L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (−1.69 − 2.93i)5-s + (−2.60 − 0.461i)7-s − 0.999·8-s − 3.38·10-s − 3.81·11-s + (−3.24 − 1.58i)13-s + (−1.70 + 2.02i)14-s + (−0.5 + 0.866i)16-s + (2.02 + 3.50i)17-s + 6.15·19-s + (−1.69 + 2.93i)20-s + (−1.90 + 3.30i)22-s + (0.528 − 0.915i)23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.757 − 1.31i)5-s + (−0.984 − 0.174i)7-s − 0.353·8-s − 1.07·10-s − 1.14·11-s + (−0.898 − 0.438i)13-s + (−0.454 + 0.541i)14-s + (−0.125 + 0.216i)16-s + (0.490 + 0.849i)17-s + 1.41·19-s + (−0.378 + 0.655i)20-s + (−0.406 + 0.703i)22-s + (0.110 − 0.190i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.411 - 0.911i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.411 - 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.07538619574\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.07538619574\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.60 + 0.461i)T \) |
| 13 | \( 1 + (3.24 + 1.58i)T \) |
good | 5 | \( 1 + (1.69 + 2.93i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 3.81T + 11T^{2} \) |
| 17 | \( 1 + (-2.02 - 3.50i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 - 6.15T + 19T^{2} \) |
| 23 | \( 1 + (-0.528 + 0.915i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.15 - 1.99i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.99 - 3.44i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.71 + 4.69i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.26 - 3.91i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.46 + 6.00i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.77 - 4.79i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.81 - 6.61i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.74 + 6.47i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 12.7T + 61T^{2} \) |
| 67 | \( 1 + 8.84T + 67T^{2} \) |
| 71 | \( 1 + (-7.21 + 12.4i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (3.61 - 6.26i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.222 - 0.386i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 15.1T + 83T^{2} \) |
| 89 | \( 1 + (-4.11 + 7.13i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.18 - 10.7i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.533717727462940211315303777960, −8.930922220788505329437003349873, −7.85112983692257124016675572105, −7.43063818888463540086021441548, −5.97187040467715723321960266872, −5.23355398279347274021570323169, −4.54774352195865548075666445533, −3.52543848408957372461770919550, −2.74258093063510091048055894049, −1.12290310702531925747918653060,
0.02871019862779360191194071411, 2.81185570492169464169561770092, 2.99008999448205740068263827874, 4.17630290079328279353637342721, 5.25827389726553051650598037930, 6.04389234609959467017324478814, 7.11913419336881634159395484042, 7.32692880175807220354817718222, 8.061474892768406310456614891963, 9.413217683719848844008175348690