Properties

Label 1274.2.g.p.393.2
Level $1274$
Weight $2$
Character 1274.393
Analytic conductor $10.173$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(295,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.295"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-5,-1,-5,4,-1,0,10,-4,-2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.23207289578928.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 3x^{8} + 13x^{7} + x^{6} - 39x^{5} + 3x^{4} + 117x^{3} - 81x^{2} - 162x + 243 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 393.2
Root \(1.16412 + 1.28251i\) of defining polynomial
Character \(\chi\) \(=\) 1274.393
Dual form 1274.2.g.p.295.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.02863 - 1.78164i) q^{3} +(-0.500000 + 0.866025i) q^{4} -3.38549 q^{5} +(-1.02863 + 1.78164i) q^{6} +1.00000 q^{8} +(-0.616155 + 1.06721i) q^{9} +(1.69274 + 2.93192i) q^{10} +(-1.90582 - 3.30098i) q^{11} +2.05726 q^{12} +(-3.24071 - 1.58045i) q^{13} +(3.48241 + 6.03172i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.02198 + 3.50217i) q^{17} +1.23231 q^{18} +(-3.07934 + 5.33357i) q^{19} +(1.69274 - 2.93192i) q^{20} +(-1.90582 + 3.30098i) q^{22} +(-0.528629 - 0.915612i) q^{23} +(-1.02863 - 1.78164i) q^{24} +6.46154 q^{25} +(0.251642 + 3.59676i) q^{26} -3.63659 q^{27} +(-1.15418 - 1.99910i) q^{29} +(3.48241 - 6.03172i) q^{30} +3.98121 q^{31} +(-0.500000 + 0.866025i) q^{32} +(-3.92077 + 6.79097i) q^{33} +4.04396 q^{34} +(-0.616155 - 1.06721i) q^{36} +(2.71208 + 4.69745i) q^{37} +6.15867 q^{38} +(0.517693 + 7.39946i) q^{39} -3.38549 q^{40} +(-2.26094 - 3.91606i) q^{41} +(3.46973 - 6.00975i) q^{43} +3.81165 q^{44} +(2.08599 - 3.61304i) q^{45} +(-0.528629 + 0.915612i) q^{46} +5.54067 q^{47} +(-1.02863 + 1.78164i) q^{48} +(-3.23077 - 5.59586i) q^{50} +8.31946 q^{51} +(2.98906 - 2.01631i) q^{52} -7.63439 q^{53} +(1.81830 + 3.14938i) q^{54} +(6.45214 + 11.1754i) q^{55} +12.6700 q^{57} +(-1.15418 + 1.99910i) q^{58} +(3.74061 - 6.47892i) q^{59} -6.96483 q^{60} +(6.39653 - 11.0791i) q^{61} +(-1.99060 - 3.44783i) q^{62} +1.00000 q^{64} +(10.9714 + 5.35060i) q^{65} +7.84154 q^{66} +(4.42405 + 7.66269i) q^{67} +(-2.02198 - 3.50217i) q^{68} +(-1.08753 + 1.88365i) q^{69} +(-7.21308 + 12.4934i) q^{71} +(-0.616155 + 1.06721i) q^{72} +7.23580 q^{73} +(2.71208 - 4.69745i) q^{74} +(-6.64653 - 11.5121i) q^{75} +(-3.07934 - 5.33357i) q^{76} +(6.14928 - 4.14807i) q^{78} -0.445826 q^{79} +(1.69274 + 2.93192i) q^{80} +(5.58917 + 9.68073i) q^{81} +(-2.26094 + 3.91606i) q^{82} +15.1718 q^{83} +(6.84539 - 11.8566i) q^{85} -6.93946 q^{86} +(-2.37445 + 4.11266i) q^{87} +(-1.90582 - 3.30098i) q^{88} +(-4.11790 - 7.13241i) q^{89} -4.17197 q^{90} +1.05726 q^{92} +(-4.09518 - 7.09307i) q^{93} +(-2.77034 - 4.79836i) q^{94} +(10.4251 - 18.0567i) q^{95} +2.05726 q^{96} +(-6.18181 + 10.7072i) q^{97} +4.69713 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 5 q^{2} - q^{3} - 5 q^{4} + 4 q^{5} - q^{6} + 10 q^{8} - 4 q^{9} - 2 q^{10} - 4 q^{11} + 2 q^{12} - 6 q^{13} + 3 q^{15} - 5 q^{16} - 3 q^{17} + 8 q^{18} - 5 q^{19} - 2 q^{20} - 4 q^{22} + 4 q^{23}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −1.02863 1.78164i −0.593879 1.02863i −0.993704 0.112037i \(-0.964262\pi\)
0.399825 0.916592i \(-0.369071\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −3.38549 −1.51404 −0.757019 0.653393i \(-0.773345\pi\)
−0.757019 + 0.653393i \(0.773345\pi\)
\(6\) −1.02863 + 1.78164i −0.419936 + 0.727351i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −0.616155 + 1.06721i −0.205385 + 0.355737i
\(10\) 1.69274 + 2.93192i 0.535293 + 0.927155i
\(11\) −1.90582 3.30098i −0.574627 0.995284i −0.996082 0.0884342i \(-0.971814\pi\)
0.421455 0.906849i \(-0.361520\pi\)
\(12\) 2.05726 0.593879
\(13\) −3.24071 1.58045i −0.898810 0.438338i
\(14\) 0 0
\(15\) 3.48241 + 6.03172i 0.899155 + 1.55738i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.02198 + 3.50217i −0.490402 + 0.849401i −0.999939 0.0110479i \(-0.996483\pi\)
0.509537 + 0.860449i \(0.329817\pi\)
\(18\) 1.23231 0.290458
\(19\) −3.07934 + 5.33357i −0.706448 + 1.22360i 0.259718 + 0.965684i \(0.416370\pi\)
−0.966166 + 0.257920i \(0.916963\pi\)
\(20\) 1.69274 2.93192i 0.378509 0.655597i
\(21\) 0 0
\(22\) −1.90582 + 3.30098i −0.406323 + 0.703772i
\(23\) −0.528629 0.915612i −0.110227 0.190918i 0.805635 0.592412i \(-0.201824\pi\)
−0.915862 + 0.401494i \(0.868491\pi\)
\(24\) −1.02863 1.78164i −0.209968 0.363675i
\(25\) 6.46154 1.29231
\(26\) 0.251642 + 3.59676i 0.0493511 + 0.705383i
\(27\) −3.63659 −0.699863
\(28\) 0 0
\(29\) −1.15418 1.99910i −0.214326 0.371224i 0.738738 0.673993i \(-0.235422\pi\)
−0.953064 + 0.302769i \(0.902089\pi\)
\(30\) 3.48241 6.03172i 0.635799 1.10124i
\(31\) 3.98121 0.715046 0.357523 0.933904i \(-0.383621\pi\)
0.357523 + 0.933904i \(0.383621\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −3.92077 + 6.79097i −0.682518 + 1.18216i
\(34\) 4.04396 0.693533
\(35\) 0 0
\(36\) −0.616155 1.06721i −0.102693 0.177869i
\(37\) 2.71208 + 4.69745i 0.445863 + 0.772257i 0.998112 0.0614223i \(-0.0195636\pi\)
−0.552249 + 0.833679i \(0.686230\pi\)
\(38\) 6.15867 0.999069
\(39\) 0.517693 + 7.39946i 0.0828972 + 1.18486i
\(40\) −3.38549 −0.535293
\(41\) −2.26094 3.91606i −0.353099 0.611586i 0.633691 0.773586i \(-0.281539\pi\)
−0.986791 + 0.162000i \(0.948206\pi\)
\(42\) 0 0
\(43\) 3.46973 6.00975i 0.529129 0.916479i −0.470294 0.882510i \(-0.655852\pi\)
0.999423 0.0339686i \(-0.0108146\pi\)
\(44\) 3.81165 0.574627
\(45\) 2.08599 3.61304i 0.310961 0.538599i
\(46\) −0.528629 + 0.915612i −0.0779421 + 0.135000i
\(47\) 5.54067 0.808190 0.404095 0.914717i \(-0.367586\pi\)
0.404095 + 0.914717i \(0.367586\pi\)
\(48\) −1.02863 + 1.78164i −0.148470 + 0.257157i
\(49\) 0 0
\(50\) −3.23077 5.59586i −0.456900 0.791374i
\(51\) 8.31946 1.16496
\(52\) 2.98906 2.01631i 0.414509 0.279612i
\(53\) −7.63439 −1.04866 −0.524332 0.851514i \(-0.675685\pi\)
−0.524332 + 0.851514i \(0.675685\pi\)
\(54\) 1.81830 + 3.14938i 0.247439 + 0.428577i
\(55\) 6.45214 + 11.1754i 0.870007 + 1.50690i
\(56\) 0 0
\(57\) 12.6700 1.67818
\(58\) −1.15418 + 1.99910i −0.151551 + 0.262495i
\(59\) 3.74061 6.47892i 0.486985 0.843483i −0.512903 0.858447i \(-0.671430\pi\)
0.999888 + 0.0149633i \(0.00476315\pi\)
\(60\) −6.96483 −0.899155
\(61\) 6.39653 11.0791i 0.818992 1.41854i −0.0874337 0.996170i \(-0.527867\pi\)
0.906426 0.422365i \(-0.138800\pi\)
\(62\) −1.99060 3.44783i −0.252807 0.437874i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 10.9714 + 5.35060i 1.36083 + 0.663660i
\(66\) 7.84154 0.965227
\(67\) 4.42405 + 7.66269i 0.540484 + 0.936146i 0.998876 + 0.0473960i \(0.0150923\pi\)
−0.458392 + 0.888750i \(0.651574\pi\)
\(68\) −2.02198 3.50217i −0.245201 0.424700i
\(69\) −1.08753 + 1.88365i −0.130923 + 0.226765i
\(70\) 0 0
\(71\) −7.21308 + 12.4934i −0.856036 + 1.48270i 0.0196454 + 0.999807i \(0.493746\pi\)
−0.875681 + 0.482890i \(0.839587\pi\)
\(72\) −0.616155 + 1.06721i −0.0726146 + 0.125772i
\(73\) 7.23580 0.846886 0.423443 0.905923i \(-0.360821\pi\)
0.423443 + 0.905923i \(0.360821\pi\)
\(74\) 2.71208 4.69745i 0.315273 0.546068i
\(75\) −6.64653 11.5121i −0.767475 1.32931i
\(76\) −3.07934 5.33357i −0.353224 0.611802i
\(77\) 0 0
\(78\) 6.14928 4.14807i 0.696268 0.469676i
\(79\) −0.445826 −0.0501594 −0.0250797 0.999685i \(-0.507984\pi\)
−0.0250797 + 0.999685i \(0.507984\pi\)
\(80\) 1.69274 + 2.93192i 0.189255 + 0.327799i
\(81\) 5.58917 + 9.68073i 0.621019 + 1.07564i
\(82\) −2.26094 + 3.91606i −0.249679 + 0.432457i
\(83\) 15.1718 1.66532 0.832659 0.553786i \(-0.186817\pi\)
0.832659 + 0.553786i \(0.186817\pi\)
\(84\) 0 0
\(85\) 6.84539 11.8566i 0.742486 1.28602i
\(86\) −6.93946 −0.748302
\(87\) −2.37445 + 4.11266i −0.254568 + 0.440924i
\(88\) −1.90582 3.30098i −0.203161 0.351886i
\(89\) −4.11790 7.13241i −0.436497 0.756034i 0.560920 0.827870i \(-0.310448\pi\)
−0.997416 + 0.0718359i \(0.977114\pi\)
\(90\) −4.17197 −0.439765
\(91\) 0 0
\(92\) 1.05726 0.110227
\(93\) −4.09518 7.09307i −0.424651 0.735517i
\(94\) −2.77034 4.79836i −0.285738 0.494913i
\(95\) 10.4251 18.0567i 1.06959 1.85258i
\(96\) 2.05726 0.209968
\(97\) −6.18181 + 10.7072i −0.627668 + 1.08715i 0.360351 + 0.932817i \(0.382657\pi\)
−0.988019 + 0.154335i \(0.950676\pi\)
\(98\) 0 0
\(99\) 4.69713 0.472079
\(100\) −3.23077 + 5.59586i −0.323077 + 0.559586i
\(101\) −6.11736 10.5956i −0.608700 1.05430i −0.991455 0.130450i \(-0.958358\pi\)
0.382755 0.923850i \(-0.374975\pi\)
\(102\) −4.15973 7.20486i −0.411875 0.713388i
\(103\) −11.1906 −1.10264 −0.551320 0.834294i \(-0.685876\pi\)
−0.551320 + 0.834294i \(0.685876\pi\)
\(104\) −3.24071 1.58045i −0.317777 0.154976i
\(105\) 0 0
\(106\) 3.81720 + 6.61158i 0.370759 + 0.642173i
\(107\) −0.681703 1.18074i −0.0659027 0.114147i 0.831191 0.555986i \(-0.187659\pi\)
−0.897094 + 0.441840i \(0.854326\pi\)
\(108\) 1.81830 3.14938i 0.174966 0.303049i
\(109\) 3.12889 0.299694 0.149847 0.988709i \(-0.452122\pi\)
0.149847 + 0.988709i \(0.452122\pi\)
\(110\) 6.45214 11.1754i 0.615188 1.06554i
\(111\) 5.57944 9.66388i 0.529577 0.917255i
\(112\) 0 0
\(113\) 6.53202 11.3138i 0.614481 1.06431i −0.375995 0.926622i \(-0.622699\pi\)
0.990475 0.137690i \(-0.0439677\pi\)
\(114\) −6.33499 10.9725i −0.593326 1.02767i
\(115\) 1.78967 + 3.09980i 0.166887 + 0.289057i
\(116\) 2.30836 0.214326
\(117\) 3.68345 2.48472i 0.340535 0.229712i
\(118\) −7.48121 −0.688701
\(119\) 0 0
\(120\) 3.48241 + 6.03172i 0.317899 + 0.550618i
\(121\) −1.76432 + 3.05590i −0.160393 + 0.277809i
\(122\) −12.7931 −1.15823
\(123\) −4.65133 + 8.05635i −0.419397 + 0.726416i
\(124\) −1.99060 + 3.44783i −0.178761 + 0.309624i
\(125\) −4.94803 −0.442566
\(126\) 0 0
\(127\) 1.67077 + 2.89385i 0.148257 + 0.256788i 0.930583 0.366081i \(-0.119301\pi\)
−0.782327 + 0.622868i \(0.785967\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −14.2763 −1.25696
\(130\) −0.851932 12.1768i −0.0747194 1.06798i
\(131\) 2.53538 0.221517 0.110759 0.993847i \(-0.464672\pi\)
0.110759 + 0.993847i \(0.464672\pi\)
\(132\) −3.92077 6.79097i −0.341259 0.591078i
\(133\) 0 0
\(134\) 4.42405 7.66269i 0.382180 0.661955i
\(135\) 12.3117 1.05962
\(136\) −2.02198 + 3.50217i −0.173383 + 0.300309i
\(137\) −6.30346 + 10.9179i −0.538541 + 0.932780i 0.460442 + 0.887690i \(0.347691\pi\)
−0.998983 + 0.0450901i \(0.985643\pi\)
\(138\) 2.17505 0.185153
\(139\) −9.41422 + 16.3059i −0.798504 + 1.38305i 0.122086 + 0.992520i \(0.461042\pi\)
−0.920590 + 0.390530i \(0.872292\pi\)
\(140\) 0 0
\(141\) −5.69930 9.87147i −0.479967 0.831328i
\(142\) 14.4262 1.21062
\(143\) 0.959171 + 13.7096i 0.0802099 + 1.14645i
\(144\) 1.23231 0.102693
\(145\) 3.90747 + 6.76793i 0.324498 + 0.562046i
\(146\) −3.61790 6.26639i −0.299420 0.518610i
\(147\) 0 0
\(148\) −5.42415 −0.445863
\(149\) −0.450300 + 0.779942i −0.0368900 + 0.0638954i −0.883881 0.467712i \(-0.845078\pi\)
0.846991 + 0.531607i \(0.178412\pi\)
\(150\) −6.64653 + 11.5121i −0.542687 + 0.939961i
\(151\) −8.51968 −0.693321 −0.346661 0.937991i \(-0.612684\pi\)
−0.346661 + 0.937991i \(0.612684\pi\)
\(152\) −3.07934 + 5.33357i −0.249767 + 0.432609i
\(153\) −2.49170 4.31576i −0.201442 0.348908i
\(154\) 0 0
\(155\) −13.4783 −1.08261
\(156\) −6.66697 3.25140i −0.533785 0.260320i
\(157\) 17.1609 1.36959 0.684794 0.728737i \(-0.259892\pi\)
0.684794 + 0.728737i \(0.259892\pi\)
\(158\) 0.222913 + 0.386097i 0.0177340 + 0.0307162i
\(159\) 7.85296 + 13.6017i 0.622780 + 1.07869i
\(160\) 1.69274 2.93192i 0.133823 0.231789i
\(161\) 0 0
\(162\) 5.58917 9.68073i 0.439127 0.760590i
\(163\) −7.66813 + 13.2816i −0.600614 + 1.04029i 0.392114 + 0.919917i \(0.371744\pi\)
−0.992728 + 0.120377i \(0.961590\pi\)
\(164\) 4.52188 0.353099
\(165\) 13.2737 22.9908i 1.03336 1.78983i
\(166\) −7.58589 13.1391i −0.588779 1.01980i
\(167\) 8.86135 + 15.3483i 0.685712 + 1.18769i 0.973212 + 0.229908i \(0.0738424\pi\)
−0.287500 + 0.957780i \(0.592824\pi\)
\(168\) 0 0
\(169\) 8.00435 + 10.2436i 0.615719 + 0.787966i
\(170\) −13.6908 −1.05003
\(171\) −3.79470 6.57261i −0.290188 0.502620i
\(172\) 3.46973 + 6.00975i 0.264565 + 0.458239i
\(173\) −0.566755 + 0.981648i −0.0430896 + 0.0746333i −0.886766 0.462219i \(-0.847053\pi\)
0.843676 + 0.536852i \(0.180387\pi\)
\(174\) 4.74890 0.360013
\(175\) 0 0
\(176\) −1.90582 + 3.30098i −0.143657 + 0.248821i
\(177\) −15.3908 −1.15684
\(178\) −4.11790 + 7.13241i −0.308650 + 0.534597i
\(179\) −6.33334 10.9697i −0.473376 0.819912i 0.526159 0.850386i \(-0.323632\pi\)
−0.999536 + 0.0304742i \(0.990298\pi\)
\(180\) 2.08599 + 3.61304i 0.155480 + 0.269300i
\(181\) 0.919394 0.0683380 0.0341690 0.999416i \(-0.489122\pi\)
0.0341690 + 0.999416i \(0.489122\pi\)
\(182\) 0 0
\(183\) −26.3186 −1.94553
\(184\) −0.528629 0.915612i −0.0389710 0.0674998i
\(185\) −9.18171 15.9032i −0.675053 1.16923i
\(186\) −4.09518 + 7.09307i −0.300273 + 0.520089i
\(187\) 15.4141 1.12719
\(188\) −2.77034 + 4.79836i −0.202048 + 0.349957i
\(189\) 0 0
\(190\) −20.8501 −1.51263
\(191\) −1.54293 + 2.67244i −0.111643 + 0.193371i −0.916433 0.400189i \(-0.868945\pi\)
0.804790 + 0.593560i \(0.202278\pi\)
\(192\) −1.02863 1.78164i −0.0742349 0.128579i
\(193\) 10.4549 + 18.1084i 0.752560 + 1.30347i 0.946578 + 0.322474i \(0.104514\pi\)
−0.194019 + 0.980998i \(0.562152\pi\)
\(194\) 12.3636 0.887656
\(195\) −1.75264 25.0508i −0.125509 1.79393i
\(196\) 0 0
\(197\) 1.71308 + 2.96714i 0.122052 + 0.211400i 0.920577 0.390562i \(-0.127719\pi\)
−0.798525 + 0.601962i \(0.794386\pi\)
\(198\) −2.34857 4.06783i −0.166905 0.289088i
\(199\) −6.44121 + 11.1565i −0.456605 + 0.790863i −0.998779 0.0494031i \(-0.984268\pi\)
0.542174 + 0.840266i \(0.317601\pi\)
\(200\) 6.46154 0.456900
\(201\) 9.10142 15.7641i 0.641965 1.11192i
\(202\) −6.11736 + 10.5956i −0.430416 + 0.745503i
\(203\) 0 0
\(204\) −4.15973 + 7.20486i −0.291239 + 0.504441i
\(205\) 7.65439 + 13.2578i 0.534606 + 0.925964i
\(206\) 5.59528 + 9.69132i 0.389842 + 0.675226i
\(207\) 1.30287 0.0905557
\(208\) 0.251642 + 3.59676i 0.0174482 + 0.249390i
\(209\) 23.4747 1.62378
\(210\) 0 0
\(211\) 2.06776 + 3.58146i 0.142350 + 0.246558i 0.928381 0.371629i \(-0.121201\pi\)
−0.786031 + 0.618187i \(0.787867\pi\)
\(212\) 3.81720 6.61158i 0.262166 0.454085i
\(213\) 29.6783 2.03353
\(214\) −0.681703 + 1.18074i −0.0466003 + 0.0807140i
\(215\) −11.7467 + 20.3460i −0.801121 + 1.38758i
\(216\) −3.63659 −0.247439
\(217\) 0 0
\(218\) −1.56445 2.70970i −0.105958 0.183524i
\(219\) −7.44295 12.8916i −0.502948 0.871132i
\(220\) −12.9043 −0.870007
\(221\) 12.0876 8.15386i 0.813103 0.548488i
\(222\) −11.1589 −0.748935
\(223\) −1.07475 1.86151i −0.0719703 0.124656i 0.827794 0.561031i \(-0.189595\pi\)
−0.899765 + 0.436375i \(0.856262\pi\)
\(224\) 0 0
\(225\) −3.98131 + 6.89583i −0.265421 + 0.459722i
\(226\) −13.0640 −0.869007
\(227\) −3.91933 + 6.78848i −0.260135 + 0.450567i −0.966278 0.257503i \(-0.917100\pi\)
0.706143 + 0.708070i \(0.250434\pi\)
\(228\) −6.33499 + 10.9725i −0.419545 + 0.726673i
\(229\) −11.9548 −0.789996 −0.394998 0.918682i \(-0.629255\pi\)
−0.394998 + 0.918682i \(0.629255\pi\)
\(230\) 1.78967 3.09980i 0.118007 0.204394i
\(231\) 0 0
\(232\) −1.15418 1.99910i −0.0757757 0.131247i
\(233\) 28.0681 1.83880 0.919400 0.393325i \(-0.128675\pi\)
0.919400 + 0.393325i \(0.128675\pi\)
\(234\) −3.99355 1.94761i −0.261067 0.127319i
\(235\) −18.7579 −1.22363
\(236\) 3.74061 + 6.47892i 0.243493 + 0.421742i
\(237\) 0.458590 + 0.794301i 0.0297886 + 0.0515954i
\(238\) 0 0
\(239\) −14.8144 −0.958262 −0.479131 0.877743i \(-0.659048\pi\)
−0.479131 + 0.877743i \(0.659048\pi\)
\(240\) 3.48241 6.03172i 0.224789 0.389346i
\(241\) 0.473016 0.819288i 0.0304696 0.0527750i −0.850388 0.526155i \(-0.823633\pi\)
0.880858 + 0.473380i \(0.156966\pi\)
\(242\) 3.52865 0.226830
\(243\) 6.04348 10.4676i 0.387689 0.671497i
\(244\) 6.39653 + 11.0791i 0.409496 + 0.709268i
\(245\) 0 0
\(246\) 9.30267 0.593117
\(247\) 18.4087 12.4178i 1.17132 0.790124i
\(248\) 3.98121 0.252807
\(249\) −15.6061 27.0306i −0.988998 1.71299i
\(250\) 2.47402 + 4.28512i 0.156471 + 0.271015i
\(251\) 6.43291 11.1421i 0.406042 0.703285i −0.588400 0.808570i \(-0.700242\pi\)
0.994442 + 0.105285i \(0.0335754\pi\)
\(252\) 0 0
\(253\) −2.01495 + 3.48999i −0.126679 + 0.219414i
\(254\) 1.67077 2.89385i 0.104833 0.181576i
\(255\) −28.1655 −1.76379
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 1.70763 + 2.95771i 0.106519 + 0.184497i 0.914358 0.404907i \(-0.132696\pi\)
−0.807839 + 0.589404i \(0.799363\pi\)
\(258\) 7.13813 + 12.3636i 0.444401 + 0.769725i
\(259\) 0 0
\(260\) −10.1194 + 6.82619i −0.627581 + 0.423342i
\(261\) 2.84462 0.176077
\(262\) −1.26769 2.19570i −0.0783181 0.135651i
\(263\) 0.223096 + 0.386413i 0.0137567 + 0.0238272i 0.872822 0.488039i \(-0.162288\pi\)
−0.859065 + 0.511866i \(0.828954\pi\)
\(264\) −3.92077 + 6.79097i −0.241307 + 0.417955i
\(265\) 25.8462 1.58772
\(266\) 0 0
\(267\) −8.47158 + 14.6732i −0.518452 + 0.897986i
\(268\) −8.84811 −0.540484
\(269\) −2.05561 + 3.56043i −0.125333 + 0.217083i −0.921863 0.387516i \(-0.873333\pi\)
0.796530 + 0.604599i \(0.206667\pi\)
\(270\) −6.15583 10.6622i −0.374632 0.648881i
\(271\) 6.67506 + 11.5615i 0.405481 + 0.702314i 0.994377 0.105895i \(-0.0337707\pi\)
−0.588896 + 0.808209i \(0.700437\pi\)
\(272\) 4.04396 0.245201
\(273\) 0 0
\(274\) 12.6069 0.761611
\(275\) −12.3146 21.3294i −0.742596 1.28621i
\(276\) −1.08753 1.88365i −0.0654614 0.113382i
\(277\) −9.47805 + 16.4165i −0.569481 + 0.986369i 0.427137 + 0.904187i \(0.359522\pi\)
−0.996617 + 0.0821822i \(0.973811\pi\)
\(278\) 18.8284 1.12926
\(279\) −2.45304 + 4.24879i −0.146860 + 0.254368i
\(280\) 0 0
\(281\) −0.101414 −0.00604986 −0.00302493 0.999995i \(-0.500963\pi\)
−0.00302493 + 0.999995i \(0.500963\pi\)
\(282\) −5.69930 + 9.87147i −0.339388 + 0.587837i
\(283\) −2.43889 4.22429i −0.144977 0.251108i 0.784387 0.620271i \(-0.212978\pi\)
−0.929364 + 0.369164i \(0.879644\pi\)
\(284\) −7.21308 12.4934i −0.428018 0.741349i
\(285\) −42.8941 −2.54083
\(286\) 11.3933 7.68545i 0.673697 0.454450i
\(287\) 0 0
\(288\) −0.616155 1.06721i −0.0363073 0.0628861i
\(289\) 0.323209 + 0.559814i 0.0190123 + 0.0329302i
\(290\) 3.90747 6.76793i 0.229454 0.397427i
\(291\) 25.4351 1.49103
\(292\) −3.61790 + 6.26639i −0.211722 + 0.366713i
\(293\) −12.4185 + 21.5095i −0.725497 + 1.25660i 0.233272 + 0.972412i \(0.425057\pi\)
−0.958769 + 0.284186i \(0.908277\pi\)
\(294\) 0 0
\(295\) −12.6638 + 21.9343i −0.737314 + 1.27707i
\(296\) 2.71208 + 4.69745i 0.157636 + 0.273034i
\(297\) 6.93070 + 12.0043i 0.402160 + 0.696562i
\(298\) 0.900600 0.0521704
\(299\) 0.266051 + 3.80270i 0.0153861 + 0.219916i
\(300\) 13.2931 0.767475
\(301\) 0 0
\(302\) 4.25984 + 7.37826i 0.245126 + 0.424571i
\(303\) −12.5850 + 21.7978i −0.722989 + 1.25225i
\(304\) 6.15867 0.353224
\(305\) −21.6554 + 37.5082i −1.23998 + 2.14772i
\(306\) −2.49170 + 4.31576i −0.142441 + 0.246715i
\(307\) −11.9098 −0.679727 −0.339864 0.940475i \(-0.610381\pi\)
−0.339864 + 0.940475i \(0.610381\pi\)
\(308\) 0 0
\(309\) 11.5109 + 19.9375i 0.654835 + 1.13421i
\(310\) 6.73917 + 11.6726i 0.382759 + 0.662958i
\(311\) −3.96385 −0.224769 −0.112385 0.993665i \(-0.535849\pi\)
−0.112385 + 0.993665i \(0.535849\pi\)
\(312\) 0.517693 + 7.39946i 0.0293086 + 0.418912i
\(313\) 27.4483 1.55147 0.775733 0.631061i \(-0.217380\pi\)
0.775733 + 0.631061i \(0.217380\pi\)
\(314\) −8.58044 14.8618i −0.484222 0.838698i
\(315\) 0 0
\(316\) 0.222913 0.386097i 0.0125398 0.0217197i
\(317\) −24.5715 −1.38008 −0.690038 0.723774i \(-0.742406\pi\)
−0.690038 + 0.723774i \(0.742406\pi\)
\(318\) 7.85296 13.6017i 0.440372 0.762747i
\(319\) −4.39933 + 7.61986i −0.246315 + 0.426630i
\(320\) −3.38549 −0.189255
\(321\) −1.40244 + 2.42910i −0.0782765 + 0.135579i
\(322\) 0 0
\(323\) −12.4527 21.5687i −0.692887 1.20012i
\(324\) −11.1783 −0.621019
\(325\) −20.9400 10.2122i −1.16154 0.566468i
\(326\) 15.3363 0.849396
\(327\) −3.21847 5.57455i −0.177982 0.308274i
\(328\) −2.26094 3.91606i −0.124839 0.216228i
\(329\) 0 0
\(330\) −26.5475 −1.46139
\(331\) −14.3268 + 24.8148i −0.787472 + 1.36394i 0.140039 + 0.990146i \(0.455277\pi\)
−0.927511 + 0.373796i \(0.878056\pi\)
\(332\) −7.58589 + 13.1391i −0.416330 + 0.721104i
\(333\) −6.68424 −0.366294
\(334\) 8.86135 15.3483i 0.484872 0.839822i
\(335\) −14.9776 25.9419i −0.818313 1.41736i
\(336\) 0 0
\(337\) 8.86295 0.482795 0.241398 0.970426i \(-0.422394\pi\)
0.241398 + 0.970426i \(0.422394\pi\)
\(338\) 4.86900 12.0537i 0.264839 0.655637i
\(339\) −26.8761 −1.45971
\(340\) 6.84539 + 11.8566i 0.371243 + 0.643012i
\(341\) −7.58747 13.1419i −0.410885 0.711673i
\(342\) −3.79470 + 6.57261i −0.205194 + 0.355406i
\(343\) 0 0
\(344\) 3.46973 6.00975i 0.187075 0.324024i
\(345\) 3.68181 6.37708i 0.198222 0.343330i
\(346\) 1.13351 0.0609379
\(347\) −0.628304 + 1.08825i −0.0337291 + 0.0584205i −0.882397 0.470505i \(-0.844072\pi\)
0.848668 + 0.528926i \(0.177405\pi\)
\(348\) −2.37445 4.11266i −0.127284 0.220462i
\(349\) −11.8310 20.4919i −0.633298 1.09690i −0.986873 0.161499i \(-0.948367\pi\)
0.353575 0.935406i \(-0.384966\pi\)
\(350\) 0 0
\(351\) 11.7851 + 5.74746i 0.629044 + 0.306777i
\(352\) 3.81165 0.203161
\(353\) 5.96308 + 10.3284i 0.317383 + 0.549723i 0.979941 0.199287i \(-0.0638627\pi\)
−0.662558 + 0.749010i \(0.730529\pi\)
\(354\) 7.69539 + 13.3288i 0.409005 + 0.708418i
\(355\) 24.4198 42.2964i 1.29607 2.24486i
\(356\) 8.23580 0.436497
\(357\) 0 0
\(358\) −6.33334 + 10.9697i −0.334728 + 0.579765i
\(359\) −2.96827 −0.156659 −0.0783296 0.996928i \(-0.524959\pi\)
−0.0783296 + 0.996928i \(0.524959\pi\)
\(360\) 2.08599 3.61304i 0.109941 0.190424i
\(361\) −9.46462 16.3932i −0.498138 0.862800i
\(362\) −0.459697 0.796218i −0.0241611 0.0418483i
\(363\) 7.25934 0.381016
\(364\) 0 0
\(365\) −24.4967 −1.28222
\(366\) 13.1593 + 22.7926i 0.687848 + 1.19139i
\(367\) −6.64234 11.5049i −0.346728 0.600550i 0.638939 0.769258i \(-0.279374\pi\)
−0.985666 + 0.168708i \(0.946040\pi\)
\(368\) −0.528629 + 0.915612i −0.0275567 + 0.0477296i
\(369\) 5.57236 0.290085
\(370\) −9.18171 + 15.9032i −0.477334 + 0.826767i
\(371\) 0 0
\(372\) 8.19037 0.424651
\(373\) −9.83098 + 17.0278i −0.509029 + 0.881664i 0.490917 + 0.871207i \(0.336662\pi\)
−0.999945 + 0.0104571i \(0.996671\pi\)
\(374\) −7.70707 13.3490i −0.398523 0.690262i
\(375\) 5.08969 + 8.81560i 0.262831 + 0.455236i
\(376\) 5.54067 0.285738
\(377\) 0.580881 + 8.30262i 0.0299169 + 0.427607i
\(378\) 0 0
\(379\) −17.0038 29.4514i −0.873425 1.51282i −0.858431 0.512929i \(-0.828560\pi\)
−0.0149946 0.999888i \(-0.504773\pi\)
\(380\) 10.4251 + 18.0567i 0.534794 + 0.926291i
\(381\) 3.43720 5.95340i 0.176093 0.305002i
\(382\) 3.08586 0.157887
\(383\) −17.9032 + 31.0092i −0.914810 + 1.58450i −0.107631 + 0.994191i \(0.534326\pi\)
−0.807179 + 0.590306i \(0.799007\pi\)
\(384\) −1.02863 + 1.78164i −0.0524920 + 0.0909188i
\(385\) 0 0
\(386\) 10.4549 18.1084i 0.532140 0.921693i
\(387\) 4.27579 + 7.40588i 0.217350 + 0.376462i
\(388\) −6.18181 10.7072i −0.313834 0.543576i
\(389\) −14.7591 −0.748318 −0.374159 0.927365i \(-0.622069\pi\)
−0.374159 + 0.927365i \(0.622069\pi\)
\(390\) −20.8183 + 14.0432i −1.05418 + 0.711107i
\(391\) 4.27550 0.216222
\(392\) 0 0
\(393\) −2.60796 4.51713i −0.131554 0.227859i
\(394\) 1.71308 2.96714i 0.0863036 0.149482i
\(395\) 1.50934 0.0759432
\(396\) −2.34857 + 4.06783i −0.118020 + 0.204416i
\(397\) 14.2043 24.6026i 0.712895 1.23477i −0.250871 0.968021i \(-0.580717\pi\)
0.963766 0.266750i \(-0.0859497\pi\)
\(398\) 12.8824 0.645737
\(399\) 0 0
\(400\) −3.23077 5.59586i −0.161539 0.279793i
\(401\) −10.3718 17.9645i −0.517944 0.897105i −0.999783 0.0208450i \(-0.993364\pi\)
0.481839 0.876260i \(-0.339969\pi\)
\(402\) −18.2028 −0.907875
\(403\) −12.9019 6.29210i −0.642690 0.313432i
\(404\) 12.2347 0.608700
\(405\) −18.9221 32.7740i −0.940246 1.62855i
\(406\) 0 0
\(407\) 10.3375 17.9050i 0.512410 0.887520i
\(408\) 8.31946 0.411875
\(409\) 7.88886 13.6639i 0.390079 0.675637i −0.602380 0.798209i \(-0.705781\pi\)
0.992460 + 0.122572i \(0.0391143\pi\)
\(410\) 7.65439 13.2578i 0.378023 0.654755i
\(411\) 25.9357 1.27931
\(412\) 5.59528 9.69132i 0.275660 0.477457i
\(413\) 0 0
\(414\) −0.651435 1.12832i −0.0320163 0.0554538i
\(415\) −51.3639 −2.52135
\(416\) 2.98906 2.01631i 0.146551 0.0988576i
\(417\) 38.7350 1.89686
\(418\) −11.7373 20.3297i −0.574092 0.994357i
\(419\) 2.80653 + 4.86106i 0.137108 + 0.237478i 0.926401 0.376539i \(-0.122886\pi\)
−0.789293 + 0.614017i \(0.789553\pi\)
\(420\) 0 0
\(421\) 15.1986 0.740736 0.370368 0.928885i \(-0.379232\pi\)
0.370368 + 0.928885i \(0.379232\pi\)
\(422\) 2.06776 3.58146i 0.100657 0.174343i
\(423\) −3.41391 + 5.91307i −0.165990 + 0.287503i
\(424\) −7.63439 −0.370759
\(425\) −13.0651 + 22.6294i −0.633750 + 1.09769i
\(426\) −14.8392 25.7022i −0.718960 1.24528i
\(427\) 0 0
\(428\) 1.36341 0.0659027
\(429\) 23.4389 15.8110i 1.13164 0.763360i
\(430\) 23.4935 1.13296
\(431\) −1.68571 2.91974i −0.0811980 0.140639i 0.822567 0.568668i \(-0.192541\pi\)
−0.903765 + 0.428030i \(0.859208\pi\)
\(432\) 1.81830 + 3.14938i 0.0874829 + 0.151525i
\(433\) −8.11993 + 14.0641i −0.390219 + 0.675879i −0.992478 0.122421i \(-0.960934\pi\)
0.602259 + 0.798301i \(0.294267\pi\)
\(434\) 0 0
\(435\) 8.03867 13.9234i 0.385425 0.667575i
\(436\) −1.56445 + 2.70970i −0.0749234 + 0.129771i
\(437\) 6.51130 0.311478
\(438\) −7.44295 + 12.8916i −0.355638 + 0.615983i
\(439\) 12.0552 + 20.8802i 0.575361 + 0.996555i 0.996002 + 0.0893280i \(0.0284719\pi\)
−0.420641 + 0.907227i \(0.638195\pi\)
\(440\) 6.45214 + 11.1754i 0.307594 + 0.532768i
\(441\) 0 0
\(442\) −13.1053 6.39128i −0.623354 0.304002i
\(443\) −24.9857 −1.18711 −0.593554 0.804794i \(-0.702276\pi\)
−0.593554 + 0.804794i \(0.702276\pi\)
\(444\) 5.57944 + 9.66388i 0.264789 + 0.458627i
\(445\) 13.9411 + 24.1467i 0.660872 + 1.14466i
\(446\) −1.07475 + 1.86151i −0.0508907 + 0.0881452i
\(447\) 1.85277 0.0876328
\(448\) 0 0
\(449\) 18.3685 31.8153i 0.866865 1.50145i 0.00168225 0.999999i \(-0.499465\pi\)
0.865183 0.501456i \(-0.167202\pi\)
\(450\) 7.96262 0.375362
\(451\) −8.61790 + 14.9266i −0.405801 + 0.702868i
\(452\) 6.53202 + 11.3138i 0.307240 + 0.532156i
\(453\) 8.76359 + 15.1790i 0.411749 + 0.713170i
\(454\) 7.83866 0.367887
\(455\) 0 0
\(456\) 12.6700 0.593326
\(457\) −0.583289 1.01029i −0.0272851 0.0472592i 0.852060 0.523443i \(-0.175353\pi\)
−0.879346 + 0.476184i \(0.842020\pi\)
\(458\) 5.97741 + 10.3532i 0.279306 + 0.483772i
\(459\) 7.35311 12.7360i 0.343214 0.594464i
\(460\) −3.57934 −0.166887
\(461\) −6.97353 + 12.0785i −0.324790 + 0.562552i −0.981470 0.191617i \(-0.938627\pi\)
0.656680 + 0.754169i \(0.271960\pi\)
\(462\) 0 0
\(463\) −14.0476 −0.652849 −0.326425 0.945223i \(-0.605844\pi\)
−0.326425 + 0.945223i \(0.605844\pi\)
\(464\) −1.15418 + 1.99910i −0.0535815 + 0.0928059i
\(465\) 13.8642 + 24.0135i 0.642937 + 1.11360i
\(466\) −14.0340 24.3076i −0.650114 1.12603i
\(467\) −8.46057 −0.391508 −0.195754 0.980653i \(-0.562715\pi\)
−0.195754 + 0.980653i \(0.562715\pi\)
\(468\) 0.310101 + 4.43232i 0.0143344 + 0.204884i
\(469\) 0 0
\(470\) 9.37894 + 16.2448i 0.432618 + 0.749317i
\(471\) −17.6522 30.5745i −0.813370 1.40880i
\(472\) 3.74061 6.47892i 0.172175 0.298216i
\(473\) −26.4508 −1.21621
\(474\) 0.458590 0.794301i 0.0210637 0.0364835i
\(475\) −19.8973 + 34.4631i −0.912949 + 1.58127i
\(476\) 0 0
\(477\) 4.70397 8.14751i 0.215380 0.373049i
\(478\) 7.40719 + 12.8296i 0.338797 + 0.586813i
\(479\) 0.909522 + 1.57534i 0.0415571 + 0.0719791i 0.886056 0.463579i \(-0.153435\pi\)
−0.844499 + 0.535558i \(0.820101\pi\)
\(480\) −6.96483 −0.317899
\(481\) −1.36495 19.5094i −0.0622362 0.889551i
\(482\) −0.946032 −0.0430906
\(483\) 0 0
\(484\) −1.76432 3.05590i −0.0801965 0.138904i
\(485\) 20.9285 36.2491i 0.950312 1.64599i
\(486\) −12.0870 −0.548275
\(487\) −11.0288 + 19.1025i −0.499764 + 0.865617i −1.00000 0.000272262i \(-0.999913\pi\)
0.500236 + 0.865889i \(0.333247\pi\)
\(488\) 6.39653 11.0791i 0.289557 0.501528i
\(489\) 31.5506 1.42677
\(490\) 0 0
\(491\) 9.99653 + 17.3145i 0.451137 + 0.781393i 0.998457 0.0555310i \(-0.0176852\pi\)
−0.547320 + 0.836924i \(0.684352\pi\)
\(492\) −4.65133 8.05635i −0.209698 0.363208i
\(493\) 9.33491 0.420423
\(494\) −19.9584 9.73348i −0.897973 0.437930i
\(495\) −15.9021 −0.714746
\(496\) −1.99060 3.44783i −0.0893807 0.154812i
\(497\) 0 0
\(498\) −15.6061 + 27.0306i −0.699327 + 1.21127i
\(499\) 36.7577 1.64550 0.822750 0.568403i \(-0.192439\pi\)
0.822750 + 0.568403i \(0.192439\pi\)
\(500\) 2.47402 4.28512i 0.110641 0.191637i
\(501\) 18.2301 31.5754i 0.814460 1.41069i
\(502\) −12.8658 −0.574230
\(503\) 16.7668 29.0409i 0.747594 1.29487i −0.201378 0.979514i \(-0.564542\pi\)
0.948973 0.315358i \(-0.102125\pi\)
\(504\) 0 0
\(505\) 20.7103 + 35.8712i 0.921595 + 1.59625i
\(506\) 4.02989 0.179151
\(507\) 10.0168 24.7977i 0.444862 1.10130i
\(508\) −3.34153 −0.148257
\(509\) 10.6267 + 18.4059i 0.471018 + 0.815828i 0.999450 0.0331478i \(-0.0105532\pi\)
−0.528432 + 0.848976i \(0.677220\pi\)
\(510\) 14.0827 + 24.3920i 0.623594 + 1.08010i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 11.1983 19.3960i 0.494417 0.856355i
\(514\) 1.70763 2.95771i 0.0753205 0.130459i
\(515\) 37.8856 1.66944
\(516\) 7.13813 12.3636i 0.314239 0.544278i
\(517\) −10.5595 18.2897i −0.464408 0.804378i
\(518\) 0 0
\(519\) 2.33192 0.102360
\(520\) 10.9714 + 5.35060i 0.481127 + 0.234639i
\(521\) −5.70736 −0.250044 −0.125022 0.992154i \(-0.539900\pi\)
−0.125022 + 0.992154i \(0.539900\pi\)
\(522\) −1.42231 2.46351i −0.0622528 0.107825i
\(523\) −8.77764 15.2033i −0.383819 0.664794i 0.607785 0.794101i \(-0.292058\pi\)
−0.991605 + 0.129307i \(0.958725\pi\)
\(524\) −1.26769 + 2.19570i −0.0553793 + 0.0959197i
\(525\) 0 0
\(526\) 0.223096 0.386413i 0.00972743 0.0168484i
\(527\) −8.04991 + 13.9429i −0.350660 + 0.607360i
\(528\) 7.84154 0.341259
\(529\) 10.9411 18.9505i 0.475700 0.823937i
\(530\) −12.9231 22.3834i −0.561343 0.972274i
\(531\) 4.60959 + 7.98404i 0.200039 + 0.346478i
\(532\) 0 0
\(533\) 1.13789 + 16.2641i 0.0492877 + 0.704477i
\(534\) 16.9432 0.733202
\(535\) 2.30790 + 3.99740i 0.0997792 + 0.172823i
\(536\) 4.42405 + 7.66269i 0.191090 + 0.330978i
\(537\) −13.0293 + 22.5674i −0.562257 + 0.973857i
\(538\) 4.11123 0.177248
\(539\) 0 0
\(540\) −6.15583 + 10.6622i −0.264905 + 0.458828i
\(541\) 20.6797 0.889089 0.444545 0.895757i \(-0.353366\pi\)
0.444545 + 0.895757i \(0.353366\pi\)
\(542\) 6.67506 11.5615i 0.286718 0.496611i
\(543\) −0.945715 1.63803i −0.0405845 0.0702945i
\(544\) −2.02198 3.50217i −0.0866916 0.150154i
\(545\) −10.5928 −0.453747
\(546\) 0 0
\(547\) 18.2669 0.781035 0.390517 0.920596i \(-0.372296\pi\)
0.390517 + 0.920596i \(0.372296\pi\)
\(548\) −6.30346 10.9179i −0.269270 0.466390i
\(549\) 7.88251 + 13.6529i 0.336417 + 0.582692i
\(550\) −12.3146 + 21.3294i −0.525094 + 0.909490i
\(551\) 14.2164 0.605641
\(552\) −1.08753 + 1.88365i −0.0462882 + 0.0801735i
\(553\) 0 0
\(554\) 18.9561 0.805367
\(555\) −18.8891 + 32.7170i −0.801799 + 1.38876i
\(556\) −9.41422 16.3059i −0.399252 0.691525i
\(557\) −5.91543 10.2458i −0.250645 0.434129i 0.713059 0.701104i \(-0.247309\pi\)
−0.963703 + 0.266975i \(0.913976\pi\)
\(558\) 4.90608 0.207691
\(559\) −20.7425 + 13.9921i −0.877314 + 0.591803i
\(560\) 0 0
\(561\) −15.8554 27.4624i −0.669416 1.15946i
\(562\) 0.0507070 + 0.0878272i 0.00213895 + 0.00370476i
\(563\) −6.48506 + 11.2325i −0.273313 + 0.473391i −0.969708 0.244267i \(-0.921453\pi\)
0.696395 + 0.717658i \(0.254786\pi\)
\(564\) 11.3986 0.479967
\(565\) −22.1141 + 38.3027i −0.930346 + 1.61141i
\(566\) −2.43889 + 4.22429i −0.102514 + 0.177560i
\(567\) 0 0
\(568\) −7.21308 + 12.4934i −0.302654 + 0.524213i
\(569\) −10.6978 18.5291i −0.448475 0.776782i 0.549812 0.835289i \(-0.314699\pi\)
−0.998287 + 0.0585066i \(0.981366\pi\)
\(570\) 21.4470 + 37.1474i 0.898318 + 1.55593i
\(571\) 4.87707 0.204099 0.102050 0.994779i \(-0.467460\pi\)
0.102050 + 0.994779i \(0.467460\pi\)
\(572\) −12.3524 6.02412i −0.516481 0.251881i
\(573\) 6.34842 0.265209
\(574\) 0 0
\(575\) −3.41576 5.91627i −0.142447 0.246725i
\(576\) −0.616155 + 1.06721i −0.0256731 + 0.0444672i
\(577\) 42.7062 1.77788 0.888942 0.458020i \(-0.151441\pi\)
0.888942 + 0.458020i \(0.151441\pi\)
\(578\) 0.323209 0.559814i 0.0134437 0.0232852i
\(579\) 21.5084 37.2537i 0.893859 1.54821i
\(580\) −7.81494 −0.324498
\(581\) 0 0
\(582\) −12.7176 22.0275i −0.527160 0.913069i
\(583\) 14.5498 + 25.2010i 0.602591 + 1.04372i
\(584\) 7.23580 0.299420
\(585\) −12.4703 + 8.41198i −0.515583 + 0.347793i
\(586\) 24.8370 1.02601
\(587\) 10.9345 + 18.9390i 0.451313 + 0.781698i 0.998468 0.0553339i \(-0.0176223\pi\)
−0.547155 + 0.837032i \(0.684289\pi\)
\(588\) 0 0
\(589\) −12.2595 + 21.2340i −0.505143 + 0.874933i
\(590\) 25.3276 1.04272
\(591\) 3.52424 6.10417i 0.144968 0.251092i
\(592\) 2.71208 4.69745i 0.111466 0.193064i
\(593\) −16.2927 −0.669061 −0.334531 0.942385i \(-0.608578\pi\)
−0.334531 + 0.942385i \(0.608578\pi\)
\(594\) 6.93070 12.0043i 0.284370 0.492544i
\(595\) 0 0
\(596\) −0.450300 0.779942i −0.0184450 0.0319477i
\(597\) 26.5025 1.08467
\(598\) 3.16021 2.13176i 0.129231 0.0871741i
\(599\) −7.21526 −0.294808 −0.147404 0.989076i \(-0.547092\pi\)
−0.147404 + 0.989076i \(0.547092\pi\)
\(600\) −6.64653 11.5121i −0.271343 0.469981i
\(601\) 8.29314 + 14.3641i 0.338284 + 0.585926i 0.984110 0.177559i \(-0.0568201\pi\)
−0.645826 + 0.763485i \(0.723487\pi\)
\(602\) 0 0
\(603\) −10.9036 −0.444029
\(604\) 4.25984 7.37826i 0.173330 0.300217i
\(605\) 5.97310 10.3457i 0.242841 0.420613i
\(606\) 25.1700 1.02246
\(607\) 2.00072 3.46535i 0.0812067 0.140654i −0.822562 0.568676i \(-0.807456\pi\)
0.903769 + 0.428022i \(0.140789\pi\)
\(608\) −3.07934 5.33357i −0.124884 0.216305i
\(609\) 0 0
\(610\) 43.3108 1.75360
\(611\) −17.9557 8.75676i −0.726409 0.354261i
\(612\) 4.98341 0.201442
\(613\) −17.0864 29.5946i −0.690115 1.19531i −0.971800 0.235807i \(-0.924227\pi\)
0.281685 0.959507i \(-0.409107\pi\)
\(614\) 5.95489 + 10.3142i 0.240320 + 0.416246i
\(615\) 15.7470 27.2747i 0.634982 1.09982i
\(616\) 0 0
\(617\) 15.0353 26.0419i 0.605298 1.04841i −0.386707 0.922203i \(-0.626387\pi\)
0.992004 0.126204i \(-0.0402793\pi\)
\(618\) 11.5109 19.9375i 0.463038 0.802005i
\(619\) 22.5602 0.906773 0.453386 0.891314i \(-0.350216\pi\)
0.453386 + 0.891314i \(0.350216\pi\)
\(620\) 6.73917 11.6726i 0.270651 0.468782i
\(621\) 1.92241 + 3.32971i 0.0771436 + 0.133617i
\(622\) 1.98193 + 3.43280i 0.0794680 + 0.137643i
\(623\) 0 0
\(624\) 6.14928 4.14807i 0.246168 0.166056i
\(625\) −15.5562 −0.622248
\(626\) −13.7241 23.7709i −0.548526 0.950076i
\(627\) −24.1467 41.8234i −0.964328 1.67026i
\(628\) −8.58044 + 14.8618i −0.342397 + 0.593049i
\(629\) −21.9350 −0.874607
\(630\) 0 0
\(631\) −2.69111 + 4.66114i −0.107131 + 0.185557i −0.914607 0.404344i \(-0.867500\pi\)
0.807476 + 0.589901i \(0.200833\pi\)
\(632\) −0.445826 −0.0177340
\(633\) 4.25391 7.36798i 0.169078 0.292851i
\(634\) 12.2858 + 21.2796i 0.487930 + 0.845120i
\(635\) −5.65636 9.79711i −0.224466 0.388786i
\(636\) −15.7059 −0.622780
\(637\) 0 0
\(638\) 8.79866 0.348342
\(639\) −8.88876 15.3958i −0.351634 0.609048i
\(640\) 1.69274 + 2.93192i 0.0669116 + 0.115894i
\(641\) 21.4269 37.1125i 0.846313 1.46586i −0.0381629 0.999272i \(-0.512151\pi\)
0.884476 0.466586i \(-0.154516\pi\)
\(642\) 2.80488 0.110700
\(643\) −11.5199 + 19.9530i −0.454299 + 0.786870i −0.998648 0.0519898i \(-0.983444\pi\)
0.544348 + 0.838859i \(0.316777\pi\)
\(644\) 0 0
\(645\) 48.3322 1.90308
\(646\) −12.4527 + 21.5687i −0.489945 + 0.848610i
\(647\) 3.97548 + 6.88574i 0.156292 + 0.270706i 0.933529 0.358502i \(-0.116712\pi\)
−0.777237 + 0.629209i \(0.783379\pi\)
\(648\) 5.58917 + 9.68073i 0.219563 + 0.380295i
\(649\) −28.5157 −1.11934
\(650\) 1.62600 + 23.2406i 0.0637768 + 0.911572i
\(651\) 0 0
\(652\) −7.66813 13.2816i −0.300307 0.520147i
\(653\) 11.7941 + 20.4280i 0.461540 + 0.799410i 0.999038 0.0438547i \(-0.0139639\pi\)
−0.537498 + 0.843265i \(0.680631\pi\)
\(654\) −3.21847 + 5.57455i −0.125852 + 0.217982i
\(655\) −8.58350 −0.335385
\(656\) −2.26094 + 3.91606i −0.0882748 + 0.152897i
\(657\) −4.45837 + 7.72213i −0.173938 + 0.301269i
\(658\) 0 0
\(659\) −4.71901 + 8.17356i −0.183826 + 0.318397i −0.943180 0.332281i \(-0.892182\pi\)
0.759354 + 0.650678i \(0.225515\pi\)
\(660\) 13.2737 + 22.9908i 0.516679 + 0.894914i
\(661\) −6.13000 10.6175i −0.238429 0.412972i 0.721834 0.692066i \(-0.243299\pi\)
−0.960264 + 0.279094i \(0.909966\pi\)
\(662\) 28.6536 1.11365
\(663\) −26.9609 13.1485i −1.04708 0.510645i
\(664\) 15.1718 0.588779
\(665\) 0 0
\(666\) 3.34212 + 5.78872i 0.129505 + 0.224308i
\(667\) −1.22027 + 2.11356i −0.0472489 + 0.0818375i
\(668\) −17.7227 −0.685712
\(669\) −2.21103 + 3.82961i −0.0854833 + 0.148061i
\(670\) −14.9776 + 25.9419i −0.578635 + 1.00222i
\(671\) −48.7626 −1.88246
\(672\) 0 0
\(673\) −4.64315 8.04217i −0.178980 0.310003i 0.762551 0.646928i \(-0.223947\pi\)
−0.941532 + 0.336925i \(0.890613\pi\)
\(674\) −4.43147 7.67554i −0.170694 0.295651i
\(675\) −23.4980 −0.904439
\(676\) −12.8734 + 1.81019i −0.495129 + 0.0696228i
\(677\) 37.3645 1.43603 0.718017 0.696025i \(-0.245050\pi\)
0.718017 + 0.696025i \(0.245050\pi\)
\(678\) 13.4380 + 23.2754i 0.516085 + 0.893886i
\(679\) 0 0
\(680\) 6.84539 11.8566i 0.262509 0.454678i
\(681\) 16.1261 0.617955
\(682\) −7.58747 + 13.1419i −0.290539 + 0.503229i
\(683\) −13.5875 + 23.5343i −0.519912 + 0.900514i 0.479820 + 0.877367i \(0.340702\pi\)
−0.999732 + 0.0231468i \(0.992631\pi\)
\(684\) 7.58939 0.290188
\(685\) 21.3403 36.9625i 0.815370 1.41226i
\(686\) 0 0
\(687\) 12.2971 + 21.2991i 0.469162 + 0.812613i
\(688\) −6.93946 −0.264565
\(689\) 24.7408 + 12.0658i 0.942550 + 0.459670i
\(690\) −7.36362 −0.280328
\(691\) −4.83835 8.38028i −0.184060 0.318801i 0.759200 0.650858i \(-0.225591\pi\)
−0.943259 + 0.332057i \(0.892257\pi\)
\(692\) −0.566755 0.981648i −0.0215448 0.0373167i
\(693\) 0 0
\(694\) 1.25661 0.0477002
\(695\) 31.8718 55.2035i 1.20896 2.09399i
\(696\) −2.37445 + 4.11266i −0.0900032 + 0.155890i
\(697\) 18.2863 0.692642
\(698\) −11.8310 + 20.4919i −0.447810 + 0.775629i
\(699\) −28.8716 50.0071i −1.09202 1.89144i
\(700\) 0 0
\(701\) 1.68502 0.0636423 0.0318212 0.999494i \(-0.489869\pi\)
0.0318212 + 0.999494i \(0.489869\pi\)
\(702\) −0.915120 13.0800i −0.0345390 0.493671i
\(703\) −33.4056 −1.25992
\(704\) −1.90582 3.30098i −0.0718284 0.124410i
\(705\) 19.2949 + 33.4198i 0.726688 + 1.25866i
\(706\) 5.96308 10.3284i 0.224424 0.388713i
\(707\) 0 0
\(708\) 7.69539 13.3288i 0.289211 0.500927i
\(709\) 0.359126 0.622025i 0.0134873 0.0233606i −0.859203 0.511635i \(-0.829040\pi\)
0.872690 + 0.488274i \(0.162373\pi\)
\(710\) −48.8396 −1.83292
\(711\) 0.274698 0.475791i 0.0103020 0.0178436i
\(712\) −4.11790 7.13241i −0.154325 0.267298i
\(713\) −2.10458 3.64524i −0.0788172 0.136515i
\(714\) 0 0
\(715\) −3.24726 46.4136i −0.121441 1.73577i
\(716\) 12.6667 0.473376
\(717\) 15.2385 + 26.3938i 0.569092 + 0.985696i
\(718\) 1.48413 + 2.57060i 0.0553874 + 0.0959338i
\(719\) −3.00913 + 5.21197i −0.112222 + 0.194374i −0.916666 0.399655i \(-0.869130\pi\)
0.804444 + 0.594028i \(0.202463\pi\)
\(720\) −4.17197 −0.155480
\(721\) 0 0
\(722\) −9.46462 + 16.3932i −0.352237 + 0.610092i
\(723\) −1.94623 −0.0723811
\(724\) −0.459697 + 0.796218i −0.0170845 + 0.0295912i
\(725\) −7.45779 12.9173i −0.276975 0.479735i
\(726\) −3.62967 6.28677i −0.134710 0.233324i
\(727\) −14.2302 −0.527770 −0.263885 0.964554i \(-0.585004\pi\)
−0.263885 + 0.964554i \(0.585004\pi\)
\(728\) 0 0
\(729\) 8.66905 0.321076
\(730\) 12.2484 + 21.2148i 0.453332 + 0.785195i
\(731\) 14.0314 + 24.3032i 0.518972 + 0.898885i
\(732\) 13.1593 22.7926i 0.486382 0.842439i
\(733\) −47.2371 −1.74474 −0.872371 0.488844i \(-0.837419\pi\)
−0.872371 + 0.488844i \(0.837419\pi\)
\(734\) −6.64234 + 11.5049i −0.245173 + 0.424653i
\(735\) 0 0
\(736\) 1.05726 0.0389710
\(737\) 16.8629 29.2074i 0.621154 1.07587i
\(738\) −2.78618 4.82580i −0.102561 0.177640i
\(739\) 22.9268 + 39.7103i 0.843374 + 1.46077i 0.887026 + 0.461720i \(0.152768\pi\)
−0.0436513 + 0.999047i \(0.513899\pi\)
\(740\) 18.3634 0.675053
\(741\) −41.0597 20.0243i −1.50836 0.735610i
\(742\) 0 0
\(743\) 18.5214 + 32.0801i 0.679486 + 1.17690i 0.975136 + 0.221608i \(0.0711305\pi\)
−0.295650 + 0.955296i \(0.595536\pi\)
\(744\) −4.09518 7.09307i −0.150137 0.260044i
\(745\) 1.52449 2.64049i 0.0558528 0.0967400i
\(746\) 19.6620 0.719875
\(747\) −9.34817 + 16.1915i −0.342031 + 0.592416i
\(748\) −7.70707 + 13.3490i −0.281798 + 0.488089i
\(749\) 0 0
\(750\) 5.08969 8.81560i 0.185849 0.321900i
\(751\) 11.5864 + 20.0682i 0.422793 + 0.732298i 0.996211 0.0869641i \(-0.0277166\pi\)
−0.573419 + 0.819262i \(0.694383\pi\)
\(752\) −2.77034 4.79836i −0.101024 0.174978i
\(753\) −26.4683 −0.964559
\(754\) 6.89984 4.65437i 0.251277 0.169502i
\(755\) 28.8433 1.04971
\(756\) 0 0
\(757\) 6.69747 + 11.6004i 0.243424 + 0.421622i 0.961687 0.274149i \(-0.0883961\pi\)
−0.718264 + 0.695771i \(0.755063\pi\)
\(758\) −17.0038 + 29.4514i −0.617605 + 1.06972i
\(759\) 8.29053 0.300927
\(760\) 10.4251 18.0567i 0.378157 0.654987i
\(761\) 7.03201 12.1798i 0.254910 0.441518i −0.709961 0.704241i \(-0.751287\pi\)
0.964871 + 0.262724i \(0.0846207\pi\)
\(762\) −6.87440 −0.249033
\(763\) 0 0
\(764\) −1.54293 2.67244i −0.0558213 0.0966854i
\(765\) 8.43564 + 14.6110i 0.304991 + 0.528260i
\(766\) 35.8064 1.29374
\(767\) −22.3618 + 15.0844i −0.807438 + 0.544667i
\(768\) 2.05726 0.0742349
\(769\) −0.0250756 0.0434323i −0.000904251 0.00156621i 0.865573 0.500783i \(-0.166954\pi\)
−0.866477 + 0.499217i \(0.833621\pi\)
\(770\) 0 0
\(771\) 3.51304 6.08477i 0.126519 0.219138i
\(772\) −20.9098 −0.752560
\(773\) −9.09389 + 15.7511i −0.327085 + 0.566527i −0.981932 0.189234i \(-0.939400\pi\)
0.654847 + 0.755761i \(0.272733\pi\)
\(774\) 4.27579 7.40588i 0.153690 0.266199i
\(775\) 25.7247 0.924060
\(776\) −6.18181 + 10.7072i −0.221914 + 0.384366i
\(777\) 0 0
\(778\) 7.37957 + 12.7818i 0.264570 + 0.458249i
\(779\) 27.8488 0.997786
\(780\) 22.5710 + 11.0076i 0.808170 + 0.394134i
\(781\) 54.9874 1.96761
\(782\) −2.13775 3.70270i −0.0764459 0.132408i
\(783\) 4.19729 + 7.26992i 0.149999 + 0.259806i
\(784\) 0 0
\(785\) −58.0980 −2.07361
\(786\) −2.60796 + 4.51713i −0.0930230 + 0.161121i
\(787\) −3.68104 + 6.37575i −0.131215 + 0.227271i −0.924145 0.382042i \(-0.875221\pi\)
0.792930 + 0.609312i \(0.208554\pi\)
\(788\) −3.42616 −0.122052
\(789\) 0.458965 0.794951i 0.0163396 0.0283010i
\(790\) −0.754670 1.30713i −0.0268500 0.0465055i
\(791\) 0 0
\(792\) 4.69713 0.166905
\(793\) −38.2393 + 25.7948i −1.35792 + 0.915999i
\(794\) −28.4087 −1.00819
\(795\) −26.5861 46.0485i −0.942912 1.63317i
\(796\) −6.44121 11.1565i −0.228303 0.395432i
\(797\) −16.3412 + 28.3038i −0.578834 + 1.00257i 0.416779 + 0.909008i \(0.363159\pi\)
−0.995613 + 0.0935627i \(0.970174\pi\)
\(798\) 0 0
\(799\) −11.2031 + 19.4044i −0.396338 + 0.686477i
\(800\) −3.23077 + 5.59586i −0.114225 + 0.197844i
\(801\) 10.1491 0.358599
\(802\) −10.3718 + 17.9645i −0.366241 + 0.634349i
\(803\) −13.7902 23.8852i −0.486644 0.842892i
\(804\) 9.10142 + 15.7641i 0.320982 + 0.555958i
\(805\) 0 0
\(806\) 1.00184 + 14.3194i 0.0352883 + 0.504381i
\(807\) 8.45785 0.297730
\(808\) −6.11736 10.5956i −0.215208 0.372751i
\(809\) 21.7436 + 37.6610i 0.764465 + 1.32409i 0.940529 + 0.339713i \(0.110330\pi\)
−0.176064 + 0.984379i \(0.556337\pi\)
\(810\) −18.9221 + 32.7740i −0.664854 + 1.15156i
\(811\) 52.1463 1.83110 0.915552 0.402199i \(-0.131754\pi\)
0.915552 + 0.402199i \(0.131754\pi\)
\(812\) 0 0
\(813\) 13.7323 23.7851i 0.481613 0.834179i
\(814\) −20.6750 −0.724657
\(815\) 25.9604 44.9647i 0.909352 1.57504i
\(816\) −4.15973 7.20486i −0.145620 0.252221i
\(817\) 21.3689 + 37.0121i 0.747605 + 1.29489i
\(818\) −15.7777 −0.551655
\(819\) 0 0
\(820\) −15.3088 −0.534606
\(821\) 20.8070 + 36.0388i 0.726171 + 1.25776i 0.958490 + 0.285125i \(0.0920351\pi\)
−0.232320 + 0.972639i \(0.574632\pi\)
\(822\) −12.9678 22.4609i −0.452305 0.783416i
\(823\) −17.7643 + 30.7686i −0.619223 + 1.07253i 0.370405 + 0.928870i \(0.379219\pi\)
−0.989628 + 0.143655i \(0.954114\pi\)
\(824\) −11.1906 −0.389842
\(825\) −25.3342 + 43.8801i −0.882024 + 1.52771i
\(826\) 0 0
\(827\) 28.5697 0.993467 0.496734 0.867903i \(-0.334533\pi\)
0.496734 + 0.867903i \(0.334533\pi\)
\(828\) −0.651435 + 1.12832i −0.0226389 + 0.0392118i
\(829\) −0.762246 1.32025i −0.0264739 0.0458541i 0.852485 0.522752i \(-0.175095\pi\)
−0.878959 + 0.476898i \(0.841761\pi\)
\(830\) 25.6819 + 44.4824i 0.891433 + 1.54401i
\(831\) 38.9976 1.35281
\(832\) −3.24071 1.58045i −0.112351 0.0547923i
\(833\) 0 0
\(834\) −19.3675 33.5455i −0.670641 1.16158i
\(835\) −30.0000 51.9616i −1.03819 1.79820i
\(836\) −11.7373 + 20.3297i −0.405944 + 0.703116i
\(837\) −14.4780 −0.500434
\(838\) 2.80653 4.86106i 0.0969501 0.167923i
\(839\) 13.9446 24.1527i 0.481420 0.833844i −0.518353 0.855167i \(-0.673455\pi\)
0.999773 + 0.0213231i \(0.00678788\pi\)
\(840\) 0 0
\(841\) 11.8357 20.5001i 0.408129 0.706900i
\(842\) −7.59931 13.1624i −0.261890 0.453606i
\(843\) 0.104317 + 0.180683i 0.00359288 + 0.00622306i
\(844\) −4.13551 −0.142350
\(845\) −27.0986 34.6794i −0.932222 1.19301i
\(846\) 6.82783 0.234746
\(847\) 0 0
\(848\) 3.81720 + 6.61158i 0.131083 + 0.227042i
\(849\) −5.01744 + 8.69045i −0.172198 + 0.298256i
\(850\) 26.1302 0.896258
\(851\) 2.86736 4.96642i 0.0982920 0.170247i
\(852\) −14.8392 + 25.7022i −0.508382 + 0.880543i
\(853\) 18.2171 0.623741 0.311871 0.950125i \(-0.399044\pi\)
0.311871 + 0.950125i \(0.399044\pi\)
\(854\) 0 0
\(855\) 12.8469 + 22.2515i 0.439355 + 0.760985i
\(856\) −0.681703 1.18074i −0.0233001 0.0403570i
\(857\) 1.02430 0.0349893 0.0174947 0.999847i \(-0.494431\pi\)
0.0174947 + 0.999847i \(0.494431\pi\)
\(858\) −25.4121 12.3932i −0.867556 0.423096i
\(859\) −50.1695 −1.71176 −0.855880 0.517174i \(-0.826984\pi\)
−0.855880 + 0.517174i \(0.826984\pi\)
\(860\) −11.7467 20.3460i −0.400561 0.693791i
\(861\) 0 0
\(862\) −1.68571 + 2.91974i −0.0574156 + 0.0994468i
\(863\) −34.9290 −1.18900 −0.594499 0.804096i \(-0.702650\pi\)
−0.594499 + 0.804096i \(0.702650\pi\)
\(864\) 1.81830 3.14938i 0.0618597 0.107144i
\(865\) 1.91874 3.32336i 0.0652392 0.112998i
\(866\) 16.2399 0.551853
\(867\) 0.664923 1.15168i 0.0225820 0.0391131i
\(868\) 0 0
\(869\) 0.849666 + 1.47167i 0.0288230 + 0.0499228i
\(870\) −16.0773 −0.545073
\(871\) −2.22656 31.8245i −0.0754440 1.07833i
\(872\) 3.12889 0.105958
\(873\) −7.61791 13.1946i −0.257827 0.446570i
\(874\) −3.25565 5.63896i −0.110124 0.190741i
\(875\) 0 0
\(876\) 14.8859 0.502948
\(877\) 10.1631 17.6031i 0.343185 0.594414i −0.641837 0.766841i \(-0.721828\pi\)
0.985022 + 0.172427i \(0.0551609\pi\)
\(878\) 12.0552 20.8802i 0.406842 0.704671i
\(879\) 51.0962 1.72343
\(880\) 6.45214 11.1754i 0.217502 0.376724i
\(881\) 0.505117 + 0.874889i 0.0170178 + 0.0294757i 0.874409 0.485190i \(-0.161249\pi\)
−0.857391 + 0.514665i \(0.827916\pi\)
\(882\) 0 0
\(883\) 18.3609 0.617894 0.308947 0.951079i \(-0.400024\pi\)
0.308947 + 0.951079i \(0.400024\pi\)
\(884\) 1.01763 + 14.5451i 0.0342266 + 0.489206i
\(885\) 52.1053 1.75150
\(886\) 12.4929 + 21.6383i 0.419706 + 0.726953i
\(887\) −9.59364 16.6167i −0.322123 0.557933i 0.658803 0.752315i \(-0.271063\pi\)
−0.980926 + 0.194382i \(0.937730\pi\)
\(888\) 5.57944 9.66388i 0.187234 0.324298i
\(889\) 0 0
\(890\) 13.9411 24.1467i 0.467307 0.809400i
\(891\) 21.3039 36.8995i 0.713709 1.23618i
\(892\) 2.14949 0.0719703
\(893\) −17.0616 + 29.5515i −0.570944 + 0.988905i
\(894\) −0.926383 1.60454i −0.0309829 0.0536639i
\(895\) 21.4415 + 37.1377i 0.716709 + 1.24138i
\(896\) 0 0
\(897\) 6.50137 4.38558i 0.217074 0.146430i
\(898\) −36.7371 −1.22593
\(899\) −4.59503 7.95883i −0.153253 0.265442i
\(900\) −3.98131 6.89583i −0.132710 0.229861i
\(901\) 15.4366 26.7369i 0.514267 0.890736i
\(902\) 17.2358 0.573889
\(903\) 0 0
\(904\) 6.53202 11.3138i 0.217252 0.376291i
\(905\) −3.11260 −0.103466
\(906\) 8.76359 15.1790i 0.291151 0.504288i
\(907\) −12.1030 20.9631i −0.401875 0.696067i 0.592077 0.805881i \(-0.298308\pi\)
−0.993952 + 0.109814i \(0.964975\pi\)
\(908\) −3.91933 6.78848i −0.130068 0.225284i
\(909\) 15.0770 0.500072
\(910\) 0 0
\(911\) −7.43708 −0.246401 −0.123201 0.992382i \(-0.539316\pi\)
−0.123201 + 0.992382i \(0.539316\pi\)
\(912\) −6.33499 10.9725i −0.209772 0.363337i
\(913\) −28.9147 50.0818i −0.956937 1.65746i
\(914\) −0.583289 + 1.01029i −0.0192935 + 0.0334173i
\(915\) 89.1015 2.94560
\(916\) 5.97741 10.3532i 0.197499 0.342078i
\(917\) 0 0
\(918\) −14.7062 −0.485378
\(919\) 12.1643 21.0692i 0.401263 0.695008i −0.592615 0.805486i \(-0.701905\pi\)
0.993879 + 0.110477i \(0.0352379\pi\)
\(920\) 1.78967 + 3.09980i 0.0590036 + 0.102197i
\(921\) 12.2507 + 21.2189i 0.403676 + 0.699187i
\(922\) 13.9471 0.459322
\(923\) 43.1207 29.0876i 1.41934 0.957430i
\(924\) 0 0
\(925\) 17.5242 + 30.3528i 0.576192 + 0.997994i
\(926\) 7.02382 + 12.1656i 0.230817 + 0.399787i
\(927\) 6.89513 11.9427i 0.226466 0.392250i
\(928\) 2.30836 0.0757757
\(929\) −11.3168 + 19.6012i −0.371291 + 0.643094i −0.989764 0.142711i \(-0.954418\pi\)
0.618474 + 0.785805i \(0.287751\pi\)
\(930\) 13.8642 24.0135i 0.454625 0.787434i
\(931\) 0 0
\(932\) −14.0340 + 24.3076i −0.459700 + 0.796223i
\(933\) 4.07733 + 7.06215i 0.133486 + 0.231204i
\(934\) 4.23028 + 7.32707i 0.138419 + 0.239749i
\(935\) −52.1844 −1.70661
\(936\) 3.68345 2.48472i 0.120397 0.0812155i
\(937\) −49.8108 −1.62725 −0.813623 0.581393i \(-0.802508\pi\)
−0.813623 + 0.581393i \(0.802508\pi\)
\(938\) 0 0
\(939\) −28.2341 48.9028i −0.921384 1.59588i
\(940\) 9.37894 16.2448i 0.305907 0.529847i
\(941\) −35.0734 −1.14336 −0.571681 0.820476i \(-0.693708\pi\)
−0.571681 + 0.820476i \(0.693708\pi\)
\(942\) −17.6522 + 30.5745i −0.575139 + 0.996170i
\(943\) −2.39040 + 4.14029i −0.0778420 + 0.134826i
\(944\) −7.48121 −0.243493
\(945\) 0 0
\(946\) 13.2254 + 22.9070i 0.429995 + 0.744772i
\(947\) 17.4151 + 30.1638i 0.565914 + 0.980191i 0.996964 + 0.0778634i \(0.0248098\pi\)
−0.431050 + 0.902328i \(0.641857\pi\)
\(948\) −0.917180 −0.0297886
\(949\) −23.4491 11.4358i −0.761190 0.371223i
\(950\) 39.7945 1.29110
\(951\) 25.2750 + 43.7776i 0.819598 + 1.41959i
\(952\) 0 0
\(953\) −9.11097 + 15.7807i −0.295133 + 0.511186i −0.975016 0.222135i \(-0.928697\pi\)
0.679883 + 0.733321i \(0.262031\pi\)
\(954\) −9.40794 −0.304593
\(955\) 5.22358 9.04751i 0.169031 0.292770i
\(956\) 7.40719 12.8296i 0.239566 0.414940i
\(957\) 18.1011 0.585126
\(958\) 0.909522 1.57534i 0.0293853 0.0508969i
\(959\) 0 0
\(960\) 3.48241 + 6.03172i 0.112394 + 0.194673i
\(961\) −15.1500 −0.488710
\(962\) −16.2131 + 10.9368i −0.522733 + 0.352615i
\(963\) 1.68014 0.0541417
\(964\) 0.473016 + 0.819288i 0.0152348 + 0.0263875i
\(965\) −35.3949 61.3058i −1.13940 1.97350i
\(966\) 0 0
\(967\) −16.6734 −0.536181 −0.268090 0.963394i \(-0.586393\pi\)
−0.268090 + 0.963394i \(0.586393\pi\)
\(968\) −1.76432 + 3.05590i −0.0567075 + 0.0982203i
\(969\) −25.6184 + 44.3724i −0.822982 + 1.42545i
\(970\) −41.8569 −1.34394
\(971\) 2.89367 5.01199i 0.0928624 0.160842i −0.815852 0.578261i \(-0.803732\pi\)
0.908714 + 0.417418i \(0.137065\pi\)
\(972\) 6.04348 + 10.4676i 0.193845 + 0.335749i
\(973\) 0 0
\(974\) 22.0577 0.706773
\(975\) 3.34509 + 47.8119i 0.107129 + 1.53121i
\(976\) −12.7931 −0.409496
\(977\) 6.57257 + 11.3840i 0.210275 + 0.364207i 0.951801 0.306717i \(-0.0992306\pi\)
−0.741525 + 0.670925i \(0.765897\pi\)
\(978\) −15.7753 27.3236i −0.504439 0.873714i
\(979\) −15.6960 + 27.1862i −0.501646 + 0.868876i
\(980\) 0 0
\(981\) −1.92788 + 3.33919i −0.0615526 + 0.106612i
\(982\) 9.99653 17.3145i 0.319002 0.552528i
\(983\) 37.1843 1.18599 0.592997 0.805205i \(-0.297945\pi\)
0.592997 + 0.805205i \(0.297945\pi\)
\(984\) −4.65133 + 8.05635i −0.148279 + 0.256827i
\(985\) −5.79961 10.0452i −0.184791 0.320067i
\(986\) −4.66746 8.08427i −0.148642 0.257456i
\(987\) 0 0
\(988\) 1.54978 + 22.1513i 0.0493051 + 0.704725i
\(989\) −7.33680 −0.233297
\(990\) 7.95104 + 13.7716i 0.252701 + 0.437691i
\(991\) −1.42901 2.47512i −0.0453941 0.0786249i 0.842436 0.538797i \(-0.181121\pi\)
−0.887830 + 0.460172i \(0.847788\pi\)
\(992\) −1.99060 + 3.44783i −0.0632017 + 0.109469i
\(993\) 58.9479 1.87065
\(994\) 0 0
\(995\) 21.8066 37.7702i 0.691317 1.19740i
\(996\) 31.2123 0.988998
\(997\) −19.0032 + 32.9145i −0.601837 + 1.04241i 0.390706 + 0.920516i \(0.372231\pi\)
−0.992543 + 0.121897i \(0.961102\pi\)
\(998\) −18.3789 31.8331i −0.581772 1.00766i
\(999\) −9.86272 17.0827i −0.312043 0.540474i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.g.p.393.2 10
7.2 even 3 182.2.h.d.81.4 yes 10
7.3 odd 6 1274.2.e.s.471.4 10
7.4 even 3 182.2.e.d.107.2 10
7.5 odd 6 1274.2.h.s.263.2 10
7.6 odd 2 1274.2.g.q.393.4 10
13.9 even 3 inner 1274.2.g.p.295.2 10
21.2 odd 6 1638.2.p.k.991.1 10
21.11 odd 6 1638.2.m.j.289.1 10
91.9 even 3 182.2.e.d.165.2 yes 10
91.48 odd 6 1274.2.g.q.295.4 10
91.61 odd 6 1274.2.e.s.165.4 10
91.74 even 3 182.2.h.d.9.4 yes 10
91.87 odd 6 1274.2.h.s.373.2 10
273.74 odd 6 1638.2.p.k.919.1 10
273.191 odd 6 1638.2.m.j.1621.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.e.d.107.2 10 7.4 even 3
182.2.e.d.165.2 yes 10 91.9 even 3
182.2.h.d.9.4 yes 10 91.74 even 3
182.2.h.d.81.4 yes 10 7.2 even 3
1274.2.e.s.165.4 10 91.61 odd 6
1274.2.e.s.471.4 10 7.3 odd 6
1274.2.g.p.295.2 10 13.9 even 3 inner
1274.2.g.p.393.2 10 1.1 even 1 trivial
1274.2.g.q.295.4 10 91.48 odd 6
1274.2.g.q.393.4 10 7.6 odd 2
1274.2.h.s.263.2 10 7.5 odd 6
1274.2.h.s.373.2 10 91.87 odd 6
1638.2.m.j.289.1 10 21.11 odd 6
1638.2.m.j.1621.1 10 273.191 odd 6
1638.2.p.k.919.1 10 273.74 odd 6
1638.2.p.k.991.1 10 21.2 odd 6