L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (1.95 + 1.13i)5-s + (−2.41 + 1.07i)7-s − 0.999i·8-s + (−1.13 − 1.95i)10-s + (1.09 − 0.630i)11-s + (−1.26 − 3.37i)13-s + (2.63 + 0.279i)14-s + (−0.5 + 0.866i)16-s + (0.188 + 0.326i)17-s + (−6.71 − 3.87i)19-s + 2.26i·20-s − 1.26·22-s + (2.24 − 3.89i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.875 + 0.505i)5-s + (−0.914 + 0.405i)7-s − 0.353i·8-s + (−0.357 − 0.619i)10-s + (0.329 − 0.190i)11-s + (−0.349 − 0.936i)13-s + (0.703 + 0.0748i)14-s + (−0.125 + 0.216i)16-s + (0.0457 + 0.0793i)17-s + (−1.54 − 0.889i)19-s + 0.505i·20-s − 0.269·22-s + (0.468 − 0.811i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.207 + 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.207 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8728450319\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8728450319\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.41 - 1.07i)T \) |
| 13 | \( 1 + (1.26 + 3.37i)T \) |
good | 5 | \( 1 + (-1.95 - 1.13i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.09 + 0.630i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.188 - 0.326i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.71 + 3.87i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.24 + 3.89i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2.40T + 29T^{2} \) |
| 31 | \( 1 + (3.46 - 2i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.92 + 1.68i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 9.90iT - 41T^{2} \) |
| 43 | \( 1 - 8.75T + 43T^{2} \) |
| 47 | \( 1 + (2.85 + 1.64i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.5 - 2.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.04 - 2.33i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.45 + 7.70i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.11 - 0.646i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.11iT - 71T^{2} \) |
| 73 | \( 1 + (-8.26 + 4.77i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.14 + 5.44i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 6.39iT - 83T^{2} \) |
| 89 | \( 1 + (-9.85 - 5.68i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 8.03iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.018269895810445124943729886385, −8.803936947986876306021286653532, −7.57024453396623718808656201541, −6.62767773083053890342599146444, −6.20256642333111540706955209150, −5.15846967124020837080763104965, −3.81142186457375911156132694478, −2.75365407798414527294600026049, −2.17889050012532659263434840536, −0.41061199860753755459779735739,
1.31827484476175414806389117437, 2.30494074914935072704231293172, 3.74142982930473807020994963817, 4.73307393604570195784228152989, 5.82665025016399285941760946707, 6.42955135744376054505967605651, 7.12049370977208877820228070726, 8.087208378773448750345630894588, 9.075448093925616350560523015954, 9.465990974831268794184845667384