783296 0.135671i 0.824200 0.566299i \(-0.191625\pi\)
−0.902529 + 0.430628i \(0.858292\pi\)
\(360\) 0 0
\(361\) 18.9292 0.996276
\(362\) 0.459697 0.796218i 0.0241611 0.0418483i
\(363\) 0 0
\(364\) 1.00375 9.48644i 0.0526107 0.497224i
\(365\) 24.4967 1.28222
\(366\) 0 0
\(367\) 13.2847 0.693455 0.346728 0.937966i \(-0.387293\pi\)
0.346728 + 0.937966i \(0.387293\pi\)
\(368\) 0.528629 + 0.915612i 0.0275567 + 0.0477296i
\(369\) 0 0
\(370\) −9.18171 + 15.9032i −0.477334 + 0.826767i
\(371\) 12.9948 15.4636i 0.674657 0.802829i
\(372\) 0 0
\(373\) 19.6620 1.01806 0.509029 0.860750i \(-0.330005\pi\)
0.509029 + 0.860750i \(0.330005\pi\)
\(374\) −15.4141 −0.797046
\(375\) 0 0
\(376\) −2.77034 4.79836i −0.142869 0.247457i
\(377\) −0.580881 8.30262i −0.0299169 0.427607i
\(378\) 0 0
\(379\) −17.0038 29.4514i −0.873425 1.51282i −0.858431 0.512929i \(-0.828560\pi\)
−0.0149946 0.999888i \(-0.504773\pi\)
\(380\) −10.4251 + 18.0567i −0.534794 + 0.926291i
\(381\) 0 0
\(382\) −1.54293 + 2.67244i −0.0789433 + 0.136734i
\(383\) −35.8064 −1.82962 −0.914810 0.403885i \(-0.867660\pi\)
−0.914810 + 0.403885i \(0.867660\pi\)
\(384\) 0 0
\(385\) −11.6536 32.0911i −0.593921 1.63551i
\(386\) −10.4549 + 18.1084i −0.532140 + 0.921693i
\(387\) 0 0
\(388\) 12.3636 0.627668
\(389\) −7.37957 + 12.7818i −0.374159 + 0.648062i −0.990201 0.139651i \(-0.955402\pi\)
0.616042 + 0.787713i \(0.288735\pi\)
\(390\) 0 0
\(391\) 4.27550 0.216222
\(392\) −6.57433 2.40379i −0.332054 0.121409i
\(393\) 0 0
\(394\) −3.42616 −0.172607
\(395\) 0.754670 1.30713i 0.0379716 0.0657687i
\(396\) 0 0
\(397\) −28.4087 −1.42579 −0.712895 0.701271i \(-0.752616\pi\)
−0.712895 + 0.701271i \(0.752616\pi\)
\(398\) −12.8824 −0.645737
\(399\) 0 0
\(400\) −3.23077 5.59586i −0.161539 0.279793i
\(401\) 10.3718 17.9645i 0.517944 0.897105i −0.481839 0.876260i \(-0.660031\pi\)
0.999783 0.0208450i \(-0.00663564\pi\)
\(402\) 0 0
\(403\) 11.9001 8.02734i 0.592785 0.399870i
\(404\) 6.11736 + 10.5956i 0.304350 + 0.527150i
\(405\) 0 0
\(406\) −6.01379 1.06494i −0.298459 0.0528521i
\(407\) −10.3375 + 17.9050i −0.512410 + 0.887520i
\(408\) 0 0
\(409\) 7.88886 + 13.6639i 0.390079 + 0.675637i 0.992460 0.122572i \(-0.0391143\pi\)
−0.602380 + 0.798209i \(0.705781\pi\)
\(410\) −7.65439 13.2578i −0.378023 0.654755i
\(411\) 0 0
\(412\) 5.59528 9.69132i 0.275660 0.477457i
\(413\) 6.75611 + 18.6047i 0.332446 + 0.915477i
\(414\) 0 0
\(415\) 25.6819 + 44.4824i 1.26068 + 2.18356i
\(416\) −0.251642 3.59676i −0.0123378 0.176346i
\(417\) 0 0
\(418\) −11.7373 + 20.3297i −0.574092 + 0.994357i
\(419\) −2.80653 4.86106i −0.137108 0.237478i 0.789293 0.614017i \(-0.210447\pi\)
−0.926401 + 0.376539i \(0.877114\pi\)
\(420\) 0 0
\(421\) 15.1986 0.740736 0.370368 0.928885i \(-0.379232\pi\)
0.370368 + 0.928885i \(0.379232\pi\)
\(422\) 4.13551 0.201314
\(423\) 0 0
\(424\) 3.81720 6.61158i 0.185379 0.321087i
\(425\) −26.1302 −1.26750
\(426\) 0 0
\(427\) 33.3287 + 5.90196i 1.61289 + 0.285616i
\(428\) −1.36341 −0.0659027
\(429\) 0 0
\(430\) −11.7467 + 20.3460i −0.566478 + 0.981169i
\(431\) −3.37143 −0.162396 −0.0811980 0.996698i \(-0.525875\pi\)
−0.0811980 + 0.996698i \(0.525875\pi\)
\(432\) 0 0
\(433\) −8.11993 + 14.0641i −0.390219 + 0.675879i −0.992478 0.122421i \(-0.960934\pi\)
0.602259 + 0.798301i \(0.294267\pi\)
\(434\) −3.59534 9.90069i −0.172582 0.475248i
\(435\) 0 0
\(436\) 3.12889 0.149847
\(437\) 3.25565 5.63896i 0.155739 0.269748i
\(438\) 0 0
\(439\) 12.0552 20.8802i 0.575361 0.996555i −0.420641 0.907227i \(-0.638195\pi\)
0.996002 0.0893280i \(-0.0284719\pi\)
\(440\) −6.45214 11.1754i −0.307594 0.532768i
\(441\) 0 0
\(442\) −13.1053 6.39128i −0.623354 0.304002i
\(443\) −12.4929 21.6383i −0.593554 1.02807i −0.993749 0.111636i \(-0.964391\pi\)
0.400195 0.916430i \(-0.368942\pi\)
\(444\) 0 0
\(445\) −27.8822 −1.32174
\(446\) −2.14949 −0.101781
\(447\) 0 0
\(448\) −2.60522 0.461340i −0.123085 0.0217963i
\(449\) −18.3685 + 31.8153i −0.866865 + 1.50145i −0.00168225 + 0.999999i \(0.500535\pi\)
−0.865183 + 0.501456i \(0.832798\pi\)
\(450\) 0 0
\(451\) −8.61790 14.9266i −0.405801 0.702868i
\(452\) 13.0640 0.614481
\(453\) 0 0
\(454\) 7.83866 0.367887
\(455\) 3.39818 32.1162i 0.159309 1.50563i
\(456\) 0 0
\(457\) −0.583289 + 1.01029i −0.0272851 + 0.0472592i −0.879346 0.476184i \(-0.842020\pi\)
0.852060 + 0.523443i \(0.175353\pi\)
\(458\) 11.9548 0.558612
\(459\) 0 0
\(460\) 1.78967 + 3.09980i 0.0834437 + 0.144529i
\(461\) 6.97353 12.0785i 0.324790 0.562552i −0.656680 0.754169i \(-0.728040\pi\)
0.981470 + 0.191617i \(0.0613731\pi\)
\(462\) 0 0
\(463\) −14.0476 −0.652849 −0.326425 0.945223i \(-0.605844\pi\)
−0.326425 + 0.945223i \(0.605844\pi\)
\(464\) −2.30836 −0.107163
\(465\) 0 0
\(466\) 28.0681 1.30023
\(467\) −4.23028 7.32707i −0.195754 0.339056i 0.751393 0.659855i \(-0.229382\pi\)
−0.947148 + 0.320798i \(0.896049\pi\)
\(468\) 0 0
\(469\) 23.0513 + 4.08199i 1.06441 + 0.188489i
\(470\) −9.37894 16.2448i −0.432618 0.749317i
\(471\) 0 0
\(472\) 3.74061 + 6.47892i 0.172175 + 0.298216i
\(473\) −13.2254 + 22.9070i −0.608104 + 1.05327i
\(474\) 0 0
\(475\) −19.8973 + 34.4631i −0.912949 + 1.58127i
\(476\) −6.88339 + 8.19110i −0.315500 + 0.375438i
\(477\) 0 0
\(478\) 7.40719 12.8296i 0.338797 0.586813i
\(479\) 1.81904 0.0831143 0.0415571 0.999136i \(-0.486768\pi\)
0.0415571 + 0.999136i \(0.486768\pi\)
\(480\) 0 0
\(481\) −16.2131 + 10.9368i −0.739256 + 0.498674i
\(482\) 0.946032 0.0430906
\(483\) 0 0
\(484\) −1.76432 3.05590i −0.0801965 0.138904i
\(485\) 41.8569 1.90062
\(486\) 0 0
\(487\) −11.0288 19.1025i −0.499764 0.865617i 0.500236 0.865889i \(-0.333247\pi\)
−1.00000 0.000272262i \(0.999913\pi\)
\(488\) 12.7931 0.579115
\(489\) 0 0
\(490\) −22.2573 8.13799i −1.00548 0.367637i
\(491\) −9.99653 17.3145i −0.451137 0.781393i 0.547320 0.836924i \(-0.315648\pi\)
−0.998457 + 0.0555310i \(0.982315\pi\)
\(492\) 0 0
\(493\) −4.66746 + 8.08427i −0.210212 + 0.364097i
\(494\) −18.4087 + 12.4178i −0.828245 + 0.558702i
\(495\) 0 0
\(496\) −1.99060 3.44783i −0.0893807 0.154812i
\(497\) −24.5554 + 29.2204i −1.10146 + 1.31072i
\(498\) 0 0
\(499\) −18.3789 31.8331i −0.822750 1.42505i −0.903627 0.428321i \(-0.859105\pi\)
0.0808762 0.996724i \(-0.474228\pi\)
\(500\) −2.47402 4.28512i −0.110641 0.191637i
\(501\) 0 0
\(502\) 6.43291 + 11.1421i 0.287115 + 0.497298i
\(503\) −16.7668 + 29.0409i −0.747594 + 1.29487i 0.201378 + 0.979514i \(0.435458\pi\)
−0.948973 + 0.315358i \(0.897875\pi\)
\(504\) 0 0
\(505\) 20.7103 + 35.8712i 0.921595 + 1.59625i
\(506\) 2.01495 + 3.48999i 0.0895753 + 0.155149i
\(507\) 0 0
\(508\) 1.67077 2.89385i 0.0741283 0.128394i
\(509\) −10.6267 + 18.4059i −0.471018 + 0.815828i −0.999450 0.0331478i \(-0.989447\pi\)
0.528432 + 0.848976i \(0.322780\pi\)
\(510\) 0 0
\(511\) 12.3164 14.6562i 0.544844 0.648353i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 1.70763 + 2.95771i 0.0753205 + 0.130459i
\(515\) 18.9428 32.8099i 0.834718 1.44577i
\(516\) 0 0
\(517\) −10.5595 18.2897i −0.464408 0.804378i
\(518\) 4.89843 + 13.4891i 0.215225 + 0.592677i
\(519\) 0 0
\(520\) −0.851932 12.1768i −0.0373597 0.533988i
\(521\) −2.85368 + 4.94272i −0.125022 + 0.216545i −0.921742 0.387805i \(-0.873234\pi\)
0.796719 + 0.604349i \(0.206567\pi\)
\(522\) 0 0
\(523\) −8.77764 + 15.2033i −0.383819 + 0.664794i −0.991605 0.129307i \(-0.958725\pi\)
0.607785 + 0.794101i \(0.292058\pi\)
\(524\) 1.26769 2.19570i 0.0553793 0.0959197i
\(525\) 0 0
\(526\) 0.223096 0.386413i 0.00972743 0.0168484i
\(527\) −16.0998 −0.701319
\(528\) 0 0
\(529\) 10.9411 + 18.9505i 0.475700 + 0.823937i
\(530\) 12.9231 22.3834i 0.561343 0.972274i
\(531\) 0 0
\(532\) 5.56175 + 15.3157i 0.241133 + 0.664021i
\(533\) −1.13789 16.2641i −0.0492877 0.704477i
\(534\) 0 0
\(535\) −4.61580 −0.199558
\(536\) 8.84811 0.382180
\(537\) 0 0
\(538\) 4.11123 0.177248
\(539\) −25.0590 9.16238i −1.07937 0.394652i
\(540\) 0 0
\(541\) −10.3398 17.9091i −0.444545 0.769974i 0.553476 0.832865i \(-0.313301\pi\)
−0.998020 + 0.0628915i \(0.979968\pi\)
\(542\) −6.67506 11.5615i −0.286718 0.496611i
\(543\) 0 0
\(544\) −2.02198 + 3.50217i −0.0866916 + 0.150154i
\(545\) 10.5928 0.453747
\(546\) 0 0
\(547\) 18.2669 0.781035 0.390517 0.920596i \(-0.372296\pi\)
0.390517 + 0.920596i \(0.372296\pi\)
\(548\) 6.30346 10.9179i 0.269270 0.466390i
\(549\) 0 0
\(550\) −12.3146 21.3294i −0.525094 0.909490i
\(551\) 7.10822 + 12.3118i 0.302820 + 0.524500i
\(552\) 0 0
\(553\) −0.402616 1.10871i −0.0171210 0.0471470i
\(554\) −18.9561 −0.805367
\(555\) 0 0
\(556\) 18.8284 0.798504
\(557\) −11.8309 −0.501289 −0.250645 0.968079i \(-0.580643\pi\)
−0.250645 + 0.968079i \(0.580643\pi\)
\(558\) 0 0
\(559\) −20.7425 + 13.9921i −0.877314 + 0.591803i
\(560\) −8.81994 1.56186i −0.372711 0.0660008i
\(561\) 0 0
\(562\) 0.0507070 0.0878272i 0.00213895 0.00370476i
\(563\) 6.48506 + 11.2325i 0.273313 + 0.473391i 0.969708 0.244267i \(-0.0785473\pi\)
−0.696395 + 0.717658i \(0.745214\pi\)
\(564\) 0 0
\(565\) 44.2282 1.86069
\(566\) 2.43889 4.22429i 0.102514 0.177560i
\(567\) 0 0
\(568\) −7.21308 + 12.4934i −0.302654 + 0.524213i
\(569\) 10.6978 18.5291i 0.448475 0.776782i −0.549812 0.835289i \(-0.685301\pi\)
0.998287 + 0.0585066i \(0.0186339\pi\)
\(570\) 0 0
\(571\) −2.43854 + 4.22367i −0.102050 + 0.176755i −0.912529 0.409012i \(-0.865873\pi\)
0.810479 + 0.585767i \(0.199207\pi\)
\(572\) −0.959171 13.7096i −0.0401049 0.573226i
\(573\) 0 0
\(574\) −11.7805 2.08612i −0.491708 0.0870732i
\(575\) 3.41576 + 5.91627i 0.142447 + 0.246725i
\(576\) 0 0
\(577\) −21.3531 + 36.9847i −0.888942 + 1.53969i −0.0478142 + 0.998856i \(0.515226\pi\)
−0.841128 + 0.540836i \(0.818108\pi\)
\(578\) −0.323209 0.559814i −0.0134437 0.0232852i
\(579\) 0 0
\(580\) −7.81494 −0.324498
\(581\) 39.5258 + 6.99935i 1.63981 + 0.290382i
\(582\) 0 0
\(583\) 14.5498 25.2010i 0.602591 1.04372i
\(584\) 3.61790 6.26639i 0.149710 0.259305i
\(585\) 0 0
\(586\) −12.4185 21.5095i −0.513004 0.888549i
\(587\) −10.9345 18.9390i −0.451313 0.781698i 0.547155 0.837032i \(-0.315711\pi\)
−0.998468 + 0.0553339i \(0.982378\pi\)
\(588\) 0 0
\(589\) −12.2595 + 21.2340i −0.505143 + 0.874933i
\(590\) 12.6638 + 21.9343i 0.521360 + 0.903022i
\(591\) 0 0
\(592\) 2.71208 + 4.69745i 0.111466 + 0.193064i
\(593\) −8.14635 14.1099i −0.334531 0.579424i 0.648864 0.760904i \(-0.275244\pi\)
−0.983395 + 0.181480i \(0.941911\pi\)
\(594\) 0 0
\(595\) −23.3036 + 27.7309i −0.955356 + 1.13685i
\(596\) 0.450300 + 0.779942i 0.0184450 + 0.0319477i
\(597\) 0 0
\(598\) 0.266051 + 3.80270i 0.0108796 + 0.155504i
\(599\) −3.60763 + 6.24860i −0.147404 + 0.255311i −0.930267 0.366883i \(-0.880425\pi\)
0.782863 + 0.622194i \(0.213758\pi\)
\(600\) 0 0
\(601\) 8.29314 + 14.3641i 0.338284 + 0.585926i 0.984110 0.177559i \(-0.0568201\pi\)
−0.645826 + 0.763485i \(0.723487\pi\)
\(602\) 6.26687 + 17.2574i 0.255419 + 0.703361i
\(603\) 0 0
\(604\) −8.51968 −0.346661
\(605\) −5.97310 10.3457i −0.242841 0.420613i
\(606\) 0 0
\(607\) −4.00144 −0.162413 −0.0812067 0.996697i \(-0.525877\pi\)
−0.0812067 + 0.996697i \(0.525877\pi\)
\(608\) 3.07934 + 5.33357i 0.124884 + 0.216305i
\(609\) 0 0
\(610\) 43.3108 1.75360
\(611\) −1.39427 19.9285i −0.0564060 0.806219i
\(612\) 0 0
\(613\) 34.1729 1.38023 0.690115 0.723700i \(-0.257560\pi\)
0.690115 + 0.723700i \(0.257560\pi\)
\(614\) −5.95489 + 10.3142i −0.240320 + 0.416246i
\(615\) 0 0
\(616\) −9.93017 1.75847i −0.400098 0.0708506i
\(617\) −15.0353 + 26.0419i −0.605298 + 1.04841i 0.386707 + 0.922203i \(0.373613\pi\)
−0.992004 + 0.126204i \(0.959721\pi\)
\(618\) 0 0
\(619\) −11.2801 + 19.5377i −0.453386 + 0.785288i −0.998594 0.0530130i \(-0.983118\pi\)
0.545208 + 0.838301i \(0.316451\pi\)
\(620\) −6.73917 11.6726i −0.270651 0.468782i
\(621\) 0 0
\(622\) 1.98193 + 3.43280i 0.0794680 + 0.137643i
\(623\) −14.0185 + 16.6817i −0.561639 + 0.668340i
\(624\) 0 0
\(625\) 7.77809 + 13.4721i 0.311124 + 0.538882i
\(626\) −27.4483 −1.09705
\(627\) 0 0
\(628\) 17.1609 0.684794
\(629\) 21.9350 0.874607
\(630\) 0 0
\(631\) −2.69111 + 4.66114i −0.107131 + 0.185557i −0.914607 0.404344i \(-0.867500\pi\)
0.807476 + 0.589901i \(0.200833\pi\)
\(632\) −0.222913 0.386097i −0.00886701 0.0153581i
\(633\) 0 0
\(634\) −24.5715 −0.975860
\(635\) 5.65636 9.79711i 0.224466 0.388786i
\(636\) 0 0
\(637\) −17.5064 18.1804i −0.693629 0.720332i
\(638\) −8.79866 −0.348342
\(639\) 0 0
\(640\) −3.38549 −0.133823
\(641\) −21.4269 37.1125i −0.846313 1.46586i −0.884476 0.466586i \(-0.845484\pi\)
0.0381629 0.999272i \(-0.487849\pi\)
\(642\) 0 0
\(643\) −11.5199 + 19.9530i −0.454299 + 0.786870i −0.998648 0.0519898i \(-0.983444\pi\)
0.544348 + 0.838859i \(0.316777\pi\)
\(644\) 2.75439 + 0.487756i 0.108538 + 0.0192203i
\(645\) 0 0
\(646\) 24.9054 0.979890
\(647\) 7.95096 0.312585 0.156292 0.987711i \(-0.450046\pi\)
0.156292 + 0.987711i \(0.450046\pi\)
\(648\) 0 0
\(649\) 14.2579 + 24.6953i 0.559670 + 0.969377i
\(650\) −1.62600 23.2406i −0.0637768 0.911572i
\(651\) 0 0
\(652\) −7.66813 13.2816i −0.300307 0.520147i
\(653\) −11.7941 + 20.4280i −0.461540 + 0.799410i −0.999038 0.0438547i \(-0.986036\pi\)
0.537498 + 0.843265i \(0.319369\pi\)
\(654\) 0 0
\(655\) 4.29175 7.43353i 0.167693 0.290452i
\(656\) −4.52188 −0.176550
\(657\) 0 0
\(658\) −14.4347 2.55614i −0.562722 0.0996485i
\(659\) 4.71901 8.17356i 0.183826 0.318397i −0.759354 0.650678i \(-0.774485\pi\)
0.943180 + 0.332281i \(0.107818\pi\)
\(660\) 0 0
\(661\) 12.2600 0.476859 0.238429 0.971160i \(-0.423367\pi\)
0.238429 + 0.971160i \(0.423367\pi\)
\(662\) 14.3268 24.8148i 0.556827 0.964453i
\(663\) 0 0
\(664\) 15.1718 0.588779
\(665\) 18.8293 + 51.8512i 0.730168 + 2.01071i
\(666\) 0 0
\(667\) 2.44053 0.0944979
\(668\) −8.86135 + 15.3483i −0.342856 + 0.593844i
\(669\) 0 0
\(670\) 29.9552 1.15727
\(671\) 48.7626 1.88246
\(672\) 0 0
\(673\) −4.64315 8.04217i −0.178980 0.310003i 0.762551 0.646928i \(-0.223947\pi\)
−0.941532 + 0.336925i \(0.890613\pi\)
\(674\) 4.43147 7.67554i 0.170694 0.295651i
\(675\) 0 0
\(676\) 4.86900 12.0537i 0.187269 0.463606i
\(677\) 18.6823 + 32.3586i 0.718017 + 1.24364i 0.961784 + 0.273809i \(0.0882835\pi\)
−0.243767 + 0.969834i \(0.578383\pi\)
\(678\) 0 0
\(679\) 21.0446 25.0427i 0.807619 0.961051i
\(680\) −6.84539 + 11.8566i −0.262509 + 0.454678i
\(681\) 0 0
\(682\) −7.58747 13.1419i −0.290539 0.503229i
\(683\) 13.5875 + 23.5343i 0.519912 + 0.900514i 0.999732 + 0.0231468i \(0.00736853\pi\)
−0.479820 + 0.877367i \(0.659298\pi\)
\(684\) 0 0
\(685\) 21.3403 36.9625i 0.815370 1.41226i
\(686\) −16.0593 + 9.22482i −0.613149 + 0.352205i
\(687\) 0 0
\(688\) 3.46973 + 6.00975i 0.132282 + 0.229120i
\(689\) 22.8197 15.3933i 0.869361 0.586437i
\(690\) 0 0
\(691\) −4.83835 + 8.38028i −0.184060 + 0.318801i −0.943259 0.332057i \(-0.892257\pi\)
0.759200 + 0.650858i \(0.225591\pi\)
\(692\) 0.566755 + 0.981648i 0.0215448 + 0.0373167i
\(693\) 0 0
\(694\) 1.25661 0.0477002
\(695\) 63.7435 2.41793
\(696\) 0 0
\(697\) −9.14314 + 15.8364i −0.346321 + 0.599846i
\(698\) −23.6620 −0.895619
\(699\) 0 0
\(700\) −16.8337 2.98097i −0.636255 0.112670i
\(701\) −1.68502 −0.0636423 −0.0318212 0.999494i \(-0.510131\pi\)
−0.0318212 + 0.999494i \(0.510131\pi\)
\(702\) 0 0
\(703\) 16.7028 28.9301i 0.629958 1.09112i
\(704\) −3.81165 −0.143657
\(705\) 0 0
\(706\) 5.96308 10.3284i 0.224424 0.388713i
\(707\) 31.8741 + 5.64437i 1.19875 + 0.212278i
\(708\) 0 0
\(709\) −0.718253 −0.0269745 −0.0134873 0.999909i \(-0.504293\pi\)
−0.0134873 + 0.999909i \(0.504293\pi\)
\(710\) −24.4198 + 42.2964i −0.916460 + 1.58735i
\(711\) 0 0
\(712\) −4.11790 + 7.13241i −0.154325 + 0.267298i
\(713\) 2.10458 + 3.64524i 0.0788172 + 0.136515i
\(714\) 0 0
\(715\) −3.24726 46.4136i −0.121441 1.73577i
\(716\) 6.33334 + 10.9697i 0.236688 + 0.409956i
\(717\) 0 0
\(718\) −2.96827 −0.110775
\(719\) −6.01827 −0.224443 −0.112222 0.993683i \(-0.535797\pi\)
−0.112222 + 0.993683i \(0.535797\pi\)
\(720\) 0 0
\(721\) −10.1059 27.8293i −0.376365 1.03642i
\(722\) 9.46462 16.3932i 0.352237 0.610092i
\(723\) 0 0
\(724\) −0.459697 0.796218i −0.0170845 0.0295912i
\(725\) −14.9156 −0.553951
\(726\) 0 0
\(727\) −14.2302 −0.527770 −0.263885 0.964554i \(-0.585004\pi\)
−0.263885 + 0.964554i \(0.585004\pi\)
\(728\) −7.71362 5.61249i −0.285886 0.208013i
\(729\) 0 0
\(730\) 12.2484 21.2148i 0.453332 0.785195i
\(731\) 28.0629 1.03794
\(732\) 0 0
\(733\) 23.6186 + 40.9085i 0.872371 + 1.51099i 0.859537 + 0.511074i \(0.170752\pi\)
0.0128348 + 0.999918i \(0.495914\pi\)
\(734\) 6.64234 11.5049i 0.245173 0.424653i
\(735\) 0 0
\(736\) 1.05726 0.0389710
\(737\) 33.7259 1.24231
\(738\) 0 0
\(739\) −45.8535 −1.68675 −0.843374 0.537327i \(-0.819434\pi\)
−0.843374 + 0.537327i \(0.819434\pi\)
\(740\) 9.18171 + 15.9032i 0.337526 + 0.584613i
\(741\) 0 0
\(742\) −6.89444 18.9856i −0.253103 0.696984i
\(743\) −18.5214 32.0801i −0.679486 1.17690i −0.975136 0.221608i \(-0.928870\pi\)
0.295650 0.955296i \(-0.404464\pi\)
\(744\) 0 0
\(745\) 1.52449 + 2.64049i 0.0558528 + 0.0967400i
\(746\) 9.83098 17.0278i 0.359938 0.623430i
\(747\) 0 0
\(748\) −7.70707 + 13.3490i −0.281798 + 0.488089i
\(749\) −2.32071 + 2.76160i −0.0847969 + 0.100907i
\(750\) 0 0
\(751\) 11.5864 20.0682i 0.422793 0.732298i −0.573419 0.819262i \(-0.694383\pi\)
0.996211 + 0.0869641i \(0.0277166\pi\)
\(752\) −5.54067 −0.202048
\(753\) 0 0
\(754\) −7.48072 3.64825i −0.272432 0.132862i
\(755\) −28.8433 −1.04971
\(756\) 0 0
\(757\) 6.69747 + 11.6004i 0.243424 + 0.421622i 0.961687 0.274149i \(-0.0883961\pi\)
−0.718264 + 0.695771i \(0.755063\pi\)
\(758\) −34.0076 −1.23521
\(759\) 0 0
\(760\) 10.4251 + 18.0567i 0.378157 + 0.654987i
\(761\) 14.0640 0.509821 0.254910 0.966965i \(-0.417954\pi\)
0.254910 + 0.966965i \(0.417954\pi\)
\(762\) 0 0
\(763\) 5.32582 6.33762i 0.192808 0.229437i
\(764\) 1.54293 + 2.67244i 0.0558213 + 0.0966854i
\(765\) 0 0
\(766\) −17.9032 + 31.0092i −0.646868 + 1.12041i
\(767\) 1.88259 + 26.9081i 0.0679763 + 0.971596i
\(768\) 0 0
\(769\) −0.0250756 0.0434323i −0.000904251 0.00156621i 0.865573 0.500783i \(-0.166954\pi\)
−0.866477 + 0.499217i \(0.833621\pi\)
\(770\) −33.6185 5.95327i −1.21153 0.214541i
\(771\) 0 0
\(772\) 10.4549 + 18.1084i 0.376280 + 0.651736i
\(773\) 9.09389 + 15.7511i 0.327085 + 0.566527i 0.981932 0.189234i \(-0.0606004\pi\)
−0.654847 + 0.755761i \(0.727267\pi\)
\(774\) 0 0
\(775\) −12.8624 22.2783i −0.462030 0.800259i
\(776\) 6.18181 10.7072i 0.221914 0.384366i
\(777\) 0 0
\(778\) 7.37957 + 12.7818i 0.264570 + 0.458249i
\(779\) 13.9244 + 24.1177i 0.498893 + 0.864108i
\(780\) 0 0
\(781\) −27.4937 + 47.6205i −0.983803 + 1.70400i
\(782\) 2.13775 3.70270i 0.0764459 0.132408i
\(783\) 0 0
\(784\) −5.36890 + 4.49164i −0.191747 + 0.160416i
\(785\) 58.0980 2.07361
\(786\) 0 0
\(787\) −3.68104 6.37575i −0.131215 0.227271i 0.792930 0.609312i \(-0.208554\pi\)
−0.924145 + 0.382042i \(0.875221\pi\)
\(788\) −1.71308 + 2.96714i −0.0610259 + 0.105700i
\(789\) 0 0
\(790\) −0.754670 1.30713i −0.0268500 0.0465055i
\(791\) 22.2368 26.4614i 0.790651 0.940859i
\(792\) 0 0
\(793\) 41.4586 + 20.2188i 1.47224 + 0.717991i
\(794\) −14.2043 + 24.6026i −0.504093 + 0.873114i
\(795\) 0 0
\(796\) −6.44121 + 11.1565i −0.228303 + 0.395432i
\(797\) 16.3412 28.3038i 0.578834 1.00257i −0.416779 0.909008i \(-0.636841\pi\)
0.995613 0.0935627i \(-0.0298256\pi\)
\(798\) 0 0
\(799\) −11.2031 + 19.4044i −0.396338 + 0.686477i
\(800\) −6.46154 −0.228450
\(801\) 0 0
\(802\) −10.3718 17.9645i −0.366241 0.634349i
\(803\) 13.7902 23.8852i 0.486644 0.842892i
\(804\) 0 0
\(805\) 9.32495 + 1.65129i 0.328661 + 0.0582004i
\(806\) −1.00184 14.3194i −0.0352883 0.504381i
\(807\) 0 0
\(808\) 12.2347 0.430416
\(809\) 43.4872 1.52893 0.764465 0.644666i \(-0.223003\pi\)
0.764465 + 0.644666i \(0.223003\pi\)
\(810\) 0 0
\(811\) 52.1463 1.83110 0.915552 0.402199i \(-0.131754\pi\)
0.915552 + 0.402199i \(0.131754\pi\)
\(812\) −3.92916 + 4.67562i −0.137886 + 0.164082i
\(813\) 0 0
\(814\) 10.3375 + 17.9050i 0.362328 + 0.627571i
\(815\) −25.9604 44.9647i −0.909352 1.57504i
\(816\) 0 0
\(817\) 21.3689 37.0121i 0.747605 1.29489i
\(818\) 15.7777 0.551655
\(819\) 0 0
\(820\) −15.3088 −0.534606
\(821\) −20.8070 + 36.0388i −0.726171 + 1.25776i 0.232320 + 0.972639i \(0.425368\pi\)
−0.958490 + 0.285125i \(0.907965\pi\)
\(822\) 0 0
\(823\) −17.7643 30.7686i −0.619223 1.07253i −0.989628 0.143655i \(-0.954114\pi\)
0.370405 0.928870i \(-0.379219\pi\)
\(824\) −5.59528 9.69132i −0.194921 0.337613i
\(825\) 0 0
\(826\) 19.4902 + 3.45138i 0.678151 + 0.120089i
\(827\) −28.5697 −0.993467 −0.496734 0.867903i \(-0.665467\pi\)
−0.496734 + 0.867903i \(0.665467\pi\)
\(828\) 0 0
\(829\) 1.52449 0.0529478 0.0264739 0.999650i \(-0.491572\pi\)
0.0264739 + 0.999650i \(0.491572\pi\)
\(830\) 51.3639 1.78287
\(831\) 0 0
\(832\) −3.24071 1.58045i −0.112351 0.0547923i
\(833\) 4.87469 + 27.8848i 0.168898 + 0.966152i
\(834\) 0 0
\(835\) −30.0000 + 51.9616i −1.03819 + 1.79820i
\(836\) 11.7373 + 20.3297i 0.405944 + 0.703116i
\(837\) 0 0
\(838\) −5.61307 −0.193900
\(839\) −13.9446 + 24.1527i −0.481420 + 0.833844i −0.999773 0.0213231i \(-0.993212\pi\)
0.518353 + 0.855167i \(0.326545\pi\)
\(840\) 0 0
\(841\) 11.8357 20.5001i 0.408129 0.706900i
\(842\) 7.59931 13.1624i 0.261890 0.453606i
\(843\) 0 0
\(844\) 2.06776 3.58146i 0.0711751 0.123279i
\(845\) 16.4840 40.8078i 0.567066 1.40383i
\(846\) 0 0
\(847\) −9.19290 1.62791i −0.315872 0.0559355i
\(848\) −3.81720 6.61158i −0.131083 0.227042i
\(849\) 0 0
\(850\) −13.0651 + 22.6294i −0.448129 + 0.776182i
\(851\) −2.86736 4.96642i −0.0982920 0.170247i
\(852\) 0 0
\(853\) 18.2171 0.623741 0.311871 0.950125i \(-0.399044\pi\)
0.311871 + 0.950125i \(0.399044\pi\)
\(854\) 21.7756 25.9125i 0.745146 0.886709i
\(855\) 0 0
\(856\) −0.681703 + 1.18074i −0.0233001 + 0.0403570i
\(857\) 0.512149 0.887068i 0.0174947 0.0303017i −0.857146 0.515074i \(-0.827764\pi\)
0.874640 + 0.484773i \(0.161098\pi\)
\(858\) 0 0
\(859\) 25.0847 + 43.4480i 0.855880 + 1.48243i 0.875826 + 0.482627i \(0.160317\pi\)
−0.0199461 + 0.999801i \(0.506349\pi\)
\(860\) 11.7467 + 20.3460i 0.400561 + 0.693791i
\(861\) 0 0
\(862\) −1.68571 + 2.91974i −0.0574156 + 0.0994468i
\(863\) −17.4645 30.2494i −0.594499 1.02970i −0.993617 0.112803i \(-0.964017\pi\)
0.399119 0.916899i \(-0.369316\pi\)
\(864\) 0 0
\(865\) 1.91874 + 3.32336i 0.0652392 + 0.112998i
\(866\) 8.11993 + 14.0641i 0.275927 + 0.477919i
\(867\) 0 0
\(868\) −10.3719 1.83669i −0.352046 0.0623414i
\(869\) −0.849666 1.47167i −0.0288230 0.0499228i
\(870\) 0 0
\(871\) 28.6741 + 13.9840i 0.971585 + 0.473830i
\(872\) 1.56445 2.70970i 0.0529789 0.0917621i
\(873\) 0 0
\(874\) −3.25565 5.63896i −0.110124 0.190741i
\(875\) −12.8907 2.28273i −0.435786 0.0771703i
\(876\) 0 0
\(877\) −20.3263 −0.686370 −0.343185 0.939268i \(-0.611506\pi\)
−0.343185 + 0.939268i \(0.611506\pi\)
\(878\) −12.0552 20.8802i −0.406842 0.704671i
\(879\) 0 0
\(880\) −12.9043 −0.435004
\(881\) −0.505117 0.874889i −0.0170178 0.0294757i 0.857391 0.514665i \(-0.172084\pi\)
−0.874409 + 0.485190i \(0.838751\pi\)
\(882\) 0 0
\(883\) 18.3609 0.617894 0.308947 0.951079i \(-0.400024\pi\)
0.308947 + 0.951079i \(0.400024\pi\)
\(884\) −12.0876 + 8.15386i −0.406551 + 0.274244i
\(885\) 0 0
\(886\) −24.9857 −0.839413
\(887\) 9.59364 16.6167i 0.322123 0.557933i −0.658803 0.752315i \(-0.728937\pi\)
0.980926 + 0.194382i \(0.0622703\pi\)
\(888\) 0 0
\(889\) −3.01766 8.30991i −0.101209 0.278706i
\(890\) −13.9411 + 24.1467i −0.467307 + 0.809400i
\(891\) 0 0
\(892\) −1.07475 + 1.86151i −0.0359851 + 0.0623281i
\(893\) 17.0616 + 29.5515i 0.570944 + 0.988905i
\(894\) 0 0
\(895\) 21.4415 + 37.1377i 0.716709 + 1.24138i
\(896\) −1.70214 + 2.02552i −0.0568646 + 0.0676677i
\(897\) 0 0
\(898\) 18.3685 + 31.8153i 0.612966 + 1.06169i
\(899\) −9.19006 −0.306506
\(900\) 0 0
\(901\) −30.8731 −1.02853
\(902\) −17.2358 −0.573889
\(903\) 0 0
\(904\) 6.53202 11.3138i 0.217252 0.376291i
\(905\) −1.55630 2.69559i −0.0517331 0.0896044i
\(906\) 0 0
\(907\) 24.2061 0.803749 0.401875 0.915695i \(-0.368359\pi\)
0.401875 + 0.915695i \(0.368359\pi\)
\(908\) 3.91933 6.78848i 0.130068 0.225284i
\(909\) 0 0
\(910\) −26.1144 19.0010i −0.865684 0.629878i
\(911\) 7.43708 0.246401 0.123201 0.992382i \(-0.460684\pi\)
0.123201 + 0.992382i \(0.460684\pi\)
\(912\) 0 0
\(913\) 57.8294 1.91387
\(914\) 0.583289 + 1.01029i 0.0192935 + 0.0334173i
\(915\) 0 0
\(916\) 5.97741 10.3532i 0.197499 0.342078i
\(917\) −2.28964 6.30512i −0.0756107 0.208214i
\(918\) 0 0
\(919\) −24.3286 −0.802527 −0.401263 0.915963i \(-0.631429\pi\)
−0.401263 + 0.915963i \(0.631429\pi\)
\(920\) 3.57934 0.118007
\(921\) 0 0
\(922\) −6.97353 12.0785i −0.229661 0.397785i
\(923\) −43.1207 + 29.0876i −1.41934 + 0.957430i
\(924\) 0 0
\(925\) 17.5242 + 30.3528i 0.576192 + 0.997994i
\(926\) −7.02382 + 12.1656i −0.230817 + 0.399787i
\(927\) 0 0
\(928\) −1.15418 + 1.99910i −0.0378878 + 0.0656237i
\(929\) −22.6335 −0.742581 −0.371291 0.928517i \(-0.621085\pi\)
−0.371291 + 0.928517i \(0.621085\pi\)
\(930\) 0 0
\(931\) 40.4891 + 14.8041i 1.32698 + 0.485186i
\(932\) 14.0340 24.3076i 0.459700 0.796223i
\(933\) 0 0
\(934\) −8.46057 −0.276838
\(935\) −26.0922 + 45.1930i −0.853306 + 1.47797i
\(936\) 0 0
\(937\) −49.8108 −1.62725 −0.813623 0.581393i \(-0.802508\pi\)
−0.813623 + 0.581393i \(0.802508\pi\)
\(938\) 15.0607 17.9220i 0.491750 0.585173i
\(939\) 0 0
\(940\) −18.7579 −0.611815
\(941\) −17.5367 + 30.3745i −0.571681 + 0.990180i 0.424713 + 0.905328i \(0.360375\pi\)
−0.996394 + 0.0848518i \(0.972958\pi\)
\(942\) 0 0
\(943\) 4.78079 0.155684
\(944\) 7.48121 0.243493
\(945\) 0 0
\(946\) 13.2254 + 22.9070i 0.429995 + 0.744772i
\(947\) −17.4151 + 30.1638i −0.565914 + 0.980191i 0.431050 + 0.902328i \(0.358143\pi\)
−0.996964 + 0.0778634i \(0.975190\pi\)
\(948\) 0 0
\(949\) 21.6283 14.5896i 0.702083 0.473598i
\(950\) 19.8973 + 34.4631i 0.645552 + 1.11813i
\(951\) 0 0
\(952\) 3.65200 + 10.0567i 0.118362 + 0.325941i
\(953\) 9.11097 15.7807i 0.295133 0.511186i −0.679883 0.733321i \(-0.737969\pi\)
0.975016 + 0.222135i \(0.0713026\pi\)
\(954\) 0 0
\(955\) 5.22358 + 9.04751i 0.169031 + 0.292770i
\(956\) −7.40719 12.8296i −0.239566 0.414940i
\(957\) 0 0
\(958\) 0.909522 1.57534i 0.0293853 0.0508969i
\(959\) −11.3850 31.3516i −0.367641 1.01240i
\(960\) 0 0
\(961\) 7.57500 + 13.1203i 0.244355 + 0.423235i
\(962\) 1.36495 + 19.5094i 0.0440076 + 0.629007i
\(963\) 0 0
\(964\) 0.473016 0.819288i 0.0152348 0.0263875i
\(965\) 35.3949 + 61.3058i 1.13940 + 1.97350i
\(966\) 0 0
\(967\) −16.6734 −0.536181 −0.268090 0.963394i \(-0.586393\pi\)
−0.268090 + 0.963394i \(0.586393\pi\)
\(968\) −3.52865 −0.113415
\(969\) 0 0
\(970\) 20.9285 36.2491i 0.671972 1.16389i
\(971\) 5.78735 0.185725 0.0928624 0.995679i \(-0.470398\pi\)
0.0928624 + 0.995679i \(0.470398\pi\)
\(972\) 0 0
\(973\) 32.0487 38.1373i 1.02743 1.22263i
\(974\) −22.0577 −0.706773
\(975\) 0 0
\(976\) 6.39653 11.0791i 0.204748 0.354634i
\(977\) 13.1451 0.420551 0.210275 0.977642i \(-0.432564\pi\)
0.210275 + 0.977642i \(0.432564\pi\)
\(978\) 0 0
\(979\) −15.6960 + 27.1862i −0.501646 + 0.868876i
\(980\) −18.1764 + 15.2064i −0.580623 + 0.485751i
\(981\) 0 0
\(982\) −19.9931 −0.638004
\(983\) 18.5921 32.2025i 0.592997 1.02710i −0.400829 0.916153i \(-0.631278\pi\)
0.993826 0.110948i \(-0.0353887\pi\)
\(984\) 0 0
\(985\) −5.79961 + 10.0452i −0.184791 + 0.320067i
\(986\) 4.66746 + 8.08427i 0.148642 + 0.257456i
\(987\) 0 0
\(988\) 1.54978 + 22.1513i 0.0493051 + 0.704725i
\(989\) −3.66840 6.35386i −0.116648 0.202041i
\(990\) 0 0
\(991\) 2.85803 0.0907882 0.0453941 0.998969i \(-0.485546\pi\)
0.0453941 + 0.998969i \(0.485546\pi\)
\(992\) −3.98121 −0.126403
\(993\) 0 0
\(994\) 13.0279 + 35.8758i 0.413221 + 1.13791i
\(995\) −21.8066 + 37.7702i −0.691317 + 1.19740i
\(996\) 0 0
\(997\) −19.0032 32.9145i −0.601837 1.04241i −0.992543 0.121897i \(-0.961102\pi\)
0.390706 0.920516i \(-0.372231\pi\)
\(998\) −36.7577 −1.16354
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.p.k.991.1 10
3.2 odd 2 182.2.h.d.81.4 yes 10
7.2 even 3 1638.2.m.j.289.1 10
13.9 even 3 1638.2.m.j.1621.1 10
21.2 odd 6 182.2.e.d.107.2 10
21.5 even 6 1274.2.e.s.471.4 10
21.11 odd 6 1274.2.g.p.393.2 10
21.17 even 6 1274.2.g.q.393.4 10
21.20 even 2 1274.2.h.s.263.2 10
39.35 odd 6 182.2.e.d.165.2 yes 10
91.9 even 3 inner 1638.2.p.k.919.1 10
273.74 odd 6 1274.2.g.p.295.2 10
273.152 even 6 1274.2.h.s.373.2 10
273.191 odd 6 182.2.h.d.9.4 yes 10
273.230 even 6 1274.2.e.s.165.4 10
273.269 even 6 1274.2.g.q.295.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.e.d.107.2 10 21.2 odd 6
182.2.e.d.165.2 yes 10 39.35 odd 6
182.2.h.d.9.4 yes 10 273.191 odd 6
182.2.h.d.81.4 yes 10 3.2 odd 2
1274.2.e.s.165.4 10 273.230 even 6
1274.2.e.s.471.4 10 21.5 even 6
1274.2.g.p.295.2 10 273.74 odd 6
1274.2.g.p.393.2 10 21.11 odd 6
1274.2.g.q.295.4 10 273.269 even 6
1274.2.g.q.393.4 10 21.17 even 6
1274.2.h.s.263.2 10 21.20 even 2
1274.2.h.s.373.2 10 273.152 even 6
1638.2.m.j.289.1 10 7.2 even 3
1638.2.m.j.1621.1 10 13.9 even 3
1638.2.p.k.919.1 10 91.9 even 3 inner
1638.2.p.k.991.1 10 1.1 even 1 trivial