Properties

Label 1638.2.dm.c.1117.3
Level $1638$
Weight $2$
Character 1638.1117
Analytic conductor $13.079$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(415,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.415"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.dm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,6,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.752609431977984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1117.3
Root \(-2.23871 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1117
Dual form 1638.2.dm.c.415.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(1.95878 - 1.13090i) q^{5} +(-2.41839 - 1.07303i) q^{7} +1.00000i q^{8} +(-1.13090 + 1.95878i) q^{10} +(1.09275 + 0.630901i) q^{11} +(-1.26180 + 3.37755i) q^{13} +(2.63090 - 0.279927i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(0.188776 - 0.326969i) q^{17} +(-6.71612 + 3.87755i) q^{19} -2.26180i q^{20} -1.26180 q^{22} +(2.24665 + 3.89131i) q^{23} +(0.0578747 - 0.100242i) q^{25} +(-0.596023 - 3.55595i) q^{26} +(-2.13846 + 1.55787i) q^{28} +2.40786 q^{29} +(-3.46410 - 2.00000i) q^{31} +(0.866025 + 0.500000i) q^{32} +0.377552i q^{34} +(-5.95058 + 0.633140i) q^{35} +(-2.92505 + 1.68878i) q^{37} +(3.87755 - 6.71612i) q^{38} +(1.13090 + 1.95878i) q^{40} +9.90116i q^{41} +8.75510 q^{43} +(1.09275 - 0.630901i) q^{44} +(-3.89131 - 2.24665i) q^{46} +(-2.85105 + 1.64605i) q^{47} +(4.69723 + 5.18999i) q^{49} +0.115749i q^{50} +(2.29414 + 2.78153i) q^{52} +(1.50000 - 2.59808i) q^{53} +2.85395 q^{55} +(1.07303 - 2.41839i) q^{56} +(-2.08526 + 1.20393i) q^{58} +(-4.04404 - 2.33483i) q^{59} +(4.45058 + 7.70863i) q^{61} +4.00000 q^{62} -1.00000 q^{64} +(1.34809 + 8.04285i) q^{65} +(-1.11900 - 0.646053i) q^{67} +(-0.188776 - 0.326969i) q^{68} +(4.83678 - 3.52360i) q^{70} -4.11575i q^{71} +(8.26232 + 4.77026i) q^{73} +(1.68878 - 2.92505i) q^{74} +7.75510i q^{76} +(-1.96573 - 2.69832i) q^{77} +(3.14605 + 5.44912i) q^{79} +(-1.95878 - 1.13090i) q^{80} +(-4.95058 - 8.57465i) q^{82} +6.39446i q^{83} -0.853947i q^{85} +(-7.58214 + 4.37755i) q^{86} +(-0.630901 + 1.09275i) q^{88} +(9.85325 - 5.68878i) q^{89} +(6.67573 - 6.81429i) q^{91} +4.49330 q^{92} +(1.64605 - 2.85105i) q^{94} +(-8.77026 + 15.1905i) q^{95} +8.03030i q^{97} +(-6.66292 - 2.14605i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} + 12 q^{13} + 18 q^{14} - 6 q^{16} - 18 q^{17} + 12 q^{22} - 6 q^{25} - 12 q^{29} - 24 q^{35} + 6 q^{38} + 24 q^{43} - 18 q^{49} + 6 q^{52} + 18 q^{53} + 48 q^{55} + 6 q^{56} + 6 q^{61} + 48 q^{62}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.95878 1.13090i 0.875992 0.505754i 0.00665735 0.999978i \(-0.497881\pi\)
0.869335 + 0.494223i \(0.164548\pi\)
\(6\) 0 0
\(7\) −2.41839 1.07303i −0.914066 0.405566i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.13090 + 1.95878i −0.357622 + 0.619420i
\(11\) 1.09275 + 0.630901i 0.329477 + 0.190224i 0.655609 0.755101i \(-0.272412\pi\)
−0.326132 + 0.945324i \(0.605745\pi\)
\(12\) 0 0
\(13\) −1.26180 + 3.37755i −0.349961 + 0.936764i
\(14\) 2.63090 0.279927i 0.703138 0.0748137i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.188776 0.326969i 0.0457849 0.0793017i −0.842225 0.539127i \(-0.818754\pi\)
0.888010 + 0.459825i \(0.152088\pi\)
\(18\) 0 0
\(19\) −6.71612 + 3.87755i −1.54078 + 0.889571i −0.541993 + 0.840383i \(0.682330\pi\)
−0.998790 + 0.0491885i \(0.984336\pi\)
\(20\) 2.26180i 0.505754i
\(21\) 0 0
\(22\) −1.26180 −0.269017
\(23\) 2.24665 + 3.89131i 0.468459 + 0.811395i 0.999350 0.0360452i \(-0.0114760\pi\)
−0.530891 + 0.847440i \(0.678143\pi\)
\(24\) 0 0
\(25\) 0.0578747 0.100242i 0.0115749 0.0200484i
\(26\) −0.596023 3.55595i −0.116890 0.697379i
\(27\) 0 0
\(28\) −2.13846 + 1.55787i −0.404132 + 0.294411i
\(29\) 2.40786 0.447127 0.223564 0.974689i \(-0.428231\pi\)
0.223564 + 0.974689i \(0.428231\pi\)
\(30\) 0 0
\(31\) −3.46410 2.00000i −0.622171 0.359211i 0.155543 0.987829i \(-0.450287\pi\)
−0.777714 + 0.628619i \(0.783621\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 0.377552i 0.0647496i
\(35\) −5.95058 + 0.633140i −1.00583 + 0.107020i
\(36\) 0 0
\(37\) −2.92505 + 1.68878i −0.480875 + 0.277633i −0.720781 0.693163i \(-0.756217\pi\)
0.239906 + 0.970796i \(0.422883\pi\)
\(38\) 3.87755 6.71612i 0.629022 1.08950i
\(39\) 0 0
\(40\) 1.13090 + 1.95878i 0.178811 + 0.309710i
\(41\) 9.90116i 1.54630i 0.634223 + 0.773150i \(0.281320\pi\)
−0.634223 + 0.773150i \(0.718680\pi\)
\(42\) 0 0
\(43\) 8.75510 1.33514 0.667570 0.744547i \(-0.267334\pi\)
0.667570 + 0.744547i \(0.267334\pi\)
\(44\) 1.09275 0.630901i 0.164739 0.0951119i
\(45\) 0 0
\(46\) −3.89131 2.24665i −0.573743 0.331251i
\(47\) −2.85105 + 1.64605i −0.415868 + 0.240101i −0.693308 0.720642i \(-0.743847\pi\)
0.277440 + 0.960743i \(0.410514\pi\)
\(48\) 0 0
\(49\) 4.69723 + 5.18999i 0.671033 + 0.741428i
\(50\) 0.115749i 0.0163694i
\(51\) 0 0
\(52\) 2.29414 + 2.78153i 0.318141 + 0.385729i
\(53\) 1.50000 2.59808i 0.206041 0.356873i −0.744423 0.667708i \(-0.767275\pi\)
0.950464 + 0.310835i \(0.100609\pi\)
\(54\) 0 0
\(55\) 2.85395 0.384826
\(56\) 1.07303 2.41839i 0.143389 0.323171i
\(57\) 0 0
\(58\) −2.08526 + 1.20393i −0.273809 + 0.158083i
\(59\) −4.04404 2.33483i −0.526489 0.303969i 0.213096 0.977031i \(-0.431645\pi\)
−0.739586 + 0.673062i \(0.764979\pi\)
\(60\) 0 0
\(61\) 4.45058 + 7.70863i 0.569838 + 0.986989i 0.996581 + 0.0826158i \(0.0263274\pi\)
−0.426743 + 0.904373i \(0.640339\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 1.34809 + 8.04285i 0.167210 + 0.997593i
\(66\) 0 0
\(67\) −1.11900 0.646053i −0.136707 0.0789279i 0.430087 0.902788i \(-0.358483\pi\)
−0.566794 + 0.823860i \(0.691816\pi\)
\(68\) −0.188776 0.326969i −0.0228924 0.0396509i
\(69\) 0 0
\(70\) 4.83678 3.52360i 0.578106 0.421151i
\(71\) 4.11575i 0.488450i −0.969719 0.244225i \(-0.921467\pi\)
0.969719 0.244225i \(-0.0785335\pi\)
\(72\) 0 0
\(73\) 8.26232 + 4.77026i 0.967032 + 0.558316i 0.898330 0.439321i \(-0.144781\pi\)
0.0687018 + 0.997637i \(0.478114\pi\)
\(74\) 1.68878 2.92505i 0.196316 0.340030i
\(75\) 0 0
\(76\) 7.75510i 0.889571i
\(77\) −1.96573 2.69832i −0.224016 0.307502i
\(78\) 0 0
\(79\) 3.14605 + 5.44912i 0.353959 + 0.613074i 0.986939 0.161093i \(-0.0515020\pi\)
−0.632981 + 0.774168i \(0.718169\pi\)
\(80\) −1.95878 1.13090i −0.218998 0.126439i
\(81\) 0 0
\(82\) −4.95058 8.57465i −0.546700 0.946912i
\(83\) 6.39446i 0.701883i 0.936397 + 0.350941i \(0.114138\pi\)
−0.936397 + 0.350941i \(0.885862\pi\)
\(84\) 0 0
\(85\) 0.853947i 0.0926236i
\(86\) −7.58214 + 4.37755i −0.817603 + 0.472044i
\(87\) 0 0
\(88\) −0.630901 + 1.09275i −0.0672543 + 0.116488i
\(89\) 9.85325 5.68878i 1.04444 0.603009i 0.123354 0.992363i \(-0.460635\pi\)
0.921088 + 0.389354i \(0.127302\pi\)
\(90\) 0 0
\(91\) 6.67573 6.81429i 0.699807 0.714332i
\(92\) 4.49330 0.468459
\(93\) 0 0
\(94\) 1.64605 2.85105i 0.169777 0.294063i
\(95\) −8.77026 + 15.1905i −0.899809 + 1.55852i
\(96\) 0 0
\(97\) 8.03030i 0.815354i 0.913126 + 0.407677i \(0.133661\pi\)
−0.913126 + 0.407677i \(0.866339\pi\)
\(98\) −6.66292 2.14605i −0.673056 0.216784i
\(99\) 0 0
\(100\) −0.0578747 0.100242i −0.00578747 0.0100242i
\(101\) 5.81968 10.0800i 0.579079 1.00300i −0.416506 0.909133i \(-0.636745\pi\)
0.995585 0.0938620i \(-0.0299213\pi\)
\(102\) 0 0
\(103\) −6.23150 10.7933i −0.614008 1.06349i −0.990558 0.137096i \(-0.956223\pi\)
0.376550 0.926396i \(-0.377110\pi\)
\(104\) −3.37755 1.26180i −0.331196 0.123730i
\(105\) 0 0
\(106\) 3.00000i 0.291386i
\(107\) 8.90116 + 15.4173i 0.860507 + 1.49044i 0.871440 + 0.490502i \(0.163187\pi\)
−0.0109328 + 0.999940i \(0.503480\pi\)
\(108\) 0 0
\(109\) 2.83944 + 1.63935i 0.271969 + 0.157022i 0.629782 0.776772i \(-0.283144\pi\)
−0.357813 + 0.933793i \(0.616477\pi\)
\(110\) −2.47159 + 1.42697i −0.235657 + 0.136057i
\(111\) 0 0
\(112\) 0.279927 + 2.63090i 0.0264506 + 0.248597i
\(113\) −1.32241 −0.124402 −0.0622009 0.998064i \(-0.519812\pi\)
−0.0622009 + 0.998064i \(0.519812\pi\)
\(114\) 0 0
\(115\) 8.80138 + 5.08148i 0.820733 + 0.473850i
\(116\) 1.20393 2.08526i 0.111782 0.193612i
\(117\) 0 0
\(118\) 4.66966 0.429877
\(119\) −0.807380 + 0.588178i −0.0740124 + 0.0539182i
\(120\) 0 0
\(121\) −4.70393 8.14744i −0.427630 0.740677i
\(122\) −7.70863 4.45058i −0.697906 0.402936i
\(123\) 0 0
\(124\) −3.46410 + 2.00000i −0.311086 + 0.179605i
\(125\) 11.0472i 0.988092i
\(126\) 0 0
\(127\) −16.3642 −1.45208 −0.726042 0.687650i \(-0.758642\pi\)
−0.726042 + 0.687650i \(0.758642\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −5.18890 6.29127i −0.455097 0.551781i
\(131\) −5.71908 9.90574i −0.499678 0.865468i 0.500322 0.865840i \(-0.333215\pi\)
−1.00000 0.000371455i \(0.999882\pi\)
\(132\) 0 0
\(133\) 20.4029 2.17086i 1.76916 0.188238i
\(134\) 1.29211 0.111621
\(135\) 0 0
\(136\) 0.326969 + 0.188776i 0.0280374 + 0.0161874i
\(137\) −9.65276 5.57303i −0.824691 0.476136i 0.0273402 0.999626i \(-0.491296\pi\)
−0.852032 + 0.523490i \(0.824630\pi\)
\(138\) 0 0
\(139\) −2.49330 −0.211479 −0.105740 0.994394i \(-0.533721\pi\)
−0.105740 + 0.994394i \(0.533721\pi\)
\(140\) −2.42697 + 5.46992i −0.205117 + 0.462293i
\(141\) 0 0
\(142\) 2.05787 + 3.56434i 0.172693 + 0.299113i
\(143\) −3.50974 + 2.89476i −0.293499 + 0.242072i
\(144\) 0 0
\(145\) 4.71645 2.72305i 0.391680 0.226137i
\(146\) −9.54051 −0.789578
\(147\) 0 0
\(148\) 3.37755i 0.277633i
\(149\) 0.0262436 0.0151517i 0.00214996 0.00124128i −0.498925 0.866645i \(-0.666272\pi\)
0.501075 + 0.865404i \(0.332938\pi\)
\(150\) 0 0
\(151\) −3.73171 2.15451i −0.303683 0.175331i 0.340413 0.940276i \(-0.389433\pi\)
−0.644096 + 0.764945i \(0.722766\pi\)
\(152\) −3.87755 6.71612i −0.314511 0.544749i
\(153\) 0 0
\(154\) 3.05153 + 1.35395i 0.245899 + 0.109104i
\(155\) −9.04721 −0.726689
\(156\) 0 0
\(157\) −11.3557 + 19.6687i −0.906284 + 1.56973i −0.0870987 + 0.996200i \(0.527760\pi\)
−0.819185 + 0.573530i \(0.805574\pi\)
\(158\) −5.44912 3.14605i −0.433509 0.250287i
\(159\) 0 0
\(160\) 2.26180 0.178811
\(161\) −1.25780 11.8214i −0.0991283 0.931659i
\(162\) 0 0
\(163\) −10.7455 + 6.20393i −0.841654 + 0.485929i −0.857826 0.513940i \(-0.828185\pi\)
0.0161722 + 0.999869i \(0.494852\pi\)
\(164\) 8.57465 + 4.95058i 0.669568 + 0.386575i
\(165\) 0 0
\(166\) −3.19723 5.53776i −0.248153 0.429814i
\(167\) 24.6732i 1.90927i 0.297784 + 0.954633i \(0.403753\pi\)
−0.297784 + 0.954633i \(0.596247\pi\)
\(168\) 0 0
\(169\) −9.81571 8.52360i −0.755055 0.655662i
\(170\) 0.426974 + 0.739540i 0.0327474 + 0.0567201i
\(171\) 0 0
\(172\) 4.37755 7.58214i 0.333785 0.578133i
\(173\) 11.9893 + 20.7661i 0.911532 + 1.57882i 0.811901 + 0.583796i \(0.198433\pi\)
0.0996316 + 0.995024i \(0.468234\pi\)
\(174\) 0 0
\(175\) −0.247526 + 0.180323i −0.0187112 + 0.0136311i
\(176\) 1.26180i 0.0951119i
\(177\) 0 0
\(178\) −5.68878 + 9.85325i −0.426392 + 0.738532i
\(179\) −2.85395 + 4.94318i −0.213314 + 0.369471i −0.952750 0.303756i \(-0.901759\pi\)
0.739436 + 0.673227i \(0.235092\pi\)
\(180\) 0 0
\(181\) −16.6697 −1.23905 −0.619523 0.784979i \(-0.712674\pi\)
−0.619523 + 0.784979i \(0.712674\pi\)
\(182\) −2.37421 + 9.23922i −0.175988 + 0.684856i
\(183\) 0 0
\(184\) −3.89131 + 2.24665i −0.286871 + 0.165625i
\(185\) −3.81968 + 6.61587i −0.280828 + 0.486409i
\(186\) 0 0
\(187\) 0.412571 0.238198i 0.0301702 0.0174187i
\(188\) 3.29211i 0.240101i
\(189\) 0 0
\(190\) 17.5405i 1.27252i
\(191\) 3.63935 + 6.30355i 0.263334 + 0.456109i 0.967126 0.254298i \(-0.0818444\pi\)
−0.703791 + 0.710407i \(0.748511\pi\)
\(192\) 0 0
\(193\) 14.9900 + 8.65451i 1.07901 + 0.622965i 0.930628 0.365966i \(-0.119261\pi\)
0.148379 + 0.988931i \(0.452595\pi\)
\(194\) −4.01515 6.95445i −0.288271 0.499300i
\(195\) 0 0
\(196\) 6.84328 1.47292i 0.488806 0.105209i
\(197\) 3.21459i 0.229030i 0.993422 + 0.114515i \(0.0365314\pi\)
−0.993422 + 0.114515i \(0.963469\pi\)
\(198\) 0 0
\(199\) −5.85173 + 10.1355i −0.414818 + 0.718487i −0.995409 0.0957088i \(-0.969488\pi\)
0.580591 + 0.814195i \(0.302822\pi\)
\(200\) 0.100242 + 0.0578747i 0.00708817 + 0.00409236i
\(201\) 0 0
\(202\) 11.6394i 0.818942i
\(203\) −5.82313 2.58369i −0.408704 0.181340i
\(204\) 0 0
\(205\) 11.1972 + 19.3942i 0.782048 + 1.35455i
\(206\) 10.7933 + 6.23150i 0.752003 + 0.434169i
\(207\) 0 0
\(208\) 3.55595 0.596023i 0.246561 0.0413268i
\(209\) −9.78541 −0.676871
\(210\) 0 0
\(211\) −8.06411 −0.555157 −0.277578 0.960703i \(-0.589532\pi\)
−0.277578 + 0.960703i \(0.589532\pi\)
\(212\) −1.50000 2.59808i −0.103020 0.178437i
\(213\) 0 0
\(214\) −15.4173 8.90116i −1.05390 0.608471i
\(215\) 17.1493 9.90116i 1.16957 0.675253i
\(216\) 0 0
\(217\) 6.23150 + 8.55385i 0.423022 + 0.580673i
\(218\) −3.27871 −0.222062
\(219\) 0 0
\(220\) 1.42697 2.47159i 0.0962065 0.166635i
\(221\) 0.866158 + 1.05017i 0.0582641 + 0.0706421i
\(222\) 0 0
\(223\) 23.7854i 1.59279i −0.604778 0.796394i \(-0.706738\pi\)
0.604778 0.796394i \(-0.293262\pi\)
\(224\) −1.55787 2.13846i −0.104090 0.142882i
\(225\) 0 0
\(226\) 1.14524 0.661205i 0.0761802 0.0439827i
\(227\) 8.86074 + 5.11575i 0.588108 + 0.339544i 0.764349 0.644803i \(-0.223061\pi\)
−0.176241 + 0.984347i \(0.556394\pi\)
\(228\) 0 0
\(229\) −0.906910 + 0.523604i −0.0599303 + 0.0346008i −0.529666 0.848206i \(-0.677683\pi\)
0.469735 + 0.882807i \(0.344349\pi\)
\(230\) −10.1630 −0.670126
\(231\) 0 0
\(232\) 2.40786i 0.158083i
\(233\) −1.87580 3.24898i −0.122888 0.212848i 0.798018 0.602634i \(-0.205882\pi\)
−0.920905 + 0.389787i \(0.872549\pi\)
\(234\) 0 0
\(235\) −3.72305 + 6.44850i −0.242865 + 0.420654i
\(236\) −4.04404 + 2.33483i −0.263245 + 0.151984i
\(237\) 0 0
\(238\) 0.405123 0.913067i 0.0262602 0.0591854i
\(239\) 29.1968i 1.88858i −0.329112 0.944291i \(-0.606749\pi\)
0.329112 0.944291i \(-0.393251\pi\)
\(240\) 0 0
\(241\) −1.47908 0.853947i −0.0952759 0.0550076i 0.451605 0.892218i \(-0.350852\pi\)
−0.546881 + 0.837210i \(0.684185\pi\)
\(242\) 8.14744 + 4.70393i 0.523737 + 0.302380i
\(243\) 0 0
\(244\) 8.90116 0.569838
\(245\) 15.0702 + 4.85395i 0.962800 + 0.310107i
\(246\) 0 0
\(247\) −4.62222 27.5767i −0.294105 1.75467i
\(248\) 2.00000 3.46410i 0.127000 0.219971i
\(249\) 0 0
\(250\) −5.52360 9.56716i −0.349343 0.605081i
\(251\) −19.4496 −1.22765 −0.613824 0.789443i \(-0.710370\pi\)
−0.613824 + 0.789443i \(0.710370\pi\)
\(252\) 0 0
\(253\) 5.66966i 0.356448i
\(254\) 14.1718 8.18208i 0.889216 0.513389i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.14605 + 10.6453i 0.383380 + 0.664034i 0.991543 0.129778i \(-0.0414266\pi\)
−0.608163 + 0.793812i \(0.708093\pi\)
\(258\) 0 0
\(259\) 8.88600 0.945469i 0.552149 0.0587486i
\(260\) 7.63935 + 2.85395i 0.473773 + 0.176994i
\(261\) 0 0
\(262\) 9.90574 + 5.71908i 0.611978 + 0.353326i
\(263\) 1.65451 2.86569i 0.102021 0.176706i −0.810496 0.585744i \(-0.800802\pi\)
0.912517 + 0.409038i \(0.134136\pi\)
\(264\) 0 0
\(265\) 6.78541i 0.416824i
\(266\) −16.5840 + 12.0815i −1.01683 + 0.740763i
\(267\) 0 0
\(268\) −1.11900 + 0.646053i −0.0683536 + 0.0394640i
\(269\) 16.0062 27.7236i 0.975918 1.69034i 0.299045 0.954239i \(-0.403332\pi\)
0.676873 0.736100i \(-0.263335\pi\)
\(270\) 0 0
\(271\) −19.3202 + 11.1545i −1.17362 + 0.677588i −0.954529 0.298117i \(-0.903641\pi\)
−0.219088 + 0.975705i \(0.570308\pi\)
\(272\) −0.377552 −0.0228924
\(273\) 0 0
\(274\) 11.1461 0.673358
\(275\) 0.126485 0.0730264i 0.00762736 0.00440366i
\(276\) 0 0
\(277\) 5.20568 9.01650i 0.312779 0.541749i −0.666184 0.745788i \(-0.732073\pi\)
0.978963 + 0.204038i \(0.0654067\pi\)
\(278\) 2.15926 1.24665i 0.129504 0.0747691i
\(279\) 0 0
\(280\) −0.633140 5.95058i −0.0378374 0.355615i
\(281\) 29.5102i 1.76043i −0.474574 0.880216i \(-0.657398\pi\)
0.474574 0.880216i \(-0.342602\pi\)
\(282\) 0 0
\(283\) −1.60730 + 2.78392i −0.0955439 + 0.165487i −0.909835 0.414969i \(-0.863792\pi\)
0.814292 + 0.580456i \(0.197126\pi\)
\(284\) −3.56434 2.05787i −0.211505 0.122112i
\(285\) 0 0
\(286\) 1.59214 4.26180i 0.0941455 0.252006i
\(287\) 10.6242 23.9449i 0.627127 1.41342i
\(288\) 0 0
\(289\) 8.42873 + 14.5990i 0.495807 + 0.858764i
\(290\) −2.72305 + 4.71645i −0.159903 + 0.276960i
\(291\) 0 0
\(292\) 8.26232 4.77026i 0.483516 0.279158i
\(293\) 24.7248i 1.44444i −0.691664 0.722219i \(-0.743122\pi\)
0.691664 0.722219i \(-0.256878\pi\)
\(294\) 0 0
\(295\) −10.5618 −0.614934
\(296\) −1.68878 2.92505i −0.0981581 0.170015i
\(297\) 0 0
\(298\) −0.0151517 + 0.0262436i −0.000877716 + 0.00152025i
\(299\) −15.9779 + 2.67811i −0.924028 + 0.154879i
\(300\) 0 0
\(301\) −21.1733 9.39446i −1.22041 0.541488i
\(302\) 4.30901 0.247956
\(303\) 0 0
\(304\) 6.71612 + 3.87755i 0.385196 + 0.222393i
\(305\) 17.4354 + 10.0663i 0.998348 + 0.576396i
\(306\) 0 0
\(307\) 6.93939i 0.396052i −0.980197 0.198026i \(-0.936547\pi\)
0.980197 0.198026i \(-0.0634531\pi\)
\(308\) −3.31968 + 0.353213i −0.189156 + 0.0201262i
\(309\) 0 0
\(310\) 7.83511 4.52360i 0.445005 0.256923i
\(311\) −5.53876 + 9.59341i −0.314074 + 0.543992i −0.979240 0.202703i \(-0.935027\pi\)
0.665166 + 0.746695i \(0.268361\pi\)
\(312\) 0 0
\(313\) 10.7039 + 18.5397i 0.605022 + 1.04793i 0.992048 + 0.125860i \(0.0401689\pi\)
−0.387026 + 0.922069i \(0.626498\pi\)
\(314\) 22.7114i 1.28168i
\(315\) 0 0
\(316\) 6.29211 0.353959
\(317\) −18.3754 + 10.6091i −1.03207 + 0.595864i −0.917576 0.397561i \(-0.869857\pi\)
−0.114490 + 0.993424i \(0.536523\pi\)
\(318\) 0 0
\(319\) 2.63119 + 1.51912i 0.147318 + 0.0850543i
\(320\) −1.95878 + 1.13090i −0.109499 + 0.0632193i
\(321\) 0 0
\(322\) 7.00000 + 9.60876i 0.390095 + 0.535475i
\(323\) 2.92795i 0.162916i
\(324\) 0 0
\(325\) 0.265546 + 0.321960i 0.0147298 + 0.0178591i
\(326\) 6.20393 10.7455i 0.343604 0.595139i
\(327\) 0 0
\(328\) −9.90116 −0.546700
\(329\) 8.66120 0.921550i 0.477508 0.0508067i
\(330\) 0 0
\(331\) 18.2205 10.5196i 1.00149 0.578212i 0.0928025 0.995685i \(-0.470417\pi\)
0.908689 + 0.417473i \(0.137084\pi\)
\(332\) 5.53776 + 3.19723i 0.303924 + 0.175471i
\(333\) 0 0
\(334\) −12.3366 21.3676i −0.675028 1.16918i
\(335\) −2.92249 −0.159673
\(336\) 0 0
\(337\) −25.5574 −1.39220 −0.696101 0.717944i \(-0.745083\pi\)
−0.696101 + 0.717944i \(0.745083\pi\)
\(338\) 12.7625 + 2.47380i 0.694186 + 0.134557i
\(339\) 0 0
\(340\) −0.739540 0.426974i −0.0401072 0.0231559i
\(341\) −2.52360 4.37101i −0.136661 0.236704i
\(342\) 0 0
\(343\) −5.79073 17.5917i −0.312670 0.949862i
\(344\) 8.75510i 0.472044i
\(345\) 0 0
\(346\) −20.7661 11.9893i −1.11639 0.644551i
\(347\) 9.16517 15.8745i 0.492012 0.852190i −0.507946 0.861389i \(-0.669595\pi\)
0.999958 + 0.00919912i \(0.00292821\pi\)
\(348\) 0 0
\(349\) 4.19326i 0.224460i 0.993682 + 0.112230i \(0.0357994\pi\)
−0.993682 + 0.112230i \(0.964201\pi\)
\(350\) 0.124202 0.279927i 0.00663888 0.0149627i
\(351\) 0 0
\(352\) 0.630901 + 1.09275i 0.0336271 + 0.0582439i
\(353\) 18.9338 + 10.9315i 1.00775 + 0.581823i 0.910531 0.413440i \(-0.135673\pi\)
0.0972156 + 0.995263i \(0.469006\pi\)
\(354\) 0 0
\(355\) −4.65451 8.06184i −0.247036 0.427878i
\(356\) 11.3776i 0.603009i
\(357\) 0 0
\(358\) 5.70789i 0.301672i
\(359\) 22.4341 12.9523i 1.18403 0.683598i 0.227084 0.973875i \(-0.427081\pi\)
0.956943 + 0.290277i \(0.0937475\pi\)
\(360\) 0 0
\(361\) 20.5708 35.6297i 1.08267 1.87525i
\(362\) 14.4363 8.33483i 0.758758 0.438069i
\(363\) 0 0
\(364\) −2.56348 9.18850i −0.134363 0.481608i
\(365\) 21.5787 1.12948
\(366\) 0 0
\(367\) 8.93146 15.4697i 0.466218 0.807514i −0.533037 0.846092i \(-0.678949\pi\)
0.999256 + 0.0385779i \(0.0122828\pi\)
\(368\) 2.24665 3.89131i 0.117115 0.202849i
\(369\) 0 0
\(370\) 7.63935i 0.397151i
\(371\) −6.41539 + 4.67362i −0.333070 + 0.242642i
\(372\) 0 0
\(373\) 7.56236 + 13.0984i 0.391564 + 0.678209i 0.992656 0.120971i \(-0.0386008\pi\)
−0.601092 + 0.799180i \(0.705267\pi\)
\(374\) −0.238198 + 0.412571i −0.0123169 + 0.0213335i
\(375\) 0 0
\(376\) −1.64605 2.85105i −0.0848887 0.147032i
\(377\) −3.03824 + 8.13265i −0.156477 + 0.418853i
\(378\) 0 0
\(379\) 12.5236i 0.643294i 0.946860 + 0.321647i \(0.104236\pi\)
−0.946860 + 0.321647i \(0.895764\pi\)
\(380\) 8.77026 + 15.1905i 0.449905 + 0.779258i
\(381\) 0 0
\(382\) −6.30355 3.63935i −0.322517 0.186206i
\(383\) −1.36723 + 0.789373i −0.0698624 + 0.0403351i −0.534524 0.845153i \(-0.679509\pi\)
0.464662 + 0.885488i \(0.346176\pi\)
\(384\) 0 0
\(385\) −6.90196 3.06236i −0.351756 0.156072i
\(386\) −17.3090 −0.881005
\(387\) 0 0
\(388\) 6.95445 + 4.01515i 0.353059 + 0.203838i
\(389\) 2.40512 4.16580i 0.121945 0.211214i −0.798590 0.601876i \(-0.794420\pi\)
0.920534 + 0.390661i \(0.127754\pi\)
\(390\) 0 0
\(391\) 1.69645 0.0857933
\(392\) −5.18999 + 4.69723i −0.262134 + 0.237246i
\(393\) 0 0
\(394\) −1.60730 2.78392i −0.0809744 0.140252i
\(395\) 12.3248 + 7.11575i 0.620130 + 0.358032i
\(396\) 0 0
\(397\) 23.3380 13.4742i 1.17130 0.676250i 0.217313 0.976102i \(-0.430271\pi\)
0.953986 + 0.299852i \(0.0969373\pi\)
\(398\) 11.7035i 0.586642i
\(399\) 0 0
\(400\) −0.115749 −0.00578747
\(401\) −17.8364 + 10.2978i −0.890705 + 0.514249i −0.874173 0.485614i \(-0.838596\pi\)
−0.0165321 + 0.999863i \(0.505263\pi\)
\(402\) 0 0
\(403\) 11.1261 9.17658i 0.554231 0.457118i
\(404\) −5.81968 10.0800i −0.289540 0.501498i
\(405\) 0 0
\(406\) 6.33483 0.674024i 0.314392 0.0334513i
\(407\) −4.26180 −0.211250
\(408\) 0 0
\(409\) 4.59774 + 2.65451i 0.227344 + 0.131257i 0.609346 0.792904i \(-0.291432\pi\)
−0.382002 + 0.924161i \(0.624765\pi\)
\(410\) −19.3942 11.1972i −0.957810 0.552992i
\(411\) 0 0
\(412\) −12.4630 −0.614008
\(413\) 7.27474 + 9.98589i 0.357967 + 0.491374i
\(414\) 0 0
\(415\) 7.23150 + 12.5253i 0.354980 + 0.614844i
\(416\) −2.78153 + 2.29414i −0.136376 + 0.112480i
\(417\) 0 0
\(418\) 8.47441 4.89270i 0.414497 0.239310i
\(419\) 20.5842 1.00560 0.502802 0.864401i \(-0.332302\pi\)
0.502802 + 0.864401i \(0.332302\pi\)
\(420\) 0 0
\(421\) 12.8878i 0.628111i −0.949405 0.314055i \(-0.898312\pi\)
0.949405 0.314055i \(-0.101688\pi\)
\(422\) 6.98373 4.03206i 0.339963 0.196277i
\(423\) 0 0
\(424\) 2.59808 + 1.50000i 0.126174 + 0.0728464i
\(425\) −0.0218507 0.0378465i −0.00105991 0.00183582i
\(426\) 0 0
\(427\) −2.49168 23.4181i −0.120581 1.13328i
\(428\) 17.8023 0.860507
\(429\) 0 0
\(430\) −9.90116 + 17.1493i −0.477476 + 0.827013i
\(431\) 23.0588 + 13.3130i 1.11070 + 0.641264i 0.939011 0.343887i \(-0.111744\pi\)
0.171690 + 0.985151i \(0.445077\pi\)
\(432\) 0 0
\(433\) −28.0810 −1.34949 −0.674744 0.738052i \(-0.735746\pi\)
−0.674744 + 0.738052i \(0.735746\pi\)
\(434\) −9.67356 4.29211i −0.464346 0.206028i
\(435\) 0 0
\(436\) 2.83944 1.63935i 0.135985 0.0785108i
\(437\) −30.1775 17.4230i −1.44359 0.833455i
\(438\) 0 0
\(439\) −13.8820 24.0444i −0.662554 1.14758i −0.979942 0.199281i \(-0.936139\pi\)
0.317389 0.948295i \(-0.397194\pi\)
\(440\) 2.85395i 0.136057i
\(441\) 0 0
\(442\) −1.27520 0.476396i −0.0606551 0.0226598i
\(443\) 2.28092 + 3.95067i 0.108370 + 0.187702i 0.915110 0.403204i \(-0.132104\pi\)
−0.806740 + 0.590906i \(0.798770\pi\)
\(444\) 0 0
\(445\) 12.8669 22.2861i 0.609949 1.05646i
\(446\) 11.8927 + 20.5988i 0.563136 + 0.975380i
\(447\) 0 0
\(448\) 2.41839 + 1.07303i 0.114258 + 0.0506957i
\(449\) 2.78190i 0.131286i 0.997843 + 0.0656430i \(0.0209098\pi\)
−0.997843 + 0.0656430i \(0.979090\pi\)
\(450\) 0 0
\(451\) −6.24665 + 10.8195i −0.294143 + 0.509471i
\(452\) −0.661205 + 1.14524i −0.0311004 + 0.0538676i
\(453\) 0 0
\(454\) −10.2315 −0.480188
\(455\) 5.36999 20.8973i 0.251749 0.979680i
\(456\) 0 0
\(457\) 25.8126 14.9029i 1.20746 0.697129i 0.245258 0.969458i \(-0.421127\pi\)
0.962204 + 0.272329i \(0.0877939\pi\)
\(458\) 0.523604 0.906910i 0.0244664 0.0423771i
\(459\) 0 0
\(460\) 8.80138 5.08148i 0.410366 0.236925i
\(461\) 18.6180i 0.867128i −0.901123 0.433564i \(-0.857256\pi\)
0.901123 0.433564i \(-0.142744\pi\)
\(462\) 0 0
\(463\) 42.0338i 1.95348i 0.214434 + 0.976738i \(0.431209\pi\)
−0.214434 + 0.976738i \(0.568791\pi\)
\(464\) −1.20393 2.08526i −0.0558909 0.0968059i
\(465\) 0 0
\(466\) 3.24898 + 1.87580i 0.150506 + 0.0868947i
\(467\) −19.4608 33.7071i −0.900538 1.55978i −0.826798 0.562500i \(-0.809840\pi\)
−0.0737402 0.997277i \(-0.523494\pi\)
\(468\) 0 0
\(469\) 2.01294 + 2.76312i 0.0929489 + 0.127589i
\(470\) 7.44609i 0.343463i
\(471\) 0 0
\(472\) 2.33483 4.04404i 0.107469 0.186142i
\(473\) 9.56716 + 5.52360i 0.439899 + 0.253976i
\(474\) 0 0
\(475\) 0.897649i 0.0411869i
\(476\) 0.105687 + 0.993301i 0.00484416 + 0.0455279i
\(477\) 0 0
\(478\) 14.5984 + 25.2851i 0.667715 + 1.15652i
\(479\) −1.98029 1.14332i −0.0904817 0.0522397i 0.454076 0.890963i \(-0.349969\pi\)
−0.544558 + 0.838723i \(0.683303\pi\)
\(480\) 0 0
\(481\) −2.01310 12.0104i −0.0917894 0.547627i
\(482\) 1.70789 0.0777925
\(483\) 0 0
\(484\) −9.40786 −0.427630
\(485\) 9.08148 + 15.7296i 0.412369 + 0.714244i
\(486\) 0 0
\(487\) 26.7087 + 15.4203i 1.21029 + 0.698759i 0.962822 0.270138i \(-0.0870692\pi\)
0.247465 + 0.968897i \(0.420402\pi\)
\(488\) −7.70863 + 4.45058i −0.348953 + 0.201468i
\(489\) 0 0
\(490\) −15.4781 + 3.33146i −0.699232 + 0.150500i
\(491\) −41.1754 −1.85822 −0.929111 0.369802i \(-0.879426\pi\)
−0.929111 + 0.369802i \(0.879426\pi\)
\(492\) 0 0
\(493\) 0.454545 0.787295i 0.0204717 0.0354580i
\(494\) 17.7913 + 21.5710i 0.800470 + 0.970527i
\(495\) 0 0
\(496\) 4.00000i 0.179605i
\(497\) −4.41631 + 9.95349i −0.198098 + 0.446475i
\(498\) 0 0
\(499\) −13.3961 + 7.73423i −0.599691 + 0.346232i −0.768920 0.639345i \(-0.779206\pi\)
0.169229 + 0.985577i \(0.445872\pi\)
\(500\) 9.56716 + 5.52360i 0.427857 + 0.247023i
\(501\) 0 0
\(502\) 16.8438 9.72480i 0.751778 0.434039i
\(503\) 0.986602 0.0439904 0.0219952 0.999758i \(-0.492998\pi\)
0.0219952 + 0.999758i \(0.492998\pi\)
\(504\) 0 0
\(505\) 26.3259i 1.17149i
\(506\) −2.83483 4.91007i −0.126024 0.218279i
\(507\) 0 0
\(508\) −8.18208 + 14.1718i −0.363021 + 0.628771i
\(509\) −14.8588 + 8.57875i −0.658606 + 0.380246i −0.791746 0.610851i \(-0.790827\pi\)
0.133140 + 0.991097i \(0.457494\pi\)
\(510\) 0 0
\(511\) −14.8629 20.4020i −0.657497 0.902533i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −10.6453 6.14605i −0.469543 0.271091i
\(515\) −24.4122 14.0944i −1.07573 0.621074i
\(516\) 0 0
\(517\) −4.15399 −0.182692
\(518\) −7.22277 + 5.26180i −0.317350 + 0.231190i
\(519\) 0 0
\(520\) −8.04285 + 1.34809i −0.352702 + 0.0591175i
\(521\) −16.2787 + 28.1955i −0.713183 + 1.23527i 0.250473 + 0.968124i \(0.419414\pi\)
−0.963656 + 0.267146i \(0.913919\pi\)
\(522\) 0 0
\(523\) 17.4248 + 30.1806i 0.761932 + 1.31970i 0.941854 + 0.336023i \(0.109082\pi\)
−0.179922 + 0.983681i \(0.557585\pi\)
\(524\) −11.4382 −0.499678
\(525\) 0 0
\(526\) 3.30901i 0.144280i
\(527\) −1.30788 + 0.755103i −0.0569720 + 0.0328928i
\(528\) 0 0
\(529\) 1.40512 2.43374i 0.0610923 0.105815i
\(530\) 3.39270 + 5.87633i 0.147370 + 0.255252i
\(531\) 0 0
\(532\) 8.32143 18.7549i 0.360780 0.813127i
\(533\) −33.4417 12.4933i −1.44852 0.541145i
\(534\) 0 0
\(535\) 34.8708 + 20.1327i 1.50760 + 0.870411i
\(536\) 0.646053 1.11900i 0.0279052 0.0483333i
\(537\) 0 0
\(538\) 32.0125i 1.38016i
\(539\) 1.85854 + 8.63487i 0.0800528 + 0.371930i
\(540\) 0 0
\(541\) 23.3905 13.5045i 1.00563 0.580603i 0.0957238 0.995408i \(-0.469483\pi\)
0.909910 + 0.414805i \(0.136150\pi\)
\(542\) 11.1545 19.3202i 0.479127 0.829872i
\(543\) 0 0
\(544\) 0.326969 0.188776i 0.0140187 0.00809370i
\(545\) 7.41579 0.317657
\(546\) 0 0
\(547\) 33.1719 1.41833 0.709165 0.705043i \(-0.249072\pi\)
0.709165 + 0.705043i \(0.249072\pi\)
\(548\) −9.65276 + 5.57303i −0.412346 + 0.238068i
\(549\) 0 0
\(550\) −0.0730264 + 0.126485i −0.00311386 + 0.00539336i
\(551\) −16.1714 + 9.33658i −0.688926 + 0.397752i
\(552\) 0 0
\(553\) −1.76133 16.5539i −0.0748995 0.703944i
\(554\) 10.4114i 0.442336i
\(555\) 0 0
\(556\) −1.24665 + 2.15926i −0.0528698 + 0.0915731i
\(557\) −16.4136 9.47640i −0.695466 0.401528i 0.110190 0.993911i \(-0.464854\pi\)
−0.805657 + 0.592383i \(0.798187\pi\)
\(558\) 0 0
\(559\) −11.0472 + 29.5708i −0.467247 + 1.25071i
\(560\) 3.52360 + 4.83678i 0.148899 + 0.204391i
\(561\) 0 0
\(562\) 14.7551 + 25.5566i 0.622406 + 1.07804i
\(563\) −15.7720 + 27.3179i −0.664711 + 1.15131i 0.314653 + 0.949207i \(0.398112\pi\)
−0.979364 + 0.202106i \(0.935221\pi\)
\(564\) 0 0
\(565\) −2.59031 + 1.49551i −0.108975 + 0.0629167i
\(566\) 3.21459i 0.135119i
\(567\) 0 0
\(568\) 4.11575 0.172693
\(569\) 1.53206 + 2.65360i 0.0642272 + 0.111245i 0.896351 0.443345i \(-0.146208\pi\)
−0.832124 + 0.554590i \(0.812875\pi\)
\(570\) 0 0
\(571\) 2.05514 3.55961i 0.0860050 0.148965i −0.819814 0.572630i \(-0.805923\pi\)
0.905819 + 0.423665i \(0.139257\pi\)
\(572\) 0.752063 + 4.48690i 0.0314453 + 0.187607i
\(573\) 0 0
\(574\) 2.77160 + 26.0490i 0.115685 + 1.08726i
\(575\) 0.520097 0.0216895
\(576\) 0 0
\(577\) −16.4954 9.52360i −0.686711 0.396473i 0.115668 0.993288i \(-0.463099\pi\)
−0.802379 + 0.596815i \(0.796433\pi\)
\(578\) −14.5990 8.42873i −0.607238 0.350589i
\(579\) 0 0
\(580\) 5.44609i 0.226137i
\(581\) 6.86142 15.4643i 0.284660 0.641567i
\(582\) 0 0
\(583\) 3.27826 1.89270i 0.135772 0.0783878i
\(584\) −4.77026 + 8.26232i −0.197395 + 0.341897i
\(585\) 0 0
\(586\) 12.3624 + 21.4123i 0.510686 + 0.884534i
\(587\) 36.2216i 1.49503i 0.664247 + 0.747513i \(0.268752\pi\)
−0.664247 + 0.747513i \(0.731248\pi\)
\(588\) 0 0
\(589\) 31.0204 1.27817
\(590\) 9.14682 5.28092i 0.376569 0.217412i
\(591\) 0 0
\(592\) 2.92505 + 1.68878i 0.120219 + 0.0694083i
\(593\) 4.35164 2.51242i 0.178700 0.103173i −0.407982 0.912990i \(-0.633767\pi\)
0.586682 + 0.809817i \(0.300434\pi\)
\(594\) 0 0
\(595\) −0.916308 + 2.06518i −0.0375650 + 0.0846640i
\(596\) 0.0303035i 0.00124128i
\(597\) 0 0
\(598\) 12.4982 10.3083i 0.511091 0.421537i
\(599\) 15.4096 26.6902i 0.629620 1.09053i −0.358008 0.933718i \(-0.616544\pi\)
0.987628 0.156815i \(-0.0501226\pi\)
\(600\) 0 0
\(601\) 9.12121 0.372062 0.186031 0.982544i \(-0.440438\pi\)
0.186031 + 0.982544i \(0.440438\pi\)
\(602\) 23.0338 2.45079i 0.938788 0.0998868i
\(603\) 0 0
\(604\) −3.73171 + 2.15451i −0.151841 + 0.0876656i
\(605\) −18.4279 10.6394i −0.749201 0.432551i
\(606\) 0 0
\(607\) −11.1821 19.3679i −0.453866 0.786120i 0.544756 0.838595i \(-0.316622\pi\)
−0.998622 + 0.0524749i \(0.983289\pi\)
\(608\) −7.75510 −0.314511
\(609\) 0 0
\(610\) −20.1327 −0.815147
\(611\) −1.96217 11.7066i −0.0793809 0.473596i
\(612\) 0 0
\(613\) −29.9508 17.2921i −1.20970 0.698422i −0.247008 0.969014i \(-0.579447\pi\)
−0.962694 + 0.270592i \(0.912781\pi\)
\(614\) 3.46970 + 6.00969i 0.140026 + 0.242531i
\(615\) 0 0
\(616\) 2.69832 1.96573i 0.108718 0.0792015i
\(617\) 1.21810i 0.0490389i 0.999699 + 0.0245194i \(0.00780556\pi\)
−0.999699 + 0.0245194i \(0.992194\pi\)
\(618\) 0 0
\(619\) −6.93507 4.00397i −0.278744 0.160933i 0.354111 0.935204i \(-0.384784\pi\)
−0.632855 + 0.774271i \(0.718117\pi\)
\(620\) −4.52360 + 7.83511i −0.181672 + 0.314666i
\(621\) 0 0
\(622\) 11.0775i 0.444168i
\(623\) −29.9332 + 3.18489i −1.19925 + 0.127600i
\(624\) 0 0
\(625\) 12.7827 + 22.1402i 0.511307 + 0.885610i
\(626\) −18.5397 10.7039i −0.740997 0.427815i
\(627\) 0 0
\(628\) 11.3557 + 19.6687i 0.453142 + 0.784865i
\(629\) 1.27520i 0.0508456i
\(630\) 0 0
\(631\) 36.8843i 1.46834i −0.678966 0.734169i \(-0.737572\pi\)
0.678966 0.734169i \(-0.262428\pi\)
\(632\) −5.44912 + 3.14605i −0.216754 + 0.125143i
\(633\) 0 0
\(634\) 10.6091 18.3754i 0.421339 0.729781i
\(635\) −32.0537 + 18.5062i −1.27201 + 0.734398i
\(636\) 0 0
\(637\) −23.4564 + 9.31639i −0.929378 + 0.369129i
\(638\) −3.03824 −0.120285
\(639\) 0 0
\(640\) 1.13090 1.95878i 0.0447028 0.0774275i
\(641\) 21.5748 37.3686i 0.852153 1.47597i −0.0271091 0.999632i \(-0.508630\pi\)
0.879262 0.476339i \(-0.158037\pi\)
\(642\) 0 0
\(643\) 5.10235i 0.201217i 0.994926 + 0.100609i \(0.0320790\pi\)
−0.994926 + 0.100609i \(0.967921\pi\)
\(644\) −10.8666 4.82143i −0.428202 0.189991i
\(645\) 0 0
\(646\) −1.46398 2.53568i −0.0575994 0.0997650i
\(647\) 18.4079 31.8833i 0.723687 1.25346i −0.235825 0.971796i \(-0.575779\pi\)
0.959512 0.281668i \(-0.0908876\pi\)
\(648\) 0 0
\(649\) −2.94609 5.10278i −0.115644 0.200302i
\(650\) −0.390950 0.146053i −0.0153343 0.00572866i
\(651\) 0 0
\(652\) 12.4079i 0.485929i
\(653\) 14.8669 + 25.7502i 0.581786 + 1.00768i 0.995268 + 0.0971708i \(0.0309793\pi\)
−0.413482 + 0.910513i \(0.635687\pi\)
\(654\) 0 0
\(655\) −22.4048 12.9354i −0.875429 0.505429i
\(656\) 8.57465 4.95058i 0.334784 0.193288i
\(657\) 0 0
\(658\) −7.04005 + 5.12869i −0.274450 + 0.199937i
\(659\) −16.9216 −0.659171 −0.329585 0.944126i \(-0.606909\pi\)
−0.329585 + 0.944126i \(0.606909\pi\)
\(660\) 0 0
\(661\) −35.9451 20.7529i −1.39810 0.807194i −0.403907 0.914800i \(-0.632348\pi\)
−0.994194 + 0.107606i \(0.965681\pi\)
\(662\) −10.5196 + 18.2205i −0.408857 + 0.708162i
\(663\) 0 0
\(664\) −6.39446 −0.248153
\(665\) 37.5097 27.3259i 1.45457 1.05965i
\(666\) 0 0
\(667\) 5.40961 + 9.36972i 0.209461 + 0.362797i
\(668\) 21.3676 + 12.3366i 0.826737 + 0.477317i
\(669\) 0 0
\(670\) 2.53095 1.46124i 0.0977791 0.0564528i
\(671\) 11.2315i 0.433587i
\(672\) 0 0
\(673\) 15.6394 0.602853 0.301426 0.953489i \(-0.402537\pi\)
0.301426 + 0.953489i \(0.402537\pi\)
\(674\) 22.1334 12.7787i 0.852546 0.492217i
\(675\) 0 0
\(676\) −12.2895 + 4.23885i −0.472674 + 0.163033i
\(677\) 6.61178 + 11.4519i 0.254111 + 0.440134i 0.964654 0.263521i \(-0.0848837\pi\)
−0.710542 + 0.703654i \(0.751550\pi\)
\(678\) 0 0
\(679\) 8.61673 19.4204i 0.330680 0.745287i
\(680\) 0.853947 0.0327474
\(681\) 0 0
\(682\) 4.37101 + 2.52360i 0.167375 + 0.0966338i
\(683\) 22.4935 + 12.9866i 0.860688 + 0.496919i 0.864243 0.503075i \(-0.167798\pi\)
−0.00355454 + 0.999994i \(0.501131\pi\)
\(684\) 0 0
\(685\) −25.2102 −0.963231
\(686\) 13.8108 + 12.3395i 0.527297 + 0.471124i
\(687\) 0 0
\(688\) −4.37755 7.58214i −0.166893 0.289066i
\(689\) 6.88243 + 8.34459i 0.262200 + 0.317903i
\(690\) 0 0
\(691\) −14.6467 + 8.45630i −0.557188 + 0.321693i −0.752016 0.659145i \(-0.770918\pi\)
0.194828 + 0.980837i \(0.437585\pi\)
\(692\) 23.9787 0.911532
\(693\) 0 0
\(694\) 18.3303i 0.695810i
\(695\) −4.88382 + 2.81968i −0.185254 + 0.106956i
\(696\) 0 0
\(697\) 3.23737 + 1.86910i 0.122624 + 0.0707972i
\(698\) −2.09663 3.63147i −0.0793587 0.137453i
\(699\) 0 0
\(700\) 0.0324014 + 0.304525i 0.00122466 + 0.0115100i
\(701\) 33.0731 1.24915 0.624577 0.780964i \(-0.285272\pi\)
0.624577 + 0.780964i \(0.285272\pi\)
\(702\) 0 0
\(703\) 13.0966 22.6840i 0.493949 0.855544i
\(704\) −1.09275 0.630901i −0.0411847 0.0237780i
\(705\) 0 0
\(706\) −21.8629 −0.822822
\(707\) −24.8903 + 18.1327i −0.936097 + 0.681949i
\(708\) 0 0
\(709\) −10.4254 + 6.01912i −0.391535 + 0.226053i −0.682825 0.730582i \(-0.739249\pi\)
0.291290 + 0.956635i \(0.405916\pi\)
\(710\) 8.06184 + 4.65451i 0.302555 + 0.174680i
\(711\) 0 0
\(712\) 5.68878 + 9.85325i 0.213196 + 0.369266i
\(713\) 17.9732i 0.673102i
\(714\) 0 0
\(715\) −3.60112 + 9.63935i −0.134674 + 0.360491i
\(716\) 2.85395 + 4.94318i 0.106657 + 0.184735i
\(717\) 0 0
\(718\) −12.9523 + 22.4341i −0.483377 + 0.837233i
\(719\) −3.59214 6.22178i −0.133964 0.232033i 0.791237 0.611510i \(-0.209437\pi\)
−0.925201 + 0.379476i \(0.876104\pi\)
\(720\) 0 0
\(721\) 3.48873 + 32.7889i 0.129927 + 1.22112i
\(722\) 41.1416i 1.53113i
\(723\) 0 0
\(724\) −8.33483 + 14.4363i −0.309761 + 0.536523i
\(725\) 0.139354 0.241368i 0.00517547 0.00896418i
\(726\) 0 0
\(727\) −41.8967 −1.55386 −0.776932 0.629585i \(-0.783225\pi\)
−0.776932 + 0.629585i \(0.783225\pi\)
\(728\) 6.81429 + 6.67573i 0.252554 + 0.247419i
\(729\) 0 0
\(730\) −18.6877 + 10.7894i −0.691664 + 0.399333i
\(731\) 1.65275 2.86265i 0.0611292 0.105879i
\(732\) 0 0
\(733\) −19.5022 + 11.2596i −0.720329 + 0.415882i −0.814874 0.579638i \(-0.803194\pi\)
0.0945445 + 0.995521i \(0.469861\pi\)
\(734\) 17.8629i 0.659332i
\(735\) 0 0
\(736\) 4.49330i 0.165625i
\(737\) −0.815191 1.41195i −0.0300279 0.0520099i
\(738\) 0 0
\(739\) 10.3992 + 6.00397i 0.382540 + 0.220859i 0.678923 0.734210i \(-0.262447\pi\)
−0.296383 + 0.955069i \(0.595780\pi\)
\(740\) 3.81968 + 6.61587i 0.140414 + 0.243204i
\(741\) 0 0
\(742\) 3.21908 7.25517i 0.118176 0.266346i
\(743\) 9.52360i 0.349387i −0.984623 0.174694i \(-0.944107\pi\)
0.984623 0.174694i \(-0.0558935\pi\)
\(744\) 0 0
\(745\) 0.0342702 0.0593577i 0.00125556 0.00217470i
\(746\) −13.0984 7.56236i −0.479566 0.276878i
\(747\) 0 0
\(748\) 0.476396i 0.0174187i
\(749\) −4.98335 46.8361i −0.182088 1.71135i
\(750\) 0 0
\(751\) 19.7248 + 34.1644i 0.719768 + 1.24668i 0.961091 + 0.276230i \(0.0890852\pi\)
−0.241323 + 0.970445i \(0.577581\pi\)
\(752\) 2.85105 + 1.64605i 0.103967 + 0.0600254i
\(753\) 0 0
\(754\) −1.43514 8.56220i −0.0522646 0.311817i
\(755\) −9.74613 −0.354698
\(756\) 0 0
\(757\) 19.4854 0.708208 0.354104 0.935206i \(-0.384786\pi\)
0.354104 + 0.935206i \(0.384786\pi\)
\(758\) −6.26180 10.8458i −0.227439 0.393936i
\(759\) 0 0
\(760\) −15.1905 8.77026i −0.551018 0.318131i
\(761\) −5.73138 + 3.30901i −0.207762 + 0.119952i −0.600271 0.799797i \(-0.704941\pi\)
0.392509 + 0.919748i \(0.371607\pi\)
\(762\) 0 0
\(763\) −5.10782 7.01140i −0.184915 0.253830i
\(764\) 7.27871 0.263334
\(765\) 0 0
\(766\) 0.789373 1.36723i 0.0285212 0.0494002i
\(767\) 12.9888 10.7129i 0.468998 0.386819i
\(768\) 0 0
\(769\) 14.3900i 0.518918i 0.965754 + 0.259459i \(0.0835442\pi\)
−0.965754 + 0.259459i \(0.916456\pi\)
\(770\) 7.50845 0.798898i 0.270586 0.0287903i
\(771\) 0 0
\(772\) 14.9900 8.65451i 0.539503 0.311482i
\(773\) 47.8358 + 27.6180i 1.72053 + 0.993351i 0.917829 + 0.396976i \(0.129940\pi\)
0.802706 + 0.596375i \(0.203393\pi\)
\(774\) 0 0
\(775\) −0.400968 + 0.231499i −0.0144032 + 0.00831568i
\(776\) −8.03030 −0.288271
\(777\) 0 0
\(778\) 4.81025i 0.172456i
\(779\) −38.3922 66.4973i −1.37554 2.38251i
\(780\) 0 0
\(781\) 2.59663 4.49750i 0.0929148 0.160933i
\(782\) −1.46917 + 0.848227i −0.0525375 + 0.0303325i
\(783\) 0 0
\(784\) 2.14605 6.66292i 0.0766447 0.237961i
\(785\) 51.3687i 1.83343i
\(786\) 0 0
\(787\) 0.642336 + 0.370853i 0.0228968 + 0.0132195i 0.511405 0.859340i \(-0.329125\pi\)
−0.488508 + 0.872559i \(0.662459\pi\)
\(788\) 2.78392 + 1.60730i 0.0991730 + 0.0572576i
\(789\) 0 0
\(790\) −14.2315 −0.506334
\(791\) 3.19810 + 1.41898i 0.113711 + 0.0504531i
\(792\) 0 0
\(793\) −31.6520 + 5.30529i −1.12400 + 0.188397i
\(794\) −13.4742 + 23.3380i −0.478181 + 0.828234i
\(795\) 0 0
\(796\) 5.85173 + 10.1355i 0.207409 + 0.359243i
\(797\) −21.4685 −0.760452 −0.380226 0.924894i \(-0.624154\pi\)
−0.380226 + 0.924894i \(0.624154\pi\)
\(798\) 0 0
\(799\) 1.24294i 0.0439721i
\(800\) 0.100242 0.0578747i 0.00354409 0.00204618i
\(801\) 0 0
\(802\) 10.2978 17.8364i 0.363629 0.629824i
\(803\) 6.01912 + 10.4254i 0.212410 + 0.367905i
\(804\) 0 0
\(805\) −15.8326 21.7331i −0.558026 0.765992i
\(806\) −5.04721 + 13.5102i −0.177780 + 0.475877i
\(807\) 0 0
\(808\) 10.0800 + 5.81968i 0.354612 + 0.204736i
\(809\) −6.63487 + 11.4919i −0.233270 + 0.404035i −0.958768 0.284189i \(-0.908276\pi\)
0.725499 + 0.688223i \(0.241609\pi\)
\(810\) 0 0
\(811\) 14.8236i 0.520529i −0.965537 0.260264i \(-0.916190\pi\)
0.965537 0.260264i \(-0.0838097\pi\)
\(812\) −5.14911 + 3.75114i −0.180698 + 0.131639i
\(813\) 0 0
\(814\) 3.69083 2.13090i 0.129363 0.0746880i
\(815\) −14.0321 + 24.3042i −0.491522 + 0.851340i
\(816\) 0 0
\(817\) −58.8003 + 33.9484i −2.05716 + 1.18770i
\(818\) −5.30901 −0.185625
\(819\) 0 0
\(820\) 22.3945 0.782048
\(821\) 28.2743 16.3242i 0.986779 0.569717i 0.0824692 0.996594i \(-0.473719\pi\)
0.904310 + 0.426876i \(0.140386\pi\)
\(822\) 0 0
\(823\) 5.67187 9.82397i 0.197709 0.342442i −0.750076 0.661351i \(-0.769983\pi\)
0.947785 + 0.318909i \(0.103317\pi\)
\(824\) 10.7933 6.23150i 0.376001 0.217085i
\(825\) 0 0
\(826\) −11.2931 5.01067i −0.392936 0.174343i
\(827\) 14.7988i 0.514605i −0.966331 0.257302i \(-0.917166\pi\)
0.966331 0.257302i \(-0.0828337\pi\)
\(828\) 0 0
\(829\) −6.23598 + 10.8010i −0.216585 + 0.375136i −0.953762 0.300564i \(-0.902825\pi\)
0.737177 + 0.675700i \(0.236158\pi\)
\(830\) −12.5253 7.23150i −0.434760 0.251009i
\(831\) 0 0
\(832\) 1.26180 3.37755i 0.0437451 0.117096i
\(833\) 2.58369 0.556104i 0.0895196 0.0192679i
\(834\) 0 0
\(835\) 27.9029 + 48.3293i 0.965620 + 1.67250i
\(836\) −4.89270 + 8.47441i −0.169218 + 0.293094i
\(837\) 0 0
\(838\) −17.8264 + 10.2921i −0.615804 + 0.355535i
\(839\) 10.0890i 0.348309i 0.984718 + 0.174155i \(0.0557193\pi\)
−0.984718 + 0.174155i \(0.944281\pi\)
\(840\) 0 0
\(841\) −23.2022 −0.800077
\(842\) 6.44388 + 11.1611i 0.222071 + 0.384638i
\(843\) 0 0
\(844\) −4.03206 + 6.98373i −0.138789 + 0.240390i
\(845\) −28.8662 5.59525i −0.993026 0.192483i
\(846\) 0 0
\(847\) 2.63352 + 24.7511i 0.0904887 + 0.850459i
\(848\) −3.00000 −0.103020
\(849\) 0 0
\(850\) 0.0378465 + 0.0218507i 0.00129812 + 0.000749472i
\(851\) −13.1431 7.58818i −0.450540 0.260119i
\(852\) 0 0
\(853\) 1.48784i 0.0509426i 0.999676 + 0.0254713i \(0.00810864\pi\)
−0.999676 + 0.0254713i \(0.991891\pi\)
\(854\) 13.8669 + 19.0348i 0.474515 + 0.651357i
\(855\) 0 0
\(856\) −15.4173 + 8.90116i −0.526951 + 0.304235i
\(857\) −22.2832 + 38.5956i −0.761179 + 1.31840i 0.181064 + 0.983471i \(0.442046\pi\)
−0.942243 + 0.334930i \(0.891287\pi\)
\(858\) 0 0
\(859\) 9.06411 + 15.6995i 0.309264 + 0.535660i 0.978201 0.207658i \(-0.0665841\pi\)
−0.668938 + 0.743318i \(0.733251\pi\)
\(860\) 19.8023i 0.675253i
\(861\) 0 0
\(862\) −26.6260 −0.906884
\(863\) 19.8838 11.4799i 0.676852 0.390780i −0.121816 0.992553i \(-0.538872\pi\)
0.798668 + 0.601772i \(0.205539\pi\)
\(864\) 0 0
\(865\) 46.9689 + 27.1175i 1.59699 + 0.922023i
\(866\) 24.3189 14.0405i 0.826389 0.477116i
\(867\) 0 0
\(868\) 10.5236 1.11971i 0.357194 0.0380054i
\(869\) 7.93939i 0.269325i
\(870\) 0 0
\(871\) 3.59403 2.96428i 0.121779 0.100441i
\(872\) −1.63935 + 2.83944i −0.0555155 + 0.0961557i
\(873\) 0 0
\(874\) 34.8460 1.17868
\(875\) 11.8539 26.7165i 0.400737 0.903182i
\(876\) 0 0
\(877\) 26.6309 15.3753i 0.899261 0.519188i 0.0223003 0.999751i \(-0.492901\pi\)
0.876960 + 0.480563i \(0.159568\pi\)
\(878\) 24.0444 + 13.8820i 0.811459 + 0.468496i
\(879\) 0 0
\(880\) −1.42697 2.47159i −0.0481033 0.0833173i
\(881\) 28.7551 0.968784 0.484392 0.874851i \(-0.339041\pi\)
0.484392 + 0.874851i \(0.339041\pi\)
\(882\) 0 0
\(883\) −31.3696 −1.05567 −0.527836 0.849346i \(-0.676996\pi\)
−0.527836 + 0.849346i \(0.676996\pi\)
\(884\) 1.34255 0.225029i 0.0451550 0.00756856i
\(885\) 0 0
\(886\) −3.95067 2.28092i −0.132725 0.0766290i
\(887\) 4.40786 + 7.63463i 0.148001 + 0.256346i 0.930489 0.366321i \(-0.119383\pi\)
−0.782487 + 0.622666i \(0.786049\pi\)
\(888\) 0 0
\(889\) 39.5749 + 17.5592i 1.32730 + 0.588916i
\(890\) 25.7338i 0.862598i
\(891\) 0 0
\(892\) −20.5988 11.8927i −0.689698 0.398197i
\(893\) 12.7653 22.1102i 0.427175 0.739888i
\(894\) 0 0
\(895\) 12.9101i 0.431538i
\(896\) −2.63090 + 0.279927i −0.0878922 + 0.00935171i
\(897\) 0 0
\(898\) −1.39095 2.40920i −0.0464166 0.0803959i
\(899\) −8.34105 4.81571i −0.278190 0.160613i
\(900\) 0 0
\(901\) −0.566327 0.980908i −0.0188671 0.0326788i
\(902\) 12.4933i 0.415981i
\(903\) 0 0
\(904\) 1.32241i 0.0439827i
\(905\) −32.6522 + 18.8517i −1.08539 + 0.626653i
\(906\) 0 0
\(907\) 2.01515 3.49035i 0.0669120 0.115895i −0.830629 0.556827i \(-0.812019\pi\)
0.897541 + 0.440932i \(0.145352\pi\)
\(908\) 8.86074 5.11575i 0.294054 0.169772i
\(909\) 0 0
\(910\) 5.79809 + 20.7826i 0.192205 + 0.688936i
\(911\) 14.1212 0.467857 0.233928 0.972254i \(-0.424842\pi\)
0.233928 + 0.972254i \(0.424842\pi\)
\(912\) 0 0
\(913\) −4.03427 + 6.98756i −0.133515 + 0.231255i
\(914\) −14.9029 + 25.8126i −0.492944 + 0.853805i
\(915\) 0 0
\(916\) 1.04721i 0.0346008i
\(917\) 3.20185 + 30.0927i 0.105734 + 0.993747i
\(918\) 0 0
\(919\) 5.06411 + 8.77130i 0.167050 + 0.289339i 0.937381 0.348305i \(-0.113243\pi\)
−0.770332 + 0.637644i \(0.779909\pi\)
\(920\) −5.08148 + 8.80138i −0.167531 + 0.290173i
\(921\) 0 0
\(922\) 9.30901 + 16.1237i 0.306576 + 0.531005i
\(923\) 13.9012 + 5.19326i 0.457562 + 0.170938i
\(924\) 0 0
\(925\) 0.390950i 0.0128543i
\(926\) −21.0169 36.4023i −0.690658 1.19626i
\(927\) 0 0
\(928\) 2.08526 + 1.20393i 0.0684521 + 0.0395209i
\(929\) 30.3811 17.5405i 0.996770 0.575485i 0.0894790 0.995989i \(-0.471480\pi\)
0.907291 + 0.420503i \(0.138146\pi\)
\(930\) 0 0
\(931\) −51.6716 16.6429i −1.69347 0.545448i
\(932\) −3.75160 −0.122888
\(933\) 0 0
\(934\) 33.7071 + 19.4608i 1.10293 + 0.636776i
\(935\) 0.538756 0.933153i 0.0176192 0.0305174i
\(936\) 0 0
\(937\) 22.6055 0.738491 0.369245 0.929332i \(-0.379616\pi\)
0.369245 + 0.929332i \(0.379616\pi\)
\(938\) −3.12482 1.38646i −0.102029 0.0452696i
\(939\) 0 0
\(940\) 3.72305 + 6.44850i 0.121432 + 0.210327i
\(941\) −23.8013 13.7417i −0.775901 0.447967i 0.0590745 0.998254i \(-0.481185\pi\)
−0.834976 + 0.550287i \(0.814518\pi\)
\(942\) 0 0
\(943\) −38.5285 + 22.2444i −1.25466 + 0.724379i
\(944\) 4.66966i 0.151984i
\(945\) 0 0
\(946\) −11.0472 −0.359176
\(947\) −24.5757 + 14.1888i −0.798602 + 0.461073i −0.842982 0.537941i \(-0.819202\pi\)
0.0443799 + 0.999015i \(0.485869\pi\)
\(948\) 0 0
\(949\) −26.5372 + 21.8873i −0.861434 + 0.710492i
\(950\) −0.448824 0.777386i −0.0145618 0.0252217i
\(951\) 0 0
\(952\) −0.588178 0.807380i −0.0190630 0.0261674i
\(953\) −9.58864 −0.310606 −0.155303 0.987867i \(-0.549635\pi\)
−0.155303 + 0.987867i \(0.549635\pi\)
\(954\) 0 0
\(955\) 14.2574 + 8.23150i 0.461358 + 0.266365i
\(956\) −25.2851 14.5984i −0.817780 0.472146i
\(957\) 0 0
\(958\) 2.28664 0.0738780
\(959\) 17.3642 + 23.8354i 0.560718 + 0.769686i
\(960\) 0 0
\(961\) −7.50000 12.9904i −0.241935 0.419045i
\(962\) 7.74859 + 9.39476i 0.249825 + 0.302899i
\(963\) 0 0
\(964\) −1.47908 + 0.853947i −0.0476380 + 0.0275038i
\(965\) 39.1496 1.26027
\(966\) 0 0
\(967\) 31.2271i 1.00419i 0.864811 + 0.502097i \(0.167438\pi\)
−0.864811 + 0.502097i \(0.832562\pi\)
\(968\) 8.14744 4.70393i 0.261869 0.151190i
\(969\) 0 0
\(970\) −15.7296 9.08148i −0.505046 0.291589i
\(971\) −18.3833 31.8408i −0.589947 1.02182i −0.994239 0.107188i \(-0.965815\pi\)
0.404291 0.914630i \(-0.367518\pi\)
\(972\) 0 0
\(973\) 6.02978 + 2.67538i 0.193306 + 0.0857687i
\(974\) −30.8405 −0.988195
\(975\) 0 0
\(976\) 4.45058 7.70863i 0.142460 0.246747i
\(977\) 14.4811 + 8.36065i 0.463290 + 0.267481i 0.713427 0.700730i \(-0.247142\pi\)
−0.250136 + 0.968211i \(0.580475\pi\)
\(978\) 0 0
\(979\) 14.3562 0.458827
\(980\) 11.7387 10.6242i 0.374980 0.339378i
\(981\) 0 0
\(982\) 35.6590 20.5877i 1.13792 0.656981i
\(983\) −39.2534 22.6630i −1.25199 0.722836i −0.280485 0.959859i \(-0.590495\pi\)
−0.971504 + 0.237022i \(0.923829\pi\)
\(984\) 0 0
\(985\) 3.63539 + 6.29668i 0.115833 + 0.200629i
\(986\) 0.909090i 0.0289513i
\(987\) 0 0
\(988\) −26.1933 9.78541i −0.833319 0.311315i
\(989\) 19.6697 + 34.0688i 0.625459 + 1.08333i
\(990\) 0 0
\(991\) −25.7417 + 44.5859i −0.817712 + 1.41632i 0.0896517 + 0.995973i \(0.471425\pi\)
−0.907364 + 0.420346i \(0.861909\pi\)
\(992\) −2.00000 3.46410i −0.0635001 0.109985i
\(993\) 0 0
\(994\) −1.15211 10.8281i −0.0365427 0.343447i
\(995\) 26.4709i 0.839185i
\(996\) 0 0
\(997\) 26.7333 46.3034i 0.846651 1.46644i −0.0375294 0.999296i \(-0.511949\pi\)
0.884180 0.467146i \(-0.154718\pi\)
\(998\) 7.73423 13.3961i 0.244823 0.424046i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.dm.c.1117.3 12
3.2 odd 2 546.2.bk.b.25.4 yes 12
7.2 even 3 inner 1638.2.dm.c.415.4 12
13.12 even 2 inner 1638.2.dm.c.1117.4 12
21.2 odd 6 546.2.bk.b.415.3 yes 12
21.11 odd 6 3822.2.c.k.883.4 6
21.17 even 6 3822.2.c.j.883.6 6
39.38 odd 2 546.2.bk.b.25.3 12
91.51 even 6 inner 1638.2.dm.c.415.3 12
273.38 even 6 3822.2.c.j.883.1 6
273.116 odd 6 3822.2.c.k.883.3 6
273.233 odd 6 546.2.bk.b.415.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.bk.b.25.3 12 39.38 odd 2
546.2.bk.b.25.4 yes 12 3.2 odd 2
546.2.bk.b.415.3 yes 12 21.2 odd 6
546.2.bk.b.415.4 yes 12 273.233 odd 6
1638.2.dm.c.415.3 12 91.51 even 6 inner
1638.2.dm.c.415.4 12 7.2 even 3 inner
1638.2.dm.c.1117.3 12 1.1 even 1 trivial
1638.2.dm.c.1117.4 12 13.12 even 2 inner
3822.2.c.j.883.1 6 273.38 even 6
3822.2.c.j.883.6 6 21.17 even 6
3822.2.c.k.883.3 6 273.116 odd 6
3822.2.c.k.883.4 6 21.11 odd 6