Properties

Label 1638.2.dm.c.415.3
Level $1638$
Weight $2$
Character 1638.415
Analytic conductor $13.079$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(415,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.415"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.dm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,6,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.752609431977984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.3
Root \(-2.23871 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1638.415
Dual form 1638.2.dm.c.1117.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(1.95878 + 1.13090i) q^{5} +(-2.41839 + 1.07303i) q^{7} -1.00000i q^{8} +(-1.13090 - 1.95878i) q^{10} +(1.09275 - 0.630901i) q^{11} +(-1.26180 - 3.37755i) q^{13} +(2.63090 + 0.279927i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(0.188776 + 0.326969i) q^{17} +(-6.71612 - 3.87755i) q^{19} +2.26180i q^{20} -1.26180 q^{22} +(2.24665 - 3.89131i) q^{23} +(0.0578747 + 0.100242i) q^{25} +(-0.596023 + 3.55595i) q^{26} +(-2.13846 - 1.55787i) q^{28} +2.40786 q^{29} +(-3.46410 + 2.00000i) q^{31} +(0.866025 - 0.500000i) q^{32} -0.377552i q^{34} +(-5.95058 - 0.633140i) q^{35} +(-2.92505 - 1.68878i) q^{37} +(3.87755 + 6.71612i) q^{38} +(1.13090 - 1.95878i) q^{40} -9.90116i q^{41} +8.75510 q^{43} +(1.09275 + 0.630901i) q^{44} +(-3.89131 + 2.24665i) q^{46} +(-2.85105 - 1.64605i) q^{47} +(4.69723 - 5.18999i) q^{49} -0.115749i q^{50} +(2.29414 - 2.78153i) q^{52} +(1.50000 + 2.59808i) q^{53} +2.85395 q^{55} +(1.07303 + 2.41839i) q^{56} +(-2.08526 - 1.20393i) q^{58} +(-4.04404 + 2.33483i) q^{59} +(4.45058 - 7.70863i) q^{61} +4.00000 q^{62} -1.00000 q^{64} +(1.34809 - 8.04285i) q^{65} +(-1.11900 + 0.646053i) q^{67} +(-0.188776 + 0.326969i) q^{68} +(4.83678 + 3.52360i) q^{70} +4.11575i q^{71} +(8.26232 - 4.77026i) q^{73} +(1.68878 + 2.92505i) q^{74} -7.75510i q^{76} +(-1.96573 + 2.69832i) q^{77} +(3.14605 - 5.44912i) q^{79} +(-1.95878 + 1.13090i) q^{80} +(-4.95058 + 8.57465i) q^{82} -6.39446i q^{83} +0.853947i q^{85} +(-7.58214 - 4.37755i) q^{86} +(-0.630901 - 1.09275i) q^{88} +(9.85325 + 5.68878i) q^{89} +(6.67573 + 6.81429i) q^{91} +4.49330 q^{92} +(1.64605 + 2.85105i) q^{94} +(-8.77026 - 15.1905i) q^{95} -8.03030i q^{97} +(-6.66292 + 2.14605i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} + 12 q^{13} + 18 q^{14} - 6 q^{16} - 18 q^{17} + 12 q^{22} - 6 q^{25} - 12 q^{29} - 24 q^{35} + 6 q^{38} + 24 q^{43} - 18 q^{49} + 6 q^{52} + 18 q^{53} + 48 q^{55} + 6 q^{56} + 6 q^{61} + 48 q^{62}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.95878 + 1.13090i 0.875992 + 0.505754i 0.869335 0.494223i \(-0.164548\pi\)
0.00665735 + 0.999978i \(0.497881\pi\)
\(6\) 0 0
\(7\) −2.41839 + 1.07303i −0.914066 + 0.405566i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.13090 1.95878i −0.357622 0.619420i
\(11\) 1.09275 0.630901i 0.329477 0.190224i −0.326132 0.945324i \(-0.605745\pi\)
0.655609 + 0.755101i \(0.272412\pi\)
\(12\) 0 0
\(13\) −1.26180 3.37755i −0.349961 0.936764i
\(14\) 2.63090 + 0.279927i 0.703138 + 0.0748137i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.188776 + 0.326969i 0.0457849 + 0.0793017i 0.888010 0.459825i \(-0.152088\pi\)
−0.842225 + 0.539127i \(0.818754\pi\)
\(18\) 0 0
\(19\) −6.71612 3.87755i −1.54078 0.889571i −0.998790 0.0491885i \(-0.984336\pi\)
−0.541993 0.840383i \(-0.682330\pi\)
\(20\) 2.26180i 0.505754i
\(21\) 0 0
\(22\) −1.26180 −0.269017
\(23\) 2.24665 3.89131i 0.468459 0.811395i −0.530891 0.847440i \(-0.678143\pi\)
0.999350 + 0.0360452i \(0.0114760\pi\)
\(24\) 0 0
\(25\) 0.0578747 + 0.100242i 0.0115749 + 0.0200484i
\(26\) −0.596023 + 3.55595i −0.116890 + 0.697379i
\(27\) 0 0
\(28\) −2.13846 1.55787i −0.404132 0.294411i
\(29\) 2.40786 0.447127 0.223564 0.974689i \(-0.428231\pi\)
0.223564 + 0.974689i \(0.428231\pi\)
\(30\) 0 0
\(31\) −3.46410 + 2.00000i −0.622171 + 0.359211i −0.777714 0.628619i \(-0.783621\pi\)
0.155543 + 0.987829i \(0.450287\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) 0.377552i 0.0647496i
\(35\) −5.95058 0.633140i −1.00583 0.107020i
\(36\) 0 0
\(37\) −2.92505 1.68878i −0.480875 0.277633i 0.239906 0.970796i \(-0.422883\pi\)
−0.720781 + 0.693163i \(0.756217\pi\)
\(38\) 3.87755 + 6.71612i 0.629022 + 1.08950i
\(39\) 0 0
\(40\) 1.13090 1.95878i 0.178811 0.309710i
\(41\) 9.90116i 1.54630i −0.634223 0.773150i \(-0.718680\pi\)
0.634223 0.773150i \(-0.281320\pi\)
\(42\) 0 0
\(43\) 8.75510 1.33514 0.667570 0.744547i \(-0.267334\pi\)
0.667570 + 0.744547i \(0.267334\pi\)
\(44\) 1.09275 + 0.630901i 0.164739 + 0.0951119i
\(45\) 0 0
\(46\) −3.89131 + 2.24665i −0.573743 + 0.331251i
\(47\) −2.85105 1.64605i −0.415868 0.240101i 0.277440 0.960743i \(-0.410514\pi\)
−0.693308 + 0.720642i \(0.743847\pi\)
\(48\) 0 0
\(49\) 4.69723 5.18999i 0.671033 0.741428i
\(50\) 0.115749i 0.0163694i
\(51\) 0 0
\(52\) 2.29414 2.78153i 0.318141 0.385729i
\(53\) 1.50000 + 2.59808i 0.206041 + 0.356873i 0.950464 0.310835i \(-0.100609\pi\)
−0.744423 + 0.667708i \(0.767275\pi\)
\(54\) 0 0
\(55\) 2.85395 0.384826
\(56\) 1.07303 + 2.41839i 0.143389 + 0.323171i
\(57\) 0 0
\(58\) −2.08526 1.20393i −0.273809 0.158083i
\(59\) −4.04404 + 2.33483i −0.526489 + 0.303969i −0.739586 0.673062i \(-0.764979\pi\)
0.213096 + 0.977031i \(0.431645\pi\)
\(60\) 0 0
\(61\) 4.45058 7.70863i 0.569838 0.986989i −0.426743 0.904373i \(-0.640339\pi\)
0.996581 0.0826158i \(-0.0263274\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 1.34809 8.04285i 0.167210 0.997593i
\(66\) 0 0
\(67\) −1.11900 + 0.646053i −0.136707 + 0.0789279i −0.566794 0.823860i \(-0.691816\pi\)
0.430087 + 0.902788i \(0.358483\pi\)
\(68\) −0.188776 + 0.326969i −0.0228924 + 0.0396509i
\(69\) 0 0
\(70\) 4.83678 + 3.52360i 0.578106 + 0.421151i
\(71\) 4.11575i 0.488450i 0.969719 + 0.244225i \(0.0785335\pi\)
−0.969719 + 0.244225i \(0.921467\pi\)
\(72\) 0 0
\(73\) 8.26232 4.77026i 0.967032 0.558316i 0.0687018 0.997637i \(-0.478114\pi\)
0.898330 + 0.439321i \(0.144781\pi\)
\(74\) 1.68878 + 2.92505i 0.196316 + 0.340030i
\(75\) 0 0
\(76\) 7.75510i 0.889571i
\(77\) −1.96573 + 2.69832i −0.224016 + 0.307502i
\(78\) 0 0
\(79\) 3.14605 5.44912i 0.353959 0.613074i −0.632981 0.774168i \(-0.718169\pi\)
0.986939 + 0.161093i \(0.0515020\pi\)
\(80\) −1.95878 + 1.13090i −0.218998 + 0.126439i
\(81\) 0 0
\(82\) −4.95058 + 8.57465i −0.546700 + 0.946912i
\(83\) 6.39446i 0.701883i −0.936397 0.350941i \(-0.885862\pi\)
0.936397 0.350941i \(-0.114138\pi\)
\(84\) 0 0
\(85\) 0.853947i 0.0926236i
\(86\) −7.58214 4.37755i −0.817603 0.472044i
\(87\) 0 0
\(88\) −0.630901 1.09275i −0.0672543 0.116488i
\(89\) 9.85325 + 5.68878i 1.04444 + 0.603009i 0.921088 0.389354i \(-0.127302\pi\)
0.123354 + 0.992363i \(0.460635\pi\)
\(90\) 0 0
\(91\) 6.67573 + 6.81429i 0.699807 + 0.714332i
\(92\) 4.49330 0.468459
\(93\) 0 0
\(94\) 1.64605 + 2.85105i 0.169777 + 0.294063i
\(95\) −8.77026 15.1905i −0.899809 1.55852i
\(96\) 0 0
\(97\) 8.03030i 0.815354i −0.913126 0.407677i \(-0.866339\pi\)
0.913126 0.407677i \(-0.133661\pi\)
\(98\) −6.66292 + 2.14605i −0.673056 + 0.216784i
\(99\) 0 0
\(100\) −0.0578747 + 0.100242i −0.00578747 + 0.0100242i
\(101\) 5.81968 + 10.0800i 0.579079 + 1.00300i 0.995585 + 0.0938620i \(0.0299213\pi\)
−0.416506 + 0.909133i \(0.636745\pi\)
\(102\) 0 0
\(103\) −6.23150 + 10.7933i −0.614008 + 1.06349i 0.376550 + 0.926396i \(0.377110\pi\)
−0.990558 + 0.137096i \(0.956223\pi\)
\(104\) −3.37755 + 1.26180i −0.331196 + 0.123730i
\(105\) 0 0
\(106\) 3.00000i 0.291386i
\(107\) 8.90116 15.4173i 0.860507 1.49044i −0.0109328 0.999940i \(-0.503480\pi\)
0.871440 0.490502i \(-0.163187\pi\)
\(108\) 0 0
\(109\) 2.83944 1.63935i 0.271969 0.157022i −0.357813 0.933793i \(-0.616477\pi\)
0.629782 + 0.776772i \(0.283144\pi\)
\(110\) −2.47159 1.42697i −0.235657 0.136057i
\(111\) 0 0
\(112\) 0.279927 2.63090i 0.0264506 0.248597i
\(113\) −1.32241 −0.124402 −0.0622009 0.998064i \(-0.519812\pi\)
−0.0622009 + 0.998064i \(0.519812\pi\)
\(114\) 0 0
\(115\) 8.80138 5.08148i 0.820733 0.473850i
\(116\) 1.20393 + 2.08526i 0.111782 + 0.193612i
\(117\) 0 0
\(118\) 4.66966 0.429877
\(119\) −0.807380 0.588178i −0.0740124 0.0539182i
\(120\) 0 0
\(121\) −4.70393 + 8.14744i −0.427630 + 0.740677i
\(122\) −7.70863 + 4.45058i −0.697906 + 0.402936i
\(123\) 0 0
\(124\) −3.46410 2.00000i −0.311086 0.179605i
\(125\) 11.0472i 0.988092i
\(126\) 0 0
\(127\) −16.3642 −1.45208 −0.726042 0.687650i \(-0.758642\pi\)
−0.726042 + 0.687650i \(0.758642\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −5.18890 + 6.29127i −0.455097 + 0.551781i
\(131\) −5.71908 + 9.90574i −0.499678 + 0.865468i −1.00000 0.000371455i \(-0.999882\pi\)
0.500322 + 0.865840i \(0.333215\pi\)
\(132\) 0 0
\(133\) 20.4029 + 2.17086i 1.76916 + 0.188238i
\(134\) 1.29211 0.111621
\(135\) 0 0
\(136\) 0.326969 0.188776i 0.0280374 0.0161874i
\(137\) −9.65276 + 5.57303i −0.824691 + 0.476136i −0.852032 0.523490i \(-0.824630\pi\)
0.0273402 + 0.999626i \(0.491296\pi\)
\(138\) 0 0
\(139\) −2.49330 −0.211479 −0.105740 0.994394i \(-0.533721\pi\)
−0.105740 + 0.994394i \(0.533721\pi\)
\(140\) −2.42697 5.46992i −0.205117 0.462293i
\(141\) 0 0
\(142\) 2.05787 3.56434i 0.172693 0.299113i
\(143\) −3.50974 2.89476i −0.293499 0.242072i
\(144\) 0 0
\(145\) 4.71645 + 2.72305i 0.391680 + 0.226137i
\(146\) −9.54051 −0.789578
\(147\) 0 0
\(148\) 3.37755i 0.277633i
\(149\) 0.0262436 + 0.0151517i 0.00214996 + 0.00124128i 0.501075 0.865404i \(-0.332938\pi\)
−0.498925 + 0.866645i \(0.666272\pi\)
\(150\) 0 0
\(151\) −3.73171 + 2.15451i −0.303683 + 0.175331i −0.644096 0.764945i \(-0.722766\pi\)
0.340413 + 0.940276i \(0.389433\pi\)
\(152\) −3.87755 + 6.71612i −0.314511 + 0.544749i
\(153\) 0 0
\(154\) 3.05153 1.35395i 0.245899 0.109104i
\(155\) −9.04721 −0.726689
\(156\) 0 0
\(157\) −11.3557 19.6687i −0.906284 1.56973i −0.819185 0.573530i \(-0.805574\pi\)
−0.0870987 0.996200i \(-0.527760\pi\)
\(158\) −5.44912 + 3.14605i −0.433509 + 0.250287i
\(159\) 0 0
\(160\) 2.26180 0.178811
\(161\) −1.25780 + 11.8214i −0.0991283 + 0.931659i
\(162\) 0 0
\(163\) −10.7455 6.20393i −0.841654 0.485929i 0.0161722 0.999869i \(-0.494852\pi\)
−0.857826 + 0.513940i \(0.828185\pi\)
\(164\) 8.57465 4.95058i 0.669568 0.386575i
\(165\) 0 0
\(166\) −3.19723 + 5.53776i −0.248153 + 0.429814i
\(167\) 24.6732i 1.90927i −0.297784 0.954633i \(-0.596247\pi\)
0.297784 0.954633i \(-0.403753\pi\)
\(168\) 0 0
\(169\) −9.81571 + 8.52360i −0.755055 + 0.655662i
\(170\) 0.426974 0.739540i 0.0327474 0.0567201i
\(171\) 0 0
\(172\) 4.37755 + 7.58214i 0.333785 + 0.578133i
\(173\) 11.9893 20.7661i 0.911532 1.57882i 0.0996316 0.995024i \(-0.468234\pi\)
0.811901 0.583796i \(-0.198433\pi\)
\(174\) 0 0
\(175\) −0.247526 0.180323i −0.0187112 0.0136311i
\(176\) 1.26180i 0.0951119i
\(177\) 0 0
\(178\) −5.68878 9.85325i −0.426392 0.738532i
\(179\) −2.85395 4.94318i −0.213314 0.369471i 0.739436 0.673227i \(-0.235092\pi\)
−0.952750 + 0.303756i \(0.901759\pi\)
\(180\) 0 0
\(181\) −16.6697 −1.23905 −0.619523 0.784979i \(-0.712674\pi\)
−0.619523 + 0.784979i \(0.712674\pi\)
\(182\) −2.37421 9.23922i −0.175988 0.684856i
\(183\) 0 0
\(184\) −3.89131 2.24665i −0.286871 0.165625i
\(185\) −3.81968 6.61587i −0.280828 0.486409i
\(186\) 0 0
\(187\) 0.412571 + 0.238198i 0.0301702 + 0.0174187i
\(188\) 3.29211i 0.240101i
\(189\) 0 0
\(190\) 17.5405i 1.27252i
\(191\) 3.63935 6.30355i 0.263334 0.456109i −0.703791 0.710407i \(-0.748511\pi\)
0.967126 + 0.254298i \(0.0818444\pi\)
\(192\) 0 0
\(193\) 14.9900 8.65451i 1.07901 0.622965i 0.148379 0.988931i \(-0.452595\pi\)
0.930628 + 0.365966i \(0.119261\pi\)
\(194\) −4.01515 + 6.95445i −0.288271 + 0.499300i
\(195\) 0 0
\(196\) 6.84328 + 1.47292i 0.488806 + 0.105209i
\(197\) 3.21459i 0.229030i −0.993422 0.114515i \(-0.963469\pi\)
0.993422 0.114515i \(-0.0365314\pi\)
\(198\) 0 0
\(199\) −5.85173 10.1355i −0.414818 0.718487i 0.580591 0.814195i \(-0.302822\pi\)
−0.995409 + 0.0957088i \(0.969488\pi\)
\(200\) 0.100242 0.0578747i 0.00708817 0.00409236i
\(201\) 0 0
\(202\) 11.6394i 0.818942i
\(203\) −5.82313 + 2.58369i −0.408704 + 0.181340i
\(204\) 0 0
\(205\) 11.1972 19.3942i 0.782048 1.35455i
\(206\) 10.7933 6.23150i 0.752003 0.434169i
\(207\) 0 0
\(208\) 3.55595 + 0.596023i 0.246561 + 0.0413268i
\(209\) −9.78541 −0.676871
\(210\) 0 0
\(211\) −8.06411 −0.555157 −0.277578 0.960703i \(-0.589532\pi\)
−0.277578 + 0.960703i \(0.589532\pi\)
\(212\) −1.50000 + 2.59808i −0.103020 + 0.178437i
\(213\) 0 0
\(214\) −15.4173 + 8.90116i −1.05390 + 0.608471i
\(215\) 17.1493 + 9.90116i 1.16957 + 0.675253i
\(216\) 0 0
\(217\) 6.23150 8.55385i 0.423022 0.580673i
\(218\) −3.27871 −0.222062
\(219\) 0 0
\(220\) 1.42697 + 2.47159i 0.0962065 + 0.166635i
\(221\) 0.866158 1.05017i 0.0582641 0.0706421i
\(222\) 0 0
\(223\) 23.7854i 1.59279i 0.604778 + 0.796394i \(0.293262\pi\)
−0.604778 + 0.796394i \(0.706738\pi\)
\(224\) −1.55787 + 2.13846i −0.104090 + 0.142882i
\(225\) 0 0
\(226\) 1.14524 + 0.661205i 0.0761802 + 0.0439827i
\(227\) 8.86074 5.11575i 0.588108 0.339544i −0.176241 0.984347i \(-0.556394\pi\)
0.764349 + 0.644803i \(0.223061\pi\)
\(228\) 0 0
\(229\) −0.906910 0.523604i −0.0599303 0.0346008i 0.469735 0.882807i \(-0.344349\pi\)
−0.529666 + 0.848206i \(0.677683\pi\)
\(230\) −10.1630 −0.670126
\(231\) 0 0
\(232\) 2.40786i 0.158083i
\(233\) −1.87580 + 3.24898i −0.122888 + 0.212848i −0.920905 0.389787i \(-0.872549\pi\)
0.798018 + 0.602634i \(0.205882\pi\)
\(234\) 0 0
\(235\) −3.72305 6.44850i −0.242865 0.420654i
\(236\) −4.04404 2.33483i −0.263245 0.151984i
\(237\) 0 0
\(238\) 0.405123 + 0.913067i 0.0262602 + 0.0591854i
\(239\) 29.1968i 1.88858i 0.329112 + 0.944291i \(0.393251\pi\)
−0.329112 + 0.944291i \(0.606749\pi\)
\(240\) 0 0
\(241\) −1.47908 + 0.853947i −0.0952759 + 0.0550076i −0.546881 0.837210i \(-0.684185\pi\)
0.451605 + 0.892218i \(0.350852\pi\)
\(242\) 8.14744 4.70393i 0.523737 0.302380i
\(243\) 0 0
\(244\) 8.90116 0.569838
\(245\) 15.0702 4.85395i 0.962800 0.310107i
\(246\) 0 0
\(247\) −4.62222 + 27.5767i −0.294105 + 1.75467i
\(248\) 2.00000 + 3.46410i 0.127000 + 0.219971i
\(249\) 0 0
\(250\) −5.52360 + 9.56716i −0.349343 + 0.605081i
\(251\) −19.4496 −1.22765 −0.613824 0.789443i \(-0.710370\pi\)
−0.613824 + 0.789443i \(0.710370\pi\)
\(252\) 0 0
\(253\) 5.66966i 0.356448i
\(254\) 14.1718 + 8.18208i 0.889216 + 0.513389i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 6.14605 10.6453i 0.383380 0.664034i −0.608163 0.793812i \(-0.708093\pi\)
0.991543 + 0.129778i \(0.0414266\pi\)
\(258\) 0 0
\(259\) 8.88600 + 0.945469i 0.552149 + 0.0587486i
\(260\) 7.63935 2.85395i 0.473773 0.176994i
\(261\) 0 0
\(262\) 9.90574 5.71908i 0.611978 0.353326i
\(263\) 1.65451 + 2.86569i 0.102021 + 0.176706i 0.912517 0.409038i \(-0.134136\pi\)
−0.810496 + 0.585744i \(0.800802\pi\)
\(264\) 0 0
\(265\) 6.78541i 0.416824i
\(266\) −16.5840 12.0815i −1.01683 0.740763i
\(267\) 0 0
\(268\) −1.11900 0.646053i −0.0683536 0.0394640i
\(269\) 16.0062 + 27.7236i 0.975918 + 1.69034i 0.676873 + 0.736100i \(0.263335\pi\)
0.299045 + 0.954239i \(0.403332\pi\)
\(270\) 0 0
\(271\) −19.3202 11.1545i −1.17362 0.677588i −0.219088 0.975705i \(-0.570308\pi\)
−0.954529 + 0.298117i \(0.903641\pi\)
\(272\) −0.377552 −0.0228924
\(273\) 0 0
\(274\) 11.1461 0.673358
\(275\) 0.126485 + 0.0730264i 0.00762736 + 0.00440366i
\(276\) 0 0
\(277\) 5.20568 + 9.01650i 0.312779 + 0.541749i 0.978963 0.204038i \(-0.0654067\pi\)
−0.666184 + 0.745788i \(0.732073\pi\)
\(278\) 2.15926 + 1.24665i 0.129504 + 0.0747691i
\(279\) 0 0
\(280\) −0.633140 + 5.95058i −0.0378374 + 0.355615i
\(281\) 29.5102i 1.76043i 0.474574 + 0.880216i \(0.342602\pi\)
−0.474574 + 0.880216i \(0.657398\pi\)
\(282\) 0 0
\(283\) −1.60730 2.78392i −0.0955439 0.165487i 0.814292 0.580456i \(-0.197126\pi\)
−0.909835 + 0.414969i \(0.863792\pi\)
\(284\) −3.56434 + 2.05787i −0.211505 + 0.122112i
\(285\) 0 0
\(286\) 1.59214 + 4.26180i 0.0941455 + 0.252006i
\(287\) 10.6242 + 23.9449i 0.627127 + 1.41342i
\(288\) 0 0
\(289\) 8.42873 14.5990i 0.495807 0.858764i
\(290\) −2.72305 4.71645i −0.159903 0.276960i
\(291\) 0 0
\(292\) 8.26232 + 4.77026i 0.483516 + 0.279158i
\(293\) 24.7248i 1.44444i 0.691664 + 0.722219i \(0.256878\pi\)
−0.691664 + 0.722219i \(0.743122\pi\)
\(294\) 0 0
\(295\) −10.5618 −0.614934
\(296\) −1.68878 + 2.92505i −0.0981581 + 0.170015i
\(297\) 0 0
\(298\) −0.0151517 0.0262436i −0.000877716 0.00152025i
\(299\) −15.9779 2.67811i −0.924028 0.154879i
\(300\) 0 0
\(301\) −21.1733 + 9.39446i −1.22041 + 0.541488i
\(302\) 4.30901 0.247956
\(303\) 0 0
\(304\) 6.71612 3.87755i 0.385196 0.222393i
\(305\) 17.4354 10.0663i 0.998348 0.576396i
\(306\) 0 0
\(307\) 6.93939i 0.396052i 0.980197 + 0.198026i \(0.0634531\pi\)
−0.980197 + 0.198026i \(0.936547\pi\)
\(308\) −3.31968 0.353213i −0.189156 0.0201262i
\(309\) 0 0
\(310\) 7.83511 + 4.52360i 0.445005 + 0.256923i
\(311\) −5.53876 9.59341i −0.314074 0.543992i 0.665166 0.746695i \(-0.268361\pi\)
−0.979240 + 0.202703i \(0.935027\pi\)
\(312\) 0 0
\(313\) 10.7039 18.5397i 0.605022 1.04793i −0.387026 0.922069i \(-0.626498\pi\)
0.992048 0.125860i \(-0.0401689\pi\)
\(314\) 22.7114i 1.28168i
\(315\) 0 0
\(316\) 6.29211 0.353959
\(317\) −18.3754 10.6091i −1.03207 0.595864i −0.114490 0.993424i \(-0.536523\pi\)
−0.917576 + 0.397561i \(0.869857\pi\)
\(318\) 0 0
\(319\) 2.63119 1.51912i 0.147318 0.0850543i
\(320\) −1.95878 1.13090i −0.109499 0.0632193i
\(321\) 0 0
\(322\) 7.00000 9.60876i 0.390095 0.535475i
\(323\) 2.92795i 0.162916i
\(324\) 0 0
\(325\) 0.265546 0.321960i 0.0147298 0.0178591i
\(326\) 6.20393 + 10.7455i 0.343604 + 0.595139i
\(327\) 0 0
\(328\) −9.90116 −0.546700
\(329\) 8.66120 + 0.921550i 0.477508 + 0.0508067i
\(330\) 0 0
\(331\) 18.2205 + 10.5196i 1.00149 + 0.578212i 0.908689 0.417473i \(-0.137084\pi\)
0.0928025 + 0.995685i \(0.470417\pi\)
\(332\) 5.53776 3.19723i 0.303924 0.175471i
\(333\) 0 0
\(334\) −12.3366 + 21.3676i −0.675028 + 1.16918i
\(335\) −2.92249 −0.159673
\(336\) 0 0
\(337\) −25.5574 −1.39220 −0.696101 0.717944i \(-0.745083\pi\)
−0.696101 + 0.717944i \(0.745083\pi\)
\(338\) 12.7625 2.47380i 0.694186 0.134557i
\(339\) 0 0
\(340\) −0.739540 + 0.426974i −0.0401072 + 0.0231559i
\(341\) −2.52360 + 4.37101i −0.136661 + 0.236704i
\(342\) 0 0
\(343\) −5.79073 + 17.5917i −0.312670 + 0.949862i
\(344\) 8.75510i 0.472044i
\(345\) 0 0
\(346\) −20.7661 + 11.9893i −1.11639 + 0.644551i
\(347\) 9.16517 + 15.8745i 0.492012 + 0.852190i 0.999958 0.00919912i \(-0.00292821\pi\)
−0.507946 + 0.861389i \(0.669595\pi\)
\(348\) 0 0
\(349\) 4.19326i 0.224460i −0.993682 0.112230i \(-0.964201\pi\)
0.993682 0.112230i \(-0.0357994\pi\)
\(350\) 0.124202 + 0.279927i 0.00663888 + 0.0149627i
\(351\) 0 0
\(352\) 0.630901 1.09275i 0.0336271 0.0582439i
\(353\) 18.9338 10.9315i 1.00775 0.581823i 0.0972156 0.995263i \(-0.469006\pi\)
0.910531 + 0.413440i \(0.135673\pi\)
\(354\) 0 0
\(355\) −4.65451 + 8.06184i −0.247036 + 0.427878i
\(356\) 11.3776i 0.603009i
\(357\) 0 0
\(358\) 5.70789i 0.301672i
\(359\) 22.4341 + 12.9523i 1.18403 + 0.683598i 0.956943 0.290277i \(-0.0937475\pi\)
0.227084 + 0.973875i \(0.427081\pi\)
\(360\) 0 0
\(361\) 20.5708 + 35.6297i 1.08267 + 1.87525i
\(362\) 14.4363 + 8.33483i 0.758758 + 0.438069i
\(363\) 0 0
\(364\) −2.56348 + 9.18850i −0.134363 + 0.481608i
\(365\) 21.5787 1.12948
\(366\) 0 0
\(367\) 8.93146 + 15.4697i 0.466218 + 0.807514i 0.999256 0.0385779i \(-0.0122828\pi\)
−0.533037 + 0.846092i \(0.678949\pi\)
\(368\) 2.24665 + 3.89131i 0.117115 + 0.202849i
\(369\) 0 0
\(370\) 7.63935i 0.397151i
\(371\) −6.41539 4.67362i −0.333070 0.242642i
\(372\) 0 0
\(373\) 7.56236 13.0984i 0.391564 0.678209i −0.601092 0.799180i \(-0.705267\pi\)
0.992656 + 0.120971i \(0.0386008\pi\)
\(374\) −0.238198 0.412571i −0.0123169 0.0213335i
\(375\) 0 0
\(376\) −1.64605 + 2.85105i −0.0848887 + 0.147032i
\(377\) −3.03824 8.13265i −0.156477 0.418853i
\(378\) 0 0
\(379\) 12.5236i 0.643294i −0.946860 0.321647i \(-0.895764\pi\)
0.946860 0.321647i \(-0.104236\pi\)
\(380\) 8.77026 15.1905i 0.449905 0.779258i
\(381\) 0 0
\(382\) −6.30355 + 3.63935i −0.322517 + 0.186206i
\(383\) −1.36723 0.789373i −0.0698624 0.0403351i 0.464662 0.885488i \(-0.346176\pi\)
−0.534524 + 0.845153i \(0.679509\pi\)
\(384\) 0 0
\(385\) −6.90196 + 3.06236i −0.351756 + 0.156072i
\(386\) −17.3090 −0.881005
\(387\) 0 0
\(388\) 6.95445 4.01515i 0.353059 0.203838i
\(389\) 2.40512 + 4.16580i 0.121945 + 0.211214i 0.920534 0.390661i \(-0.127754\pi\)
−0.798590 + 0.601876i \(0.794420\pi\)
\(390\) 0 0
\(391\) 1.69645 0.0857933
\(392\) −5.18999 4.69723i −0.262134 0.237246i
\(393\) 0 0
\(394\) −1.60730 + 2.78392i −0.0809744 + 0.140252i
\(395\) 12.3248 7.11575i 0.620130 0.358032i
\(396\) 0 0
\(397\) 23.3380 + 13.4742i 1.17130 + 0.676250i 0.953986 0.299852i \(-0.0969373\pi\)
0.217313 + 0.976102i \(0.430271\pi\)
\(398\) 11.7035i 0.586642i
\(399\) 0 0
\(400\) −0.115749 −0.00578747
\(401\) −17.8364 10.2978i −0.890705 0.514249i −0.0165321 0.999863i \(-0.505263\pi\)
−0.874173 + 0.485614i \(0.838596\pi\)
\(402\) 0 0
\(403\) 11.1261 + 9.17658i 0.554231 + 0.457118i
\(404\) −5.81968 + 10.0800i −0.289540 + 0.501498i
\(405\) 0 0
\(406\) 6.33483 + 0.674024i 0.314392 + 0.0334513i
\(407\) −4.26180 −0.211250
\(408\) 0 0
\(409\) 4.59774 2.65451i 0.227344 0.131257i −0.382002 0.924161i \(-0.624765\pi\)
0.609346 + 0.792904i \(0.291432\pi\)
\(410\) −19.3942 + 11.1972i −0.957810 + 0.552992i
\(411\) 0 0
\(412\) −12.4630 −0.614008
\(413\) 7.27474 9.98589i 0.357967 0.491374i
\(414\) 0 0
\(415\) 7.23150 12.5253i 0.354980 0.614844i
\(416\) −2.78153 2.29414i −0.136376 0.112480i
\(417\) 0 0
\(418\) 8.47441 + 4.89270i 0.414497 + 0.239310i
\(419\) 20.5842 1.00560 0.502802 0.864401i \(-0.332302\pi\)
0.502802 + 0.864401i \(0.332302\pi\)
\(420\) 0 0
\(421\) 12.8878i 0.628111i 0.949405 + 0.314055i \(0.101688\pi\)
−0.949405 + 0.314055i \(0.898312\pi\)
\(422\) 6.98373 + 4.03206i 0.339963 + 0.196277i
\(423\) 0 0
\(424\) 2.59808 1.50000i 0.126174 0.0728464i
\(425\) −0.0218507 + 0.0378465i −0.00105991 + 0.00183582i
\(426\) 0 0
\(427\) −2.49168 + 23.4181i −0.120581 + 1.13328i
\(428\) 17.8023 0.860507
\(429\) 0 0
\(430\) −9.90116 17.1493i −0.477476 0.827013i
\(431\) 23.0588 13.3130i 1.11070 0.641264i 0.171690 0.985151i \(-0.445077\pi\)
0.939011 + 0.343887i \(0.111744\pi\)
\(432\) 0 0
\(433\) −28.0810 −1.34949 −0.674744 0.738052i \(-0.735746\pi\)
−0.674744 + 0.738052i \(0.735746\pi\)
\(434\) −9.67356 + 4.29211i −0.464346 + 0.206028i
\(435\) 0 0
\(436\) 2.83944 + 1.63935i 0.135985 + 0.0785108i
\(437\) −30.1775 + 17.4230i −1.44359 + 0.833455i
\(438\) 0 0
\(439\) −13.8820 + 24.0444i −0.662554 + 1.14758i 0.317389 + 0.948295i \(0.397194\pi\)
−0.979942 + 0.199281i \(0.936139\pi\)
\(440\) 2.85395i 0.136057i
\(441\) 0 0
\(442\) −1.27520 + 0.476396i −0.0606551 + 0.0226598i
\(443\) 2.28092 3.95067i 0.108370 0.187702i −0.806740 0.590906i \(-0.798770\pi\)
0.915110 + 0.403204i \(0.132104\pi\)
\(444\) 0 0
\(445\) 12.8669 + 22.2861i 0.609949 + 1.05646i
\(446\) 11.8927 20.5988i 0.563136 0.975380i
\(447\) 0 0
\(448\) 2.41839 1.07303i 0.114258 0.0506957i
\(449\) 2.78190i 0.131286i −0.997843 0.0656430i \(-0.979090\pi\)
0.997843 0.0656430i \(-0.0209098\pi\)
\(450\) 0 0
\(451\) −6.24665 10.8195i −0.294143 0.509471i
\(452\) −0.661205 1.14524i −0.0311004 0.0538676i
\(453\) 0 0
\(454\) −10.2315 −0.480188
\(455\) 5.36999 + 20.8973i 0.251749 + 0.979680i
\(456\) 0 0
\(457\) 25.8126 + 14.9029i 1.20746 + 0.697129i 0.962204 0.272329i \(-0.0877939\pi\)
0.245258 + 0.969458i \(0.421127\pi\)
\(458\) 0.523604 + 0.906910i 0.0244664 + 0.0423771i
\(459\) 0 0
\(460\) 8.80138 + 5.08148i 0.410366 + 0.236925i
\(461\) 18.6180i 0.867128i 0.901123 + 0.433564i \(0.142744\pi\)
−0.901123 + 0.433564i \(0.857256\pi\)
\(462\) 0 0
\(463\) 42.0338i 1.95348i −0.214434 0.976738i \(-0.568791\pi\)
0.214434 0.976738i \(-0.431209\pi\)
\(464\) −1.20393 + 2.08526i −0.0558909 + 0.0968059i
\(465\) 0 0
\(466\) 3.24898 1.87580i 0.150506 0.0868947i
\(467\) −19.4608 + 33.7071i −0.900538 + 1.55978i −0.0737402 + 0.997277i \(0.523494\pi\)
−0.826798 + 0.562500i \(0.809840\pi\)
\(468\) 0 0
\(469\) 2.01294 2.76312i 0.0929489 0.127589i
\(470\) 7.44609i 0.343463i
\(471\) 0 0
\(472\) 2.33483 + 4.04404i 0.107469 + 0.186142i
\(473\) 9.56716 5.52360i 0.439899 0.253976i
\(474\) 0 0
\(475\) 0.897649i 0.0411869i
\(476\) 0.105687 0.993301i 0.00484416 0.0455279i
\(477\) 0 0
\(478\) 14.5984 25.2851i 0.667715 1.15652i
\(479\) −1.98029 + 1.14332i −0.0904817 + 0.0522397i −0.544558 0.838723i \(-0.683303\pi\)
0.454076 + 0.890963i \(0.349969\pi\)
\(480\) 0 0
\(481\) −2.01310 + 12.0104i −0.0917894 + 0.547627i
\(482\) 1.70789 0.0777925
\(483\) 0 0
\(484\) −9.40786 −0.427630
\(485\) 9.08148 15.7296i 0.412369 0.714244i
\(486\) 0 0
\(487\) 26.7087 15.4203i 1.21029 0.698759i 0.247465 0.968897i \(-0.420402\pi\)
0.962822 + 0.270138i \(0.0870692\pi\)
\(488\) −7.70863 4.45058i −0.348953 0.201468i
\(489\) 0 0
\(490\) −15.4781 3.33146i −0.699232 0.150500i
\(491\) −41.1754 −1.85822 −0.929111 0.369802i \(-0.879426\pi\)
−0.929111 + 0.369802i \(0.879426\pi\)
\(492\) 0 0
\(493\) 0.454545 + 0.787295i 0.0204717 + 0.0354580i
\(494\) 17.7913 21.5710i 0.800470 0.970527i
\(495\) 0 0
\(496\) 4.00000i 0.179605i
\(497\) −4.41631 9.95349i −0.198098 0.446475i
\(498\) 0 0
\(499\) −13.3961 7.73423i −0.599691 0.346232i 0.169229 0.985577i \(-0.445872\pi\)
−0.768920 + 0.639345i \(0.779206\pi\)
\(500\) 9.56716 5.52360i 0.427857 0.247023i
\(501\) 0 0
\(502\) 16.8438 + 9.72480i 0.751778 + 0.434039i
\(503\) 0.986602 0.0439904 0.0219952 0.999758i \(-0.492998\pi\)
0.0219952 + 0.999758i \(0.492998\pi\)
\(504\) 0 0
\(505\) 26.3259i 1.17149i
\(506\) −2.83483 + 4.91007i −0.126024 + 0.218279i
\(507\) 0 0
\(508\) −8.18208 14.1718i −0.363021 0.628771i
\(509\) −14.8588 8.57875i −0.658606 0.380246i 0.133140 0.991097i \(-0.457494\pi\)
−0.791746 + 0.610851i \(0.790827\pi\)
\(510\) 0 0
\(511\) −14.8629 + 20.4020i −0.657497 + 0.902533i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −10.6453 + 6.14605i −0.469543 + 0.271091i
\(515\) −24.4122 + 14.0944i −1.07573 + 0.621074i
\(516\) 0 0
\(517\) −4.15399 −0.182692
\(518\) −7.22277 5.26180i −0.317350 0.231190i
\(519\) 0 0
\(520\) −8.04285 1.34809i −0.352702 0.0591175i
\(521\) −16.2787 28.1955i −0.713183 1.23527i −0.963656 0.267146i \(-0.913919\pi\)
0.250473 0.968124i \(-0.419414\pi\)
\(522\) 0 0
\(523\) 17.4248 30.1806i 0.761932 1.31970i −0.179922 0.983681i \(-0.557585\pi\)
0.941854 0.336023i \(-0.109082\pi\)
\(524\) −11.4382 −0.499678
\(525\) 0 0
\(526\) 3.30901i 0.144280i
\(527\) −1.30788 0.755103i −0.0569720 0.0328928i
\(528\) 0 0
\(529\) 1.40512 + 2.43374i 0.0610923 + 0.105815i
\(530\) 3.39270 5.87633i 0.147370 0.255252i
\(531\) 0 0
\(532\) 8.32143 + 18.7549i 0.360780 + 0.813127i
\(533\) −33.4417 + 12.4933i −1.44852 + 0.541145i
\(534\) 0 0
\(535\) 34.8708 20.1327i 1.50760 0.870411i
\(536\) 0.646053 + 1.11900i 0.0279052 + 0.0483333i
\(537\) 0 0
\(538\) 32.0125i 1.38016i
\(539\) 1.85854 8.63487i 0.0800528 0.371930i
\(540\) 0 0
\(541\) 23.3905 + 13.5045i 1.00563 + 0.580603i 0.909910 0.414805i \(-0.136150\pi\)
0.0957238 + 0.995408i \(0.469483\pi\)
\(542\) 11.1545 + 19.3202i 0.479127 + 0.829872i
\(543\) 0 0
\(544\) 0.326969 + 0.188776i 0.0140187 + 0.00809370i
\(545\) 7.41579 0.317657
\(546\) 0 0
\(547\) 33.1719 1.41833 0.709165 0.705043i \(-0.249072\pi\)
0.709165 + 0.705043i \(0.249072\pi\)
\(548\) −9.65276 5.57303i −0.412346 0.238068i
\(549\) 0 0
\(550\) −0.0730264 0.126485i −0.00311386 0.00539336i
\(551\) −16.1714 9.33658i −0.688926 0.397752i
\(552\) 0 0
\(553\) −1.76133 + 16.5539i −0.0748995 + 0.703944i
\(554\) 10.4114i 0.442336i
\(555\) 0 0
\(556\) −1.24665 2.15926i −0.0528698 0.0915731i
\(557\) −16.4136 + 9.47640i −0.695466 + 0.401528i −0.805657 0.592383i \(-0.798187\pi\)
0.110190 + 0.993911i \(0.464854\pi\)
\(558\) 0 0
\(559\) −11.0472 29.5708i −0.467247 1.25071i
\(560\) 3.52360 4.83678i 0.148899 0.204391i
\(561\) 0 0
\(562\) 14.7551 25.5566i 0.622406 1.07804i
\(563\) −15.7720 27.3179i −0.664711 1.15131i −0.979364 0.202106i \(-0.935221\pi\)
0.314653 0.949207i \(-0.398112\pi\)
\(564\) 0 0
\(565\) −2.59031 1.49551i −0.108975 0.0629167i
\(566\) 3.21459i 0.135119i
\(567\) 0 0
\(568\) 4.11575 0.172693
\(569\) 1.53206 2.65360i 0.0642272 0.111245i −0.832124 0.554590i \(-0.812875\pi\)
0.896351 + 0.443345i \(0.146208\pi\)
\(570\) 0 0
\(571\) 2.05514 + 3.55961i 0.0860050 + 0.148965i 0.905819 0.423665i \(-0.139257\pi\)
−0.819814 + 0.572630i \(0.805923\pi\)
\(572\) 0.752063 4.48690i 0.0314453 0.187607i
\(573\) 0 0
\(574\) 2.77160 26.0490i 0.115685 1.08726i
\(575\) 0.520097 0.0216895
\(576\) 0 0
\(577\) −16.4954 + 9.52360i −0.686711 + 0.396473i −0.802379 0.596815i \(-0.796433\pi\)
0.115668 + 0.993288i \(0.463099\pi\)
\(578\) −14.5990 + 8.42873i −0.607238 + 0.350589i
\(579\) 0 0
\(580\) 5.44609i 0.226137i
\(581\) 6.86142 + 15.4643i 0.284660 + 0.641567i
\(582\) 0 0
\(583\) 3.27826 + 1.89270i 0.135772 + 0.0783878i
\(584\) −4.77026 8.26232i −0.197395 0.341897i
\(585\) 0 0
\(586\) 12.3624 21.4123i 0.510686 0.884534i
\(587\) 36.2216i 1.49503i −0.664247 0.747513i \(-0.731248\pi\)
0.664247 0.747513i \(-0.268752\pi\)
\(588\) 0 0
\(589\) 31.0204 1.27817
\(590\) 9.14682 + 5.28092i 0.376569 + 0.217412i
\(591\) 0 0
\(592\) 2.92505 1.68878i 0.120219 0.0694083i
\(593\) 4.35164 + 2.51242i 0.178700 + 0.103173i 0.586682 0.809817i \(-0.300434\pi\)
−0.407982 + 0.912990i \(0.633767\pi\)
\(594\) 0 0
\(595\) −0.916308 2.06518i −0.0375650 0.0846640i
\(596\) 0.0303035i 0.00124128i
\(597\) 0 0
\(598\) 12.4982 + 10.3083i 0.511091 + 0.421537i
\(599\) 15.4096 + 26.6902i 0.629620 + 1.09053i 0.987628 + 0.156815i \(0.0501226\pi\)
−0.358008 + 0.933718i \(0.616544\pi\)
\(600\) 0 0
\(601\) 9.12121 0.372062 0.186031 0.982544i \(-0.440438\pi\)
0.186031 + 0.982544i \(0.440438\pi\)
\(602\) 23.0338 + 2.45079i 0.938788 + 0.0998868i
\(603\) 0 0
\(604\) −3.73171 2.15451i −0.151841 0.0876656i
\(605\) −18.4279 + 10.6394i −0.749201 + 0.432551i
\(606\) 0 0
\(607\) −11.1821 + 19.3679i −0.453866 + 0.786120i −0.998622 0.0524749i \(-0.983289\pi\)
0.544756 + 0.838595i \(0.316622\pi\)
\(608\) −7.75510 −0.314511
\(609\) 0 0
\(610\) −20.1327 −0.815147
\(611\) −1.96217 + 11.7066i −0.0793809 + 0.473596i
\(612\) 0 0
\(613\) −29.9508 + 17.2921i −1.20970 + 0.698422i −0.962694 0.270592i \(-0.912781\pi\)
−0.247008 + 0.969014i \(0.579447\pi\)
\(614\) 3.46970 6.00969i 0.140026 0.242531i
\(615\) 0 0
\(616\) 2.69832 + 1.96573i 0.108718 + 0.0792015i
\(617\) 1.21810i 0.0490389i −0.999699 0.0245194i \(-0.992194\pi\)
0.999699 0.0245194i \(-0.00780556\pi\)
\(618\) 0 0
\(619\) −6.93507 + 4.00397i −0.278744 + 0.160933i −0.632855 0.774271i \(-0.718117\pi\)
0.354111 + 0.935204i \(0.384784\pi\)
\(620\) −4.52360 7.83511i −0.181672 0.314666i
\(621\) 0 0
\(622\) 11.0775i 0.444168i
\(623\) −29.9332 3.18489i −1.19925 0.127600i
\(624\) 0 0
\(625\) 12.7827 22.1402i 0.511307 0.885610i
\(626\) −18.5397 + 10.7039i −0.740997 + 0.427815i
\(627\) 0 0
\(628\) 11.3557 19.6687i 0.453142 0.784865i
\(629\) 1.27520i 0.0508456i
\(630\) 0 0
\(631\) 36.8843i 1.46834i 0.678966 + 0.734169i \(0.262428\pi\)
−0.678966 + 0.734169i \(0.737572\pi\)
\(632\) −5.44912 3.14605i −0.216754 0.125143i
\(633\) 0 0
\(634\) 10.6091 + 18.3754i 0.421339 + 0.729781i
\(635\) −32.0537 18.5062i −1.27201 0.734398i
\(636\) 0 0
\(637\) −23.4564 9.31639i −0.929378 0.369129i
\(638\) −3.03824 −0.120285
\(639\) 0 0
\(640\) 1.13090 + 1.95878i 0.0447028 + 0.0774275i
\(641\) 21.5748 + 37.3686i 0.852153 + 1.47597i 0.879262 + 0.476339i \(0.158037\pi\)
−0.0271091 + 0.999632i \(0.508630\pi\)
\(642\) 0 0
\(643\) 5.10235i 0.201217i −0.994926 0.100609i \(-0.967921\pi\)
0.994926 0.100609i \(-0.0320790\pi\)
\(644\) −10.8666 + 4.82143i −0.428202 + 0.189991i
\(645\) 0 0
\(646\) −1.46398 + 2.53568i −0.0575994 + 0.0997650i
\(647\) 18.4079 + 31.8833i 0.723687 + 1.25346i 0.959512 + 0.281668i \(0.0908876\pi\)
−0.235825 + 0.971796i \(0.575779\pi\)
\(648\) 0 0
\(649\) −2.94609 + 5.10278i −0.115644 + 0.200302i
\(650\) −0.390950 + 0.146053i −0.0153343 + 0.00572866i
\(651\) 0 0
\(652\) 12.4079i 0.485929i
\(653\) 14.8669 25.7502i 0.581786 1.00768i −0.413482 0.910513i \(-0.635687\pi\)
0.995268 0.0971708i \(-0.0309793\pi\)
\(654\) 0 0
\(655\) −22.4048 + 12.9354i −0.875429 + 0.505429i
\(656\) 8.57465 + 4.95058i 0.334784 + 0.193288i
\(657\) 0 0
\(658\) −7.04005 5.12869i −0.274450 0.199937i
\(659\) −16.9216 −0.659171 −0.329585 0.944126i \(-0.606909\pi\)
−0.329585 + 0.944126i \(0.606909\pi\)
\(660\) 0 0
\(661\) −35.9451 + 20.7529i −1.39810 + 0.807194i −0.994194 0.107606i \(-0.965681\pi\)
−0.403907 + 0.914800i \(0.632348\pi\)
\(662\) −10.5196 18.2205i −0.408857 0.708162i
\(663\) 0 0
\(664\) −6.39446 −0.248153
\(665\) 37.5097 + 27.3259i 1.45457 + 1.05965i
\(666\) 0 0
\(667\) 5.40961 9.36972i 0.209461 0.362797i
\(668\) 21.3676 12.3366i 0.826737 0.477317i
\(669\) 0 0
\(670\) 2.53095 + 1.46124i 0.0977791 + 0.0564528i
\(671\) 11.2315i 0.433587i
\(672\) 0 0
\(673\) 15.6394 0.602853 0.301426 0.953489i \(-0.402537\pi\)
0.301426 + 0.953489i \(0.402537\pi\)
\(674\) 22.1334 + 12.7787i 0.852546 + 0.492217i
\(675\) 0 0
\(676\) −12.2895 4.23885i −0.472674 0.163033i
\(677\) 6.61178 11.4519i 0.254111 0.440134i −0.710542 0.703654i \(-0.751550\pi\)
0.964654 + 0.263521i \(0.0848837\pi\)
\(678\) 0 0
\(679\) 8.61673 + 19.4204i 0.330680 + 0.745287i
\(680\) 0.853947 0.0327474
\(681\) 0 0
\(682\) 4.37101 2.52360i 0.167375 0.0966338i
\(683\) 22.4935 12.9866i 0.860688 0.496919i −0.00355454 0.999994i \(-0.501131\pi\)
0.864243 + 0.503075i \(0.167798\pi\)
\(684\) 0 0
\(685\) −25.2102 −0.963231
\(686\) 13.8108 12.3395i 0.527297 0.471124i
\(687\) 0 0
\(688\) −4.37755 + 7.58214i −0.166893 + 0.289066i
\(689\) 6.88243 8.34459i 0.262200 0.317903i
\(690\) 0 0
\(691\) −14.6467 8.45630i −0.557188 0.321693i 0.194828 0.980837i \(-0.437585\pi\)
−0.752016 + 0.659145i \(0.770918\pi\)
\(692\) 23.9787 0.911532
\(693\) 0 0
\(694\) 18.3303i 0.695810i
\(695\) −4.88382 2.81968i −0.185254 0.106956i
\(696\) 0 0
\(697\) 3.23737 1.86910i 0.122624 0.0707972i
\(698\) −2.09663 + 3.63147i −0.0793587 + 0.137453i
\(699\) 0 0
\(700\) 0.0324014 0.304525i 0.00122466 0.0115100i
\(701\) 33.0731 1.24915 0.624577 0.780964i \(-0.285272\pi\)
0.624577 + 0.780964i \(0.285272\pi\)
\(702\) 0 0
\(703\) 13.0966 + 22.6840i 0.493949 + 0.855544i
\(704\) −1.09275 + 0.630901i −0.0411847 + 0.0237780i
\(705\) 0 0
\(706\) −21.8629 −0.822822
\(707\) −24.8903 18.1327i −0.936097 0.681949i
\(708\) 0 0
\(709\) −10.4254 6.01912i −0.391535 0.226053i 0.291290 0.956635i \(-0.405916\pi\)
−0.682825 + 0.730582i \(0.739249\pi\)
\(710\) 8.06184 4.65451i 0.302555 0.174680i
\(711\) 0 0
\(712\) 5.68878 9.85325i 0.213196 0.369266i
\(713\) 17.9732i 0.673102i
\(714\) 0 0
\(715\) −3.60112 9.63935i −0.134674 0.360491i
\(716\) 2.85395 4.94318i 0.106657 0.184735i
\(717\) 0 0
\(718\) −12.9523 22.4341i −0.483377 0.837233i
\(719\) −3.59214 + 6.22178i −0.133964 + 0.232033i −0.925201 0.379476i \(-0.876104\pi\)
0.791237 + 0.611510i \(0.209437\pi\)
\(720\) 0 0
\(721\) 3.48873 32.7889i 0.129927 1.22112i
\(722\) 41.1416i 1.53113i
\(723\) 0 0
\(724\) −8.33483 14.4363i −0.309761 0.536523i
\(725\) 0.139354 + 0.241368i 0.00517547 + 0.00896418i
\(726\) 0 0
\(727\) −41.8967 −1.55386 −0.776932 0.629585i \(-0.783225\pi\)
−0.776932 + 0.629585i \(0.783225\pi\)
\(728\) 6.81429 6.67573i 0.252554 0.247419i
\(729\) 0 0
\(730\) −18.6877 10.7894i −0.691664 0.399333i
\(731\) 1.65275 + 2.86265i 0.0611292 + 0.105879i
\(732\) 0 0
\(733\) −19.5022 11.2596i −0.720329 0.415882i 0.0945445 0.995521i \(-0.469861\pi\)
−0.814874 + 0.579638i \(0.803194\pi\)
\(734\) 17.8629i 0.659332i
\(735\) 0 0
\(736\) 4.49330i 0.165625i
\(737\) −0.815191 + 1.41195i −0.0300279 + 0.0520099i
\(738\) 0 0
\(739\) 10.3992 6.00397i 0.382540 0.220859i −0.296383 0.955069i \(-0.595780\pi\)
0.678923 + 0.734210i \(0.262447\pi\)
\(740\) 3.81968 6.61587i 0.140414 0.243204i
\(741\) 0 0
\(742\) 3.21908 + 7.25517i 0.118176 + 0.266346i
\(743\) 9.52360i 0.349387i 0.984623 + 0.174694i \(0.0558935\pi\)
−0.984623 + 0.174694i \(0.944107\pi\)
\(744\) 0 0
\(745\) 0.0342702 + 0.0593577i 0.00125556 + 0.00217470i
\(746\) −13.0984 + 7.56236i −0.479566 + 0.276878i
\(747\) 0 0
\(748\) 0.476396i 0.0174187i
\(749\) −4.98335 + 46.8361i −0.182088 + 1.71135i
\(750\) 0 0
\(751\) 19.7248 34.1644i 0.719768 1.24668i −0.241323 0.970445i \(-0.577581\pi\)
0.961091 0.276230i \(-0.0890852\pi\)
\(752\) 2.85105 1.64605i 0.103967 0.0600254i
\(753\) 0 0
\(754\) −1.43514 + 8.56220i −0.0522646 + 0.311817i
\(755\) −9.74613 −0.354698
\(756\) 0 0
\(757\) 19.4854 0.708208 0.354104 0.935206i \(-0.384786\pi\)
0.354104 + 0.935206i \(0.384786\pi\)
\(758\) −6.26180 + 10.8458i −0.227439 + 0.393936i
\(759\) 0 0
\(760\) −15.1905 + 8.77026i −0.551018 + 0.318131i
\(761\) −5.73138 3.30901i −0.207762 0.119952i 0.392509 0.919748i \(-0.371607\pi\)
−0.600271 + 0.799797i \(0.704941\pi\)
\(762\) 0 0
\(763\) −5.10782 + 7.01140i −0.184915 + 0.253830i
\(764\) 7.27871 0.263334
\(765\) 0 0
\(766\) 0.789373 + 1.36723i 0.0285212 + 0.0494002i
\(767\) 12.9888 + 10.7129i 0.468998 + 0.386819i
\(768\) 0 0
\(769\) 14.3900i 0.518918i −0.965754 0.259459i \(-0.916456\pi\)
0.965754 0.259459i \(-0.0835442\pi\)
\(770\) 7.50845 + 0.798898i 0.270586 + 0.0287903i
\(771\) 0 0
\(772\) 14.9900 + 8.65451i 0.539503 + 0.311482i
\(773\) 47.8358 27.6180i 1.72053 0.993351i 0.802706 0.596375i \(-0.203393\pi\)
0.917829 0.396976i \(-0.129940\pi\)
\(774\) 0 0
\(775\) −0.400968 0.231499i −0.0144032 0.00831568i
\(776\) −8.03030 −0.288271
\(777\) 0 0
\(778\) 4.81025i 0.172456i
\(779\) −38.3922 + 66.4973i −1.37554 + 2.38251i
\(780\) 0 0
\(781\) 2.59663 + 4.49750i 0.0929148 + 0.160933i
\(782\) −1.46917 0.848227i −0.0525375 0.0303325i
\(783\) 0 0
\(784\) 2.14605 + 6.66292i 0.0766447 + 0.237961i
\(785\) 51.3687i 1.83343i
\(786\) 0 0
\(787\) 0.642336 0.370853i 0.0228968 0.0132195i −0.488508 0.872559i \(-0.662459\pi\)
0.511405 + 0.859340i \(0.329125\pi\)
\(788\) 2.78392 1.60730i 0.0991730 0.0572576i
\(789\) 0 0
\(790\) −14.2315 −0.506334
\(791\) 3.19810 1.41898i 0.113711 0.0504531i
\(792\) 0 0
\(793\) −31.6520 5.30529i −1.12400 0.188397i
\(794\) −13.4742 23.3380i −0.478181 0.828234i
\(795\) 0 0
\(796\) 5.85173 10.1355i 0.207409 0.359243i
\(797\) −21.4685 −0.760452 −0.380226 0.924894i \(-0.624154\pi\)
−0.380226 + 0.924894i \(0.624154\pi\)
\(798\) 0 0
\(799\) 1.24294i 0.0439721i
\(800\) 0.100242 + 0.0578747i 0.00354409 + 0.00204618i
\(801\) 0 0
\(802\) 10.2978 + 17.8364i 0.363629 + 0.629824i
\(803\) 6.01912 10.4254i 0.212410 0.367905i
\(804\) 0 0
\(805\) −15.8326 + 21.7331i −0.558026 + 0.765992i
\(806\) −5.04721 13.5102i −0.177780 0.475877i
\(807\) 0 0
\(808\) 10.0800 5.81968i 0.354612 0.204736i
\(809\) −6.63487 11.4919i −0.233270 0.404035i 0.725499 0.688223i \(-0.241609\pi\)
−0.958768 + 0.284189i \(0.908276\pi\)
\(810\) 0 0
\(811\) 14.8236i 0.520529i 0.965537 + 0.260264i \(0.0838097\pi\)
−0.965537 + 0.260264i \(0.916190\pi\)
\(812\) −5.14911 3.75114i −0.180698 0.131639i
\(813\) 0 0
\(814\) 3.69083 + 2.13090i 0.129363 + 0.0746880i
\(815\) −14.0321 24.3042i −0.491522 0.851340i
\(816\) 0 0
\(817\) −58.8003 33.9484i −2.05716 1.18770i
\(818\) −5.30901 −0.185625
\(819\) 0 0
\(820\) 22.3945 0.782048
\(821\) 28.2743 + 16.3242i 0.986779 + 0.569717i 0.904310 0.426876i \(-0.140386\pi\)
0.0824692 + 0.996594i \(0.473719\pi\)
\(822\) 0 0
\(823\) 5.67187 + 9.82397i 0.197709 + 0.342442i 0.947785 0.318909i \(-0.103317\pi\)
−0.750076 + 0.661351i \(0.769983\pi\)
\(824\) 10.7933 + 6.23150i 0.376001 + 0.217085i
\(825\) 0 0
\(826\) −11.2931 + 5.01067i −0.392936 + 0.174343i
\(827\) 14.7988i 0.514605i 0.966331 + 0.257302i \(0.0828337\pi\)
−0.966331 + 0.257302i \(0.917166\pi\)
\(828\) 0 0
\(829\) −6.23598 10.8010i −0.216585 0.375136i 0.737177 0.675700i \(-0.236158\pi\)
−0.953762 + 0.300564i \(0.902825\pi\)
\(830\) −12.5253 + 7.23150i −0.434760 + 0.251009i
\(831\) 0 0
\(832\) 1.26180 + 3.37755i 0.0437451 + 0.117096i
\(833\) 2.58369 + 0.556104i 0.0895196 + 0.0192679i
\(834\) 0 0
\(835\) 27.9029 48.3293i 0.965620 1.67250i
\(836\) −4.89270 8.47441i −0.169218 0.293094i
\(837\) 0 0
\(838\) −17.8264 10.2921i −0.615804 0.355535i
\(839\) 10.0890i 0.348309i −0.984718 0.174155i \(-0.944281\pi\)
0.984718 0.174155i \(-0.0557193\pi\)
\(840\) 0 0
\(841\) −23.2022 −0.800077
\(842\) 6.44388 11.1611i 0.222071 0.384638i
\(843\) 0 0
\(844\) −4.03206 6.98373i −0.138789 0.240390i
\(845\) −28.8662 + 5.59525i −0.993026 + 0.192483i
\(846\) 0 0
\(847\) 2.63352 24.7511i 0.0904887 0.850459i
\(848\) −3.00000 −0.103020
\(849\) 0 0
\(850\) 0.0378465 0.0218507i 0.00129812 0.000749472i
\(851\) −13.1431 + 7.58818i −0.450540 + 0.260119i
\(852\) 0 0
\(853\) 1.48784i 0.0509426i −0.999676 0.0254713i \(-0.991891\pi\)
0.999676 0.0254713i \(-0.00810864\pi\)
\(854\) 13.8669 19.0348i 0.474515 0.651357i
\(855\) 0 0
\(856\) −15.4173 8.90116i −0.526951 0.304235i
\(857\) −22.2832 38.5956i −0.761179 1.31840i −0.942243 0.334930i \(-0.891287\pi\)
0.181064 0.983471i \(-0.442046\pi\)
\(858\) 0 0
\(859\) 9.06411 15.6995i 0.309264 0.535660i −0.668938 0.743318i \(-0.733251\pi\)
0.978201 + 0.207658i \(0.0665841\pi\)
\(860\) 19.8023i 0.675253i
\(861\) 0 0
\(862\) −26.6260 −0.906884
\(863\) 19.8838 + 11.4799i 0.676852 + 0.390780i 0.798668 0.601772i \(-0.205539\pi\)
−0.121816 + 0.992553i \(0.538872\pi\)
\(864\) 0 0
\(865\) 46.9689 27.1175i 1.59699 0.922023i
\(866\) 24.3189 + 14.0405i 0.826389 + 0.477116i
\(867\) 0 0
\(868\) 10.5236 + 1.11971i 0.357194 + 0.0380054i
\(869\) 7.93939i 0.269325i
\(870\) 0 0
\(871\) 3.59403 + 2.96428i 0.121779 + 0.100441i
\(872\) −1.63935 2.83944i −0.0555155 0.0961557i
\(873\) 0 0
\(874\) 34.8460 1.17868
\(875\) 11.8539 + 26.7165i 0.400737 + 0.903182i
\(876\) 0 0
\(877\) 26.6309 + 15.3753i 0.899261 + 0.519188i 0.876960 0.480563i \(-0.159568\pi\)
0.0223003 + 0.999751i \(0.492901\pi\)
\(878\) 24.0444 13.8820i 0.811459 0.468496i
\(879\) 0 0
\(880\) −1.42697 + 2.47159i −0.0481033 + 0.0833173i
\(881\) 28.7551 0.968784 0.484392 0.874851i \(-0.339041\pi\)
0.484392 + 0.874851i \(0.339041\pi\)
\(882\) 0 0
\(883\) −31.3696 −1.05567 −0.527836 0.849346i \(-0.676996\pi\)
−0.527836 + 0.849346i \(0.676996\pi\)
\(884\) 1.34255 + 0.225029i 0.0451550 + 0.00756856i
\(885\) 0 0
\(886\) −3.95067 + 2.28092i −0.132725 + 0.0766290i
\(887\) 4.40786 7.63463i 0.148001 0.256346i −0.782487 0.622666i \(-0.786049\pi\)
0.930489 + 0.366321i \(0.119383\pi\)
\(888\) 0 0
\(889\) 39.5749 17.5592i 1.32730 0.588916i
\(890\) 25.7338i 0.862598i
\(891\) 0 0
\(892\) −20.5988 + 11.8927i −0.689698 + 0.398197i
\(893\) 12.7653 + 22.1102i 0.427175 + 0.739888i
\(894\) 0 0
\(895\) 12.9101i 0.431538i
\(896\) −2.63090 0.279927i −0.0878922 0.00935171i
\(897\) 0 0
\(898\) −1.39095 + 2.40920i −0.0464166 + 0.0803959i
\(899\) −8.34105 + 4.81571i −0.278190 + 0.160613i
\(900\) 0 0
\(901\) −0.566327 + 0.980908i −0.0188671 + 0.0326788i
\(902\) 12.4933i 0.415981i
\(903\) 0 0
\(904\) 1.32241i 0.0439827i
\(905\) −32.6522 18.8517i −1.08539 0.626653i
\(906\) 0 0
\(907\) 2.01515 + 3.49035i 0.0669120 + 0.115895i 0.897541 0.440932i \(-0.145352\pi\)
−0.830629 + 0.556827i \(0.812019\pi\)
\(908\) 8.86074 + 5.11575i 0.294054 + 0.169772i
\(909\) 0 0
\(910\) 5.79809 20.7826i 0.192205 0.688936i
\(911\) 14.1212 0.467857 0.233928 0.972254i \(-0.424842\pi\)
0.233928 + 0.972254i \(0.424842\pi\)
\(912\) 0 0
\(913\) −4.03427 6.98756i −0.133515 0.231255i
\(914\) −14.9029 25.8126i −0.492944 0.853805i
\(915\) 0 0
\(916\) 1.04721i 0.0346008i
\(917\) 3.20185 30.0927i 0.105734 0.993747i
\(918\) 0 0
\(919\) 5.06411 8.77130i 0.167050 0.289339i −0.770332 0.637644i \(-0.779909\pi\)
0.937381 + 0.348305i \(0.113243\pi\)
\(920\) −5.08148 8.80138i −0.167531 0.290173i
\(921\) 0 0
\(922\) 9.30901 16.1237i 0.306576 0.531005i
\(923\) 13.9012 5.19326i 0.457562 0.170938i
\(924\) 0 0
\(925\) 0.390950i 0.0128543i
\(926\) −21.0169 + 36.4023i −0.690658 + 1.19626i
\(927\) 0 0
\(928\) 2.08526 1.20393i 0.0684521 0.0395209i
\(929\) 30.3811 + 17.5405i 0.996770 + 0.575485i 0.907291 0.420503i \(-0.138146\pi\)
0.0894790 + 0.995989i \(0.471480\pi\)
\(930\) 0 0
\(931\) −51.6716 + 16.6429i −1.69347 + 0.545448i
\(932\) −3.75160 −0.122888
\(933\) 0 0
\(934\) 33.7071 19.4608i 1.10293 0.636776i
\(935\) 0.538756 + 0.933153i 0.0176192 + 0.0305174i
\(936\) 0 0
\(937\) 22.6055 0.738491 0.369245 0.929332i \(-0.379616\pi\)
0.369245 + 0.929332i \(0.379616\pi\)
\(938\) −3.12482 + 1.38646i −0.102029 + 0.0452696i
\(939\) 0 0
\(940\) 3.72305 6.44850i 0.121432 0.210327i
\(941\) −23.8013 + 13.7417i −0.775901 + 0.447967i −0.834976 0.550287i \(-0.814518\pi\)
0.0590745 + 0.998254i \(0.481185\pi\)
\(942\) 0 0
\(943\) −38.5285 22.2444i −1.25466 0.724379i
\(944\) 4.66966i 0.151984i
\(945\) 0 0
\(946\) −11.0472 −0.359176
\(947\) −24.5757 14.1888i −0.798602 0.461073i 0.0443799 0.999015i \(-0.485869\pi\)
−0.842982 + 0.537941i \(0.819202\pi\)
\(948\) 0 0
\(949\) −26.5372 21.8873i −0.861434 0.710492i
\(950\) −0.448824 + 0.777386i −0.0145618 + 0.0252217i
\(951\) 0 0
\(952\) −0.588178 + 0.807380i −0.0190630 + 0.0261674i
\(953\) −9.58864 −0.310606 −0.155303 0.987867i \(-0.549635\pi\)
−0.155303 + 0.987867i \(0.549635\pi\)
\(954\) 0 0
\(955\) 14.2574 8.23150i 0.461358 0.266365i
\(956\) −25.2851 + 14.5984i −0.817780 + 0.472146i
\(957\) 0 0
\(958\) 2.28664 0.0738780
\(959\) 17.3642 23.8354i 0.560718 0.769686i
\(960\) 0 0
\(961\) −7.50000 + 12.9904i −0.241935 + 0.419045i
\(962\) 7.74859 9.39476i 0.249825 0.302899i
\(963\) 0 0
\(964\) −1.47908 0.853947i −0.0476380 0.0275038i
\(965\) 39.1496 1.26027
\(966\) 0 0
\(967\) 31.2271i 1.00419i −0.864811 0.502097i \(-0.832562\pi\)
0.864811 0.502097i \(-0.167438\pi\)
\(968\) 8.14744 + 4.70393i 0.261869 + 0.151190i
\(969\) 0 0
\(970\) −15.7296 + 9.08148i −0.505046 + 0.291589i
\(971\) −18.3833 + 31.8408i −0.589947 + 1.02182i 0.404291 + 0.914630i \(0.367518\pi\)
−0.994239 + 0.107188i \(0.965815\pi\)
\(972\) 0 0
\(973\) 6.02978 2.67538i 0.193306 0.0857687i
\(974\) −30.8405 −0.988195
\(975\) 0 0
\(976\) 4.45058 + 7.70863i 0.142460 + 0.246747i
\(977\) 14.4811 8.36065i 0.463290 0.267481i −0.250136 0.968211i \(-0.580475\pi\)
0.713427 + 0.700730i \(0.247142\pi\)
\(978\) 0 0
\(979\) 14.3562 0.458827
\(980\) 11.7387 + 10.6242i 0.374980 + 0.339378i
\(981\) 0 0
\(982\) 35.6590 + 20.5877i 1.13792 + 0.656981i
\(983\) −39.2534 + 22.6630i −1.25199 + 0.722836i −0.971504 0.237022i \(-0.923829\pi\)
−0.280485 + 0.959859i \(0.590495\pi\)
\(984\) 0 0
\(985\) 3.63539 6.29668i 0.115833 0.200629i
\(986\) 0.909090i 0.0289513i
\(987\) 0 0
\(988\) −26.1933 + 9.78541i −0.833319 + 0.311315i
\(989\) 19.6697 34.0688i 0.625459 1.08333i
\(990\) 0 0
\(991\) −25.7417 44.5859i −0.817712 1.41632i −0.907364 0.420346i \(-0.861909\pi\)
0.0896517 0.995973i \(-0.471425\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) 0 0
\(994\) −1.15211 + 10.8281i −0.0365427 + 0.343447i
\(995\) 26.4709i 0.839185i
\(996\) 0 0
\(997\) 26.7333 + 46.3034i 0.846651 + 1.46644i 0.884180 + 0.467146i \(0.154718\pi\)
−0.0375294 + 0.999296i \(0.511949\pi\)
\(998\) 7.73423 + 13.3961i 0.244823 + 0.424046i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.dm.c.415.3 12
3.2 odd 2 546.2.bk.b.415.4 yes 12
7.4 even 3 inner 1638.2.dm.c.1117.4 12
13.12 even 2 inner 1638.2.dm.c.415.4 12
21.2 odd 6 3822.2.c.k.883.3 6
21.5 even 6 3822.2.c.j.883.1 6
21.11 odd 6 546.2.bk.b.25.3 12
39.38 odd 2 546.2.bk.b.415.3 yes 12
91.25 even 6 inner 1638.2.dm.c.1117.3 12
273.116 odd 6 546.2.bk.b.25.4 yes 12
273.194 even 6 3822.2.c.j.883.6 6
273.233 odd 6 3822.2.c.k.883.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.bk.b.25.3 12 21.11 odd 6
546.2.bk.b.25.4 yes 12 273.116 odd 6
546.2.bk.b.415.3 yes 12 39.38 odd 2
546.2.bk.b.415.4 yes 12 3.2 odd 2
1638.2.dm.c.415.3 12 1.1 even 1 trivial
1638.2.dm.c.415.4 12 13.12 even 2 inner
1638.2.dm.c.1117.3 12 91.25 even 6 inner
1638.2.dm.c.1117.4 12 7.4 even 3 inner
3822.2.c.j.883.1 6 21.5 even 6
3822.2.c.j.883.6 6 273.194 even 6
3822.2.c.k.883.3 6 21.2 odd 6
3822.2.c.k.883.4 6 273.233 odd 6