Properties

Label 1274.2.g
Level $1274$
Weight $2$
Character orbit 1274.g
Rep. character $\chi_{1274}(295,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $98$
Newform subspaces $19$
Sturm bound $392$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 19 \)
Sturm bound: \(392\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1274, [\chi])\).

Total New Old
Modular forms 424 98 326
Cusp forms 360 98 262
Eisenstein series 64 0 64

Trace form

\( 98 q - q^{2} - 49 q^{4} - 2 q^{5} + 2 q^{8} - 57 q^{9} + 5 q^{10} + 8 q^{11} - q^{13} + 8 q^{15} - 49 q^{16} + 9 q^{17} + 26 q^{18} - 16 q^{19} + q^{20} + 4 q^{23} + 88 q^{25} - 5 q^{26} - 24 q^{27}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1274, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1274.2.g.a 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 26.2.c.a \(-1\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+q^{5}+q^{8}+\cdots\)
1274.2.g.b 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 182.2.g.d \(1\) \(-2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-2+2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1274.2.g.c 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 182.2.g.c \(1\) \(-2\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-2+2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1274.2.g.d 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 182.2.e.b \(1\) \(-1\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1274.2.g.e 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 182.2.e.a \(1\) \(-1\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1274.2.g.f 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 1274.2.g.f \(1\) \(-1\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1274.2.g.g 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 182.2.g.b \(1\) \(1\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1274.2.g.h 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 182.2.e.a \(1\) \(1\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1274.2.g.i 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 1274.2.g.f \(1\) \(1\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1274.2.g.j 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 182.2.e.b \(1\) \(1\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1274.2.g.k 1274.g 13.c $2$ $10.173$ \(\Q(\sqrt{-3}) \) None 182.2.g.a \(1\) \(3\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(3-3\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
1274.2.g.l 1274.g 13.c $4$ $10.173$ \(\Q(\zeta_{12})\) None 182.2.g.e \(-2\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_1 q^{2}-\beta_{2} q^{3}+(\beta_1-1)q^{4}+\cdots\)
1274.2.g.m 1274.g 13.c $6$ $10.173$ 6.0.4740147.1 None 182.2.e.c \(3\) \(-1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(\beta _{2}+\beta _{4})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\)
1274.2.g.n 1274.g 13.c $6$ $10.173$ 6.0.4740147.1 None 182.2.e.c \(3\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1})q^{2}+\beta _{4}q^{3}-\beta _{1}q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\)
1274.2.g.o 1274.g 13.c $8$ $10.173$ 8.0.\(\cdots\).2 None 1274.2.g.o \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{2}-\beta _{4}q^{3}+(-1-\beta _{2})q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\)
1274.2.g.p 1274.g 13.c $10$ $10.173$ 10.0.\(\cdots\).1 None 182.2.e.d \(-5\) \(-1\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{3})q^{2}+\beta _{6}q^{3}+\beta _{3}q^{4}-\beta _{8}q^{5}+\cdots\)
1274.2.g.q 1274.g 13.c $10$ $10.173$ 10.0.\(\cdots\).1 None 182.2.e.d \(-5\) \(1\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{3})q^{2}-\beta _{6}q^{3}+\beta _{3}q^{4}+\beta _{8}q^{5}+\cdots\)
1274.2.g.r 1274.g 13.c $16$ $10.173$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 1274.2.g.r \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{2})q^{2}-\beta _{8}q^{3}-\beta _{2}q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
1274.2.g.s 1274.g 13.c $16$ $10.173$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1274.2.g.s \(8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{5}q^{2}+(-\beta _{2}+\beta _{11})q^{3}+(-1+\beta _{5}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1274, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1274, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(637, [\chi])\)\(^{\oplus 2}\)