Properties

Label 162.4.e.b.37.3
Level $162$
Weight $4$
Character 162.37
Analytic conductor $9.558$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,4,Mod(19,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([16])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.19"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 37.3
Character \(\chi\) \(=\) 162.37
Dual form 162.4.e.b.127.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.53209 - 1.28558i) q^{2} +(0.694593 - 3.93923i) q^{4} +(-3.40278 + 1.23851i) q^{5} +(-3.51598 - 19.9401i) q^{7} +(-4.00000 - 6.92820i) q^{8} +(-3.62116 + 6.27204i) q^{10} +(-49.0055 - 17.8366i) q^{11} +(20.2556 + 16.9964i) q^{13} +(-31.0213 - 26.0300i) q^{14} +(-15.0351 - 5.47232i) q^{16} +(23.7547 - 41.1444i) q^{17} +(-61.3673 - 106.291i) q^{19} +(2.51523 + 14.2646i) q^{20} +(-98.0111 + 35.6731i) q^{22} +(17.4454 - 98.9375i) q^{23} +(-85.7106 + 71.9197i) q^{25} +52.8835 q^{26} -80.9910 q^{28} +(66.6543 - 55.9296i) q^{29} +(-39.5807 + 224.473i) q^{31} +(-30.0702 + 10.9446i) q^{32} +(-16.4999 - 93.5754i) q^{34} +(36.6602 + 63.4973i) q^{35} +(60.3294 - 104.494i) q^{37} +(-230.665 - 83.9554i) q^{38} +(22.1918 + 18.6211i) q^{40} +(24.5313 + 20.5842i) q^{41} +(267.140 + 97.2311i) q^{43} +(-104.301 + 180.655i) q^{44} +(-100.464 - 174.008i) q^{46} +(-43.5991 - 247.263i) q^{47} +(-62.9324 + 22.9055i) q^{49} +(-38.8580 + 220.375i) q^{50} +(81.0222 - 67.9857i) q^{52} +747.772 q^{53} +188.846 q^{55} +(-124.085 + 104.120i) q^{56} +(30.2186 - 171.378i) q^{58} +(-573.277 + 208.656i) q^{59} +(25.6145 + 145.267i) q^{61} +(227.936 + 394.797i) q^{62} +(-32.0000 + 55.4256i) q^{64} +(-89.9755 - 32.7484i) q^{65} +(680.914 + 571.355i) q^{67} +(-145.577 - 122.154i) q^{68} +(137.797 + 50.1541i) q^{70} +(186.829 - 323.598i) q^{71} +(-315.996 - 547.321i) q^{73} +(-41.9043 - 237.651i) q^{74} +(-461.331 + 167.911i) q^{76} +(-183.361 + 1039.89i) q^{77} +(812.837 - 682.051i) q^{79} +57.9386 q^{80} +64.0467 q^{82} +(931.590 - 781.697i) q^{83} +(-29.8743 + 169.426i) q^{85} +(534.281 - 194.462i) q^{86} +(72.4469 + 410.867i) q^{88} +(150.809 + 261.208i) q^{89} +(267.693 - 463.658i) q^{91} +(-377.620 - 137.443i) q^{92} +(-384.673 - 322.779i) q^{94} +(340.462 + 285.682i) q^{95} +(424.244 + 154.412i) q^{97} +(-66.9712 + 115.998i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 12 q^{5} + 33 q^{7} - 120 q^{8} - 30 q^{10} + 39 q^{11} - 60 q^{13} + 66 q^{14} - 102 q^{17} - 171 q^{19} - 96 q^{20} + 78 q^{22} - 48 q^{23} - 432 q^{25} + 468 q^{26} + 336 q^{28} + 381 q^{29} - 801 q^{31}+ \cdots - 4002 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.53209 1.28558i 0.541675 0.454519i
\(3\) 0 0
\(4\) 0.694593 3.93923i 0.0868241 0.492404i
\(5\) −3.40278 + 1.23851i −0.304354 + 0.110776i −0.489682 0.871901i \(-0.662887\pi\)
0.185329 + 0.982677i \(0.440665\pi\)
\(6\) 0 0
\(7\) −3.51598 19.9401i −0.189845 1.07667i −0.919570 0.392925i \(-0.871463\pi\)
0.729725 0.683741i \(-0.239648\pi\)
\(8\) −4.00000 6.92820i −0.176777 0.306186i
\(9\) 0 0
\(10\) −3.62116 + 6.27204i −0.114511 + 0.198339i
\(11\) −49.0055 17.8366i −1.34325 0.488902i −0.432414 0.901675i \(-0.642338\pi\)
−0.910834 + 0.412773i \(0.864560\pi\)
\(12\) 0 0
\(13\) 20.2556 + 16.9964i 0.432145 + 0.362613i 0.832760 0.553634i \(-0.186759\pi\)
−0.400616 + 0.916246i \(0.631204\pi\)
\(14\) −31.0213 26.0300i −0.592200 0.496915i
\(15\) 0 0
\(16\) −15.0351 5.47232i −0.234923 0.0855050i
\(17\) 23.7547 41.1444i 0.338904 0.586999i −0.645323 0.763910i \(-0.723277\pi\)
0.984227 + 0.176911i \(0.0566105\pi\)
\(18\) 0 0
\(19\) −61.3673 106.291i −0.740980 1.28341i −0.952050 0.305944i \(-0.901028\pi\)
0.211070 0.977471i \(-0.432305\pi\)
\(20\) 2.51523 + 14.2646i 0.0281212 + 0.159483i
\(21\) 0 0
\(22\) −98.0111 + 35.6731i −0.949820 + 0.345706i
\(23\) 17.4454 98.9375i 0.158157 0.896952i −0.797686 0.603073i \(-0.793943\pi\)
0.955843 0.293879i \(-0.0949462\pi\)
\(24\) 0 0
\(25\) −85.7106 + 71.9197i −0.685684 + 0.575358i
\(26\) 52.8835 0.398897
\(27\) 0 0
\(28\) −80.9910 −0.546638
\(29\) 66.6543 55.9296i 0.426807 0.358133i −0.403939 0.914786i \(-0.632359\pi\)
0.830745 + 0.556653i \(0.187915\pi\)
\(30\) 0 0
\(31\) −39.5807 + 224.473i −0.229319 + 1.30053i 0.624934 + 0.780677i \(0.285126\pi\)
−0.854253 + 0.519857i \(0.825985\pi\)
\(32\) −30.0702 + 10.9446i −0.166116 + 0.0604612i
\(33\) 0 0
\(34\) −16.4999 93.5754i −0.0832266 0.472001i
\(35\) 36.6602 + 63.4973i 0.177049 + 0.306657i
\(36\) 0 0
\(37\) 60.3294 104.494i 0.268056 0.464287i −0.700303 0.713845i \(-0.746952\pi\)
0.968360 + 0.249558i \(0.0802853\pi\)
\(38\) −230.665 83.9554i −0.984707 0.358404i
\(39\) 0 0
\(40\) 22.1918 + 18.6211i 0.0877207 + 0.0736064i
\(41\) 24.5313 + 20.5842i 0.0934426 + 0.0784076i 0.688312 0.725415i \(-0.258352\pi\)
−0.594870 + 0.803822i \(0.702796\pi\)
\(42\) 0 0
\(43\) 267.140 + 97.2311i 0.947408 + 0.344828i 0.769087 0.639144i \(-0.220711\pi\)
0.178321 + 0.983972i \(0.442934\pi\)
\(44\) −104.301 + 180.655i −0.357364 + 0.618972i
\(45\) 0 0
\(46\) −100.464 174.008i −0.322013 0.557742i
\(47\) −43.5991 247.263i −0.135310 0.767383i −0.974643 0.223765i \(-0.928165\pi\)
0.839333 0.543618i \(-0.182946\pi\)
\(48\) 0 0
\(49\) −62.9324 + 22.9055i −0.183476 + 0.0667799i
\(50\) −38.8580 + 220.375i −0.109907 + 0.623314i
\(51\) 0 0
\(52\) 81.0222 67.9857i 0.216072 0.181306i
\(53\) 747.772 1.93801 0.969004 0.247046i \(-0.0794600\pi\)
0.969004 + 0.247046i \(0.0794600\pi\)
\(54\) 0 0
\(55\) 188.846 0.462981
\(56\) −124.085 + 104.120i −0.296100 + 0.248458i
\(57\) 0 0
\(58\) 30.2186 171.378i 0.0684120 0.387984i
\(59\) −573.277 + 208.656i −1.26499 + 0.460418i −0.885440 0.464754i \(-0.846143\pi\)
−0.379548 + 0.925172i \(0.623921\pi\)
\(60\) 0 0
\(61\) 25.6145 + 145.267i 0.0537639 + 0.304910i 0.999818 0.0190996i \(-0.00607997\pi\)
−0.946054 + 0.324010i \(0.894969\pi\)
\(62\) 227.936 + 394.797i 0.466902 + 0.808697i
\(63\) 0 0
\(64\) −32.0000 + 55.4256i −0.0625000 + 0.108253i
\(65\) −89.9755 32.7484i −0.171694 0.0624914i
\(66\) 0 0
\(67\) 680.914 + 571.355i 1.24160 + 1.04182i 0.997398 + 0.0720968i \(0.0229690\pi\)
0.244198 + 0.969725i \(0.421475\pi\)
\(68\) −145.577 122.154i −0.259616 0.217843i
\(69\) 0 0
\(70\) 137.797 + 50.1541i 0.235285 + 0.0856366i
\(71\) 186.829 323.598i 0.312290 0.540902i −0.666568 0.745444i \(-0.732237\pi\)
0.978858 + 0.204543i \(0.0655707\pi\)
\(72\) 0 0
\(73\) −315.996 547.321i −0.506637 0.877521i −0.999971 0.00768107i \(-0.997555\pi\)
0.493333 0.869840i \(-0.335778\pi\)
\(74\) −41.9043 237.651i −0.0658281 0.373330i
\(75\) 0 0
\(76\) −461.331 + 167.911i −0.696293 + 0.253430i
\(77\) −183.361 + 1039.89i −0.271375 + 1.53905i
\(78\) 0 0
\(79\) 812.837 682.051i 1.15761 0.971351i 0.157741 0.987480i \(-0.449579\pi\)
0.999870 + 0.0161293i \(0.00513434\pi\)
\(80\) 57.9386 0.0809716
\(81\) 0 0
\(82\) 64.0467 0.0862533
\(83\) 931.590 781.697i 1.23199 1.03376i 0.233884 0.972264i \(-0.424856\pi\)
0.998107 0.0614992i \(-0.0195882\pi\)
\(84\) 0 0
\(85\) −29.8743 + 169.426i −0.0381215 + 0.216198i
\(86\) 534.281 194.462i 0.669918 0.243830i
\(87\) 0 0
\(88\) 72.4469 + 410.867i 0.0877598 + 0.497710i
\(89\) 150.809 + 261.208i 0.179614 + 0.311101i 0.941749 0.336318i \(-0.109182\pi\)
−0.762134 + 0.647419i \(0.775848\pi\)
\(90\) 0 0
\(91\) 267.693 463.658i 0.308372 0.534116i
\(92\) −377.620 137.443i −0.427931 0.155754i
\(93\) 0 0
\(94\) −384.673 322.779i −0.422085 0.354171i
\(95\) 340.462 + 285.682i 0.367691 + 0.308530i
\(96\) 0 0
\(97\) 424.244 + 154.412i 0.444077 + 0.161631i 0.554373 0.832268i \(-0.312958\pi\)
−0.110297 + 0.993899i \(0.535180\pi\)
\(98\) −66.9712 + 115.998i −0.0690318 + 0.119567i
\(99\) 0 0
\(100\) 223.774 + 387.589i 0.223774 + 0.387589i
\(101\) 209.746 + 1189.53i 0.206639 + 1.17191i 0.894840 + 0.446387i \(0.147290\pi\)
−0.688201 + 0.725520i \(0.741599\pi\)
\(102\) 0 0
\(103\) −1166.41 + 424.538i −1.11582 + 0.406126i −0.833126 0.553083i \(-0.813451\pi\)
−0.282697 + 0.959209i \(0.591229\pi\)
\(104\) 36.7325 208.320i 0.0346338 0.196418i
\(105\) 0 0
\(106\) 1145.65 961.317i 1.04977 0.880862i
\(107\) −1309.46 −1.18309 −0.591543 0.806273i \(-0.701481\pi\)
−0.591543 + 0.806273i \(0.701481\pi\)
\(108\) 0 0
\(109\) −1059.01 −0.930590 −0.465295 0.885156i \(-0.654052\pi\)
−0.465295 + 0.885156i \(0.654052\pi\)
\(110\) 289.329 242.775i 0.250785 0.210434i
\(111\) 0 0
\(112\) −56.2557 + 319.042i −0.0474613 + 0.269167i
\(113\) −1301.72 + 473.787i −1.08368 + 0.394426i −0.821274 0.570533i \(-0.806737\pi\)
−0.262401 + 0.964959i \(0.584514\pi\)
\(114\) 0 0
\(115\) 63.1725 + 358.269i 0.0512249 + 0.290511i
\(116\) −174.022 301.415i −0.139289 0.241256i
\(117\) 0 0
\(118\) −610.068 + 1056.67i −0.475944 + 0.824359i
\(119\) −903.946 329.010i −0.696341 0.253448i
\(120\) 0 0
\(121\) 1063.79 + 892.630i 0.799245 + 0.670646i
\(122\) 225.995 + 189.633i 0.167710 + 0.140726i
\(123\) 0 0
\(124\) 856.759 + 311.835i 0.620478 + 0.225835i
\(125\) 428.903 742.883i 0.306898 0.531563i
\(126\) 0 0
\(127\) −595.134 1030.80i −0.415824 0.720228i 0.579691 0.814837i \(-0.303173\pi\)
−0.995515 + 0.0946086i \(0.969840\pi\)
\(128\) 22.2270 + 126.055i 0.0153485 + 0.0870455i
\(129\) 0 0
\(130\) −179.951 + 65.4968i −0.121406 + 0.0441881i
\(131\) −59.7327 + 338.761i −0.0398387 + 0.225936i −0.998226 0.0595337i \(-0.981039\pi\)
0.958388 + 0.285470i \(0.0921497\pi\)
\(132\) 0 0
\(133\) −1903.70 + 1597.39i −1.24114 + 1.04144i
\(134\) 1777.74 1.14607
\(135\) 0 0
\(136\) −380.076 −0.239641
\(137\) 1348.74 1131.73i 0.841102 0.705769i −0.116709 0.993166i \(-0.537235\pi\)
0.957811 + 0.287397i \(0.0927901\pi\)
\(138\) 0 0
\(139\) 552.081 3131.01i 0.336884 1.91056i −0.0708943 0.997484i \(-0.522585\pi\)
0.407778 0.913081i \(-0.366304\pi\)
\(140\) 275.594 100.308i 0.166371 0.0605542i
\(141\) 0 0
\(142\) −129.770 735.964i −0.0766907 0.434935i
\(143\) −689.477 1194.21i −0.403195 0.698355i
\(144\) 0 0
\(145\) −157.540 + 272.868i −0.0902277 + 0.156279i
\(146\) −1187.76 432.308i −0.673283 0.245055i
\(147\) 0 0
\(148\) −369.720 310.232i −0.205343 0.172303i
\(149\) −881.439 739.615i −0.484633 0.406655i 0.367465 0.930037i \(-0.380226\pi\)
−0.852098 + 0.523382i \(0.824670\pi\)
\(150\) 0 0
\(151\) −2690.31 979.193i −1.44990 0.527719i −0.507334 0.861749i \(-0.669369\pi\)
−0.942562 + 0.334030i \(0.891591\pi\)
\(152\) −490.938 + 850.330i −0.261976 + 0.453756i
\(153\) 0 0
\(154\) 1055.93 + 1828.93i 0.552529 + 0.957008i
\(155\) −143.328 812.854i −0.0742734 0.421226i
\(156\) 0 0
\(157\) −2794.04 + 1016.95i −1.42031 + 0.516950i −0.934138 0.356913i \(-0.883829\pi\)
−0.486172 + 0.873863i \(0.661607\pi\)
\(158\) 368.510 2089.93i 0.185551 1.05231i
\(159\) 0 0
\(160\) 88.7671 74.4844i 0.0438603 0.0368032i
\(161\) −2034.17 −0.995743
\(162\) 0 0
\(163\) −644.242 −0.309576 −0.154788 0.987948i \(-0.549469\pi\)
−0.154788 + 0.987948i \(0.549469\pi\)
\(164\) 98.1252 82.3368i 0.0467213 0.0392038i
\(165\) 0 0
\(166\) 422.349 2395.26i 0.197474 1.11993i
\(167\) 1190.50 433.308i 0.551640 0.200781i −0.0511350 0.998692i \(-0.516284\pi\)
0.602775 + 0.797911i \(0.294062\pi\)
\(168\) 0 0
\(169\) −260.096 1475.08i −0.118387 0.671406i
\(170\) 172.039 + 297.981i 0.0776166 + 0.134436i
\(171\) 0 0
\(172\) 568.570 984.792i 0.252053 0.436568i
\(173\) 1292.05 + 470.269i 0.567821 + 0.206670i 0.609947 0.792443i \(-0.291191\pi\)
−0.0421260 + 0.999112i \(0.513413\pi\)
\(174\) 0 0
\(175\) 1735.45 + 1456.21i 0.749642 + 0.629024i
\(176\) 639.195 + 536.348i 0.273756 + 0.229709i
\(177\) 0 0
\(178\) 566.855 + 206.318i 0.238694 + 0.0868776i
\(179\) 747.985 1295.55i 0.312330 0.540971i −0.666536 0.745472i \(-0.732224\pi\)
0.978866 + 0.204501i \(0.0655573\pi\)
\(180\) 0 0
\(181\) 1123.12 + 1945.30i 0.461219 + 0.798856i 0.999022 0.0442153i \(-0.0140787\pi\)
−0.537803 + 0.843071i \(0.680745\pi\)
\(182\) −185.938 1054.50i −0.0757286 0.429478i
\(183\) 0 0
\(184\) −755.241 + 274.885i −0.302593 + 0.110135i
\(185\) −75.8712 + 430.287i −0.0301522 + 0.171002i
\(186\) 0 0
\(187\) −1897.99 + 1592.60i −0.742217 + 0.622794i
\(188\) −1004.31 −0.389610
\(189\) 0 0
\(190\) 888.883 0.339402
\(191\) −3507.85 + 2943.44i −1.32890 + 1.11508i −0.344562 + 0.938764i \(0.611973\pi\)
−0.984334 + 0.176313i \(0.943583\pi\)
\(192\) 0 0
\(193\) 242.124 1373.15i 0.0903030 0.512134i −0.905783 0.423742i \(-0.860716\pi\)
0.996086 0.0883915i \(-0.0281727\pi\)
\(194\) 848.487 308.824i 0.314010 0.114290i
\(195\) 0 0
\(196\) 46.5177 + 263.815i 0.0169525 + 0.0961425i
\(197\) 43.7108 + 75.7093i 0.0158085 + 0.0273810i 0.873821 0.486247i \(-0.161634\pi\)
−0.858013 + 0.513628i \(0.828301\pi\)
\(198\) 0 0
\(199\) 2068.38 3582.55i 0.736803 1.27618i −0.217124 0.976144i \(-0.569668\pi\)
0.953928 0.300037i \(-0.0969989\pi\)
\(200\) 841.117 + 306.141i 0.297380 + 0.108237i
\(201\) 0 0
\(202\) 1850.58 + 1552.82i 0.644586 + 0.540872i
\(203\) −1349.60 1132.45i −0.466617 0.391538i
\(204\) 0 0
\(205\) −108.968 39.6612i −0.0371253 0.0135125i
\(206\) −1241.27 + 2149.94i −0.419821 + 0.727152i
\(207\) 0 0
\(208\) −211.534 366.388i −0.0705156 0.122137i
\(209\) 1111.47 + 6303.44i 0.367855 + 2.08621i
\(210\) 0 0
\(211\) 4114.80 1497.67i 1.34253 0.488642i 0.431924 0.901910i \(-0.357835\pi\)
0.910610 + 0.413268i \(0.135613\pi\)
\(212\) 519.397 2945.65i 0.168266 0.954282i
\(213\) 0 0
\(214\) −2006.21 + 1683.41i −0.640849 + 0.537736i
\(215\) −1029.44 −0.326546
\(216\) 0 0
\(217\) 4615.19 1.44378
\(218\) −1622.49 + 1361.43i −0.504078 + 0.422971i
\(219\) 0 0
\(220\) 131.171 743.907i 0.0401979 0.227974i
\(221\) 1180.47 429.657i 0.359309 0.130778i
\(222\) 0 0
\(223\) 198.433 + 1125.37i 0.0595878 + 0.337939i 0.999998 0.00210343i \(-0.000669543\pi\)
−0.940410 + 0.340043i \(0.889558\pi\)
\(224\) 323.964 + 561.122i 0.0966328 + 0.167373i
\(225\) 0 0
\(226\) −1385.26 + 2399.34i −0.407726 + 0.706202i
\(227\) 4929.32 + 1794.13i 1.44128 + 0.524583i 0.940141 0.340785i \(-0.110693\pi\)
0.501138 + 0.865367i \(0.332915\pi\)
\(228\) 0 0
\(229\) 2140.94 + 1796.46i 0.617804 + 0.518399i 0.897112 0.441802i \(-0.145661\pi\)
−0.279308 + 0.960201i \(0.590105\pi\)
\(230\) 557.367 + 467.687i 0.159790 + 0.134080i
\(231\) 0 0
\(232\) −654.109 238.076i −0.185105 0.0673727i
\(233\) −460.424 + 797.478i −0.129457 + 0.224225i −0.923466 0.383680i \(-0.874657\pi\)
0.794010 + 0.607905i \(0.207990\pi\)
\(234\) 0 0
\(235\) 454.596 + 787.383i 0.126190 + 0.218567i
\(236\) 423.749 + 2403.20i 0.116880 + 0.662860i
\(237\) 0 0
\(238\) −1807.89 + 658.019i −0.492388 + 0.179214i
\(239\) 394.497 2237.31i 0.106770 0.605520i −0.883729 0.467998i \(-0.844975\pi\)
0.990499 0.137521i \(-0.0439136\pi\)
\(240\) 0 0
\(241\) −389.454 + 326.791i −0.104095 + 0.0873462i −0.693350 0.720601i \(-0.743866\pi\)
0.589255 + 0.807947i \(0.299421\pi\)
\(242\) 2777.37 0.737753
\(243\) 0 0
\(244\) 590.032 0.154807
\(245\) 185.776 155.885i 0.0484441 0.0406494i
\(246\) 0 0
\(247\) 563.543 3196.01i 0.145172 0.823309i
\(248\) 1713.52 623.670i 0.438744 0.159690i
\(249\) 0 0
\(250\) −297.913 1689.55i −0.0753667 0.427426i
\(251\) 1010.71 + 1750.60i 0.254165 + 0.440227i 0.964669 0.263467i \(-0.0848659\pi\)
−0.710503 + 0.703694i \(0.751533\pi\)
\(252\) 0 0
\(253\) −2619.62 + 4537.32i −0.650966 + 1.12751i
\(254\) −2236.97 814.192i −0.552599 0.201130i
\(255\) 0 0
\(256\) 196.107 + 164.554i 0.0478778 + 0.0401742i
\(257\) 3769.11 + 3162.66i 0.914827 + 0.767631i 0.973031 0.230674i \(-0.0740931\pi\)
−0.0582044 + 0.998305i \(0.518538\pi\)
\(258\) 0 0
\(259\) −2295.73 835.578i −0.550772 0.200464i
\(260\) −191.500 + 331.687i −0.0456781 + 0.0791168i
\(261\) 0 0
\(262\) 343.987 + 595.803i 0.0811129 + 0.140492i
\(263\) −512.308 2905.44i −0.120115 0.681206i −0.984090 0.177671i \(-0.943144\pi\)
0.863975 0.503535i \(-0.167968\pi\)
\(264\) 0 0
\(265\) −2544.50 + 926.123i −0.589840 + 0.214684i
\(266\) −863.065 + 4894.69i −0.198940 + 1.12824i
\(267\) 0 0
\(268\) 2723.66 2285.42i 0.620798 0.520911i
\(269\) −1216.81 −0.275800 −0.137900 0.990446i \(-0.544035\pi\)
−0.137900 + 0.990446i \(0.544035\pi\)
\(270\) 0 0
\(271\) 746.032 0.167226 0.0836129 0.996498i \(-0.473354\pi\)
0.0836129 + 0.996498i \(0.473354\pi\)
\(272\) −582.310 + 488.616i −0.129808 + 0.108922i
\(273\) 0 0
\(274\) 611.471 3467.83i 0.134819 0.764595i
\(275\) 5483.09 1995.68i 1.20234 0.437615i
\(276\) 0 0
\(277\) 251.081 + 1423.95i 0.0544620 + 0.308870i 0.999854 0.0170650i \(-0.00543222\pi\)
−0.945392 + 0.325935i \(0.894321\pi\)
\(278\) −3179.31 5506.72i −0.685907 1.18803i
\(279\) 0 0
\(280\) 293.281 507.978i 0.0625961 0.108420i
\(281\) −1577.26 574.077i −0.334846 0.121874i 0.169125 0.985595i \(-0.445906\pi\)
−0.503971 + 0.863721i \(0.668128\pi\)
\(282\) 0 0
\(283\) 5310.00 + 4455.62i 1.11536 + 0.935898i 0.998361 0.0572342i \(-0.0182282\pi\)
0.116999 + 0.993132i \(0.462673\pi\)
\(284\) −1144.96 960.733i −0.239228 0.200736i
\(285\) 0 0
\(286\) −2591.59 943.260i −0.535817 0.195021i
\(287\) 324.200 561.531i 0.0666792 0.115492i
\(288\) 0 0
\(289\) 1327.93 + 2300.03i 0.270288 + 0.468153i
\(290\) 109.426 + 620.588i 0.0221577 + 0.125663i
\(291\) 0 0
\(292\) −2375.51 + 864.616i −0.476083 + 0.173280i
\(293\) 441.862 2505.92i 0.0881019 0.499651i −0.908542 0.417793i \(-0.862804\pi\)
0.996644 0.0818575i \(-0.0260852\pi\)
\(294\) 0 0
\(295\) 1692.31 1420.02i 0.334001 0.280260i
\(296\) −965.270 −0.189544
\(297\) 0 0
\(298\) −2301.27 −0.447346
\(299\) 2034.95 1707.53i 0.393593 0.330264i
\(300\) 0 0
\(301\) 999.541 5668.68i 0.191404 1.08551i
\(302\) −5380.62 + 1958.39i −1.02523 + 0.373154i
\(303\) 0 0
\(304\) 341.002 + 1933.92i 0.0643349 + 0.364861i
\(305\) −267.075 462.588i −0.0501399 0.0868449i
\(306\) 0 0
\(307\) 893.701 1547.94i 0.166144 0.287770i −0.770917 0.636936i \(-0.780202\pi\)
0.937061 + 0.349166i \(0.113535\pi\)
\(308\) 3969.01 + 1444.60i 0.734270 + 0.267252i
\(309\) 0 0
\(310\) −1264.58 1061.10i −0.231687 0.194409i
\(311\) −3486.59 2925.60i −0.635713 0.533426i 0.266986 0.963701i \(-0.413972\pi\)
−0.902698 + 0.430274i \(0.858417\pi\)
\(312\) 0 0
\(313\) −287.879 104.779i −0.0519868 0.0189216i 0.315896 0.948794i \(-0.397695\pi\)
−0.367883 + 0.929872i \(0.619917\pi\)
\(314\) −2973.35 + 5150.00i −0.534382 + 0.925577i
\(315\) 0 0
\(316\) −2122.17 3675.70i −0.377789 0.654349i
\(317\) −768.099 4356.11i −0.136091 0.771809i −0.974094 0.226143i \(-0.927388\pi\)
0.838003 0.545665i \(-0.183723\pi\)
\(318\) 0 0
\(319\) −4264.02 + 1551.98i −0.748399 + 0.272395i
\(320\) 40.2437 228.234i 0.00703029 0.0398708i
\(321\) 0 0
\(322\) −3116.52 + 2615.07i −0.539370 + 0.452585i
\(323\) −5831.05 −1.00448
\(324\) 0 0
\(325\) −2958.49 −0.504947
\(326\) −987.036 + 828.221i −0.167690 + 0.140708i
\(327\) 0 0
\(328\) 44.4863 252.295i 0.00748886 0.0424715i
\(329\) −4777.16 + 1738.74i −0.800527 + 0.291368i
\(330\) 0 0
\(331\) 602.165 + 3415.05i 0.0999939 + 0.567094i 0.993102 + 0.117252i \(0.0374085\pi\)
−0.893108 + 0.449842i \(0.851480\pi\)
\(332\) −2432.21 4212.71i −0.402063 0.696393i
\(333\) 0 0
\(334\) 1266.91 2194.35i 0.207551 0.359489i
\(335\) −3024.63 1100.87i −0.493293 0.179544i
\(336\) 0 0
\(337\) −4724.18 3964.05i −0.763627 0.640759i 0.175441 0.984490i \(-0.443865\pi\)
−0.939068 + 0.343731i \(0.888309\pi\)
\(338\) −2294.81 1925.58i −0.369294 0.309875i
\(339\) 0 0
\(340\) 646.657 + 235.364i 0.103147 + 0.0375423i
\(341\) 5943.50 10294.4i 0.943867 1.63483i
\(342\) 0 0
\(343\) −2794.48 4840.18i −0.439906 0.761940i
\(344\) −394.924 2239.73i −0.0618980 0.351041i
\(345\) 0 0
\(346\) 2584.11 940.538i 0.401510 0.146138i
\(347\) −150.663 + 854.453i −0.0233084 + 0.132189i −0.994242 0.107162i \(-0.965824\pi\)
0.970933 + 0.239351i \(0.0769347\pi\)
\(348\) 0 0
\(349\) 7807.22 6551.04i 1.19745 1.00478i 0.197754 0.980252i \(-0.436635\pi\)
0.999699 0.0245303i \(-0.00780902\pi\)
\(350\) 4530.93 0.691966
\(351\) 0 0
\(352\) 1668.82 0.252694
\(353\) −1505.43 + 1263.20i −0.226985 + 0.190463i −0.749187 0.662359i \(-0.769555\pi\)
0.522201 + 0.852822i \(0.325111\pi\)
\(354\) 0 0
\(355\) −234.960 + 1332.52i −0.0351278 + 0.199220i
\(356\) 1133.71 412.637i 0.168782 0.0614318i
\(357\) 0 0
\(358\) −519.545 2946.49i −0.0767006 0.434991i
\(359\) 3334.17 + 5774.96i 0.490170 + 0.848999i 0.999936 0.0113142i \(-0.00360149\pi\)
−0.509766 + 0.860313i \(0.670268\pi\)
\(360\) 0 0
\(361\) −4102.38 + 7105.54i −0.598102 + 1.03594i
\(362\) 4221.54 + 1536.52i 0.612927 + 0.223087i
\(363\) 0 0
\(364\) −1640.52 1376.56i −0.236227 0.198218i
\(365\) 1753.13 + 1471.05i 0.251405 + 0.210954i
\(366\) 0 0
\(367\) 7550.57 + 2748.18i 1.07394 + 0.390883i 0.817649 0.575717i \(-0.195277\pi\)
0.256292 + 0.966599i \(0.417499\pi\)
\(368\) −803.710 + 1392.07i −0.113849 + 0.197192i
\(369\) 0 0
\(370\) 436.925 + 756.776i 0.0613909 + 0.106332i
\(371\) −2629.15 14910.7i −0.367922 2.08659i
\(372\) 0 0
\(373\) −12082.4 + 4397.64i −1.67722 + 0.610459i −0.992925 0.118744i \(-0.962113\pi\)
−0.684298 + 0.729203i \(0.739891\pi\)
\(374\) −860.478 + 4880.01i −0.118969 + 0.674704i
\(375\) 0 0
\(376\) −1538.69 + 1291.11i −0.211042 + 0.177085i
\(377\) 2300.72 0.314306
\(378\) 0 0
\(379\) −2336.31 −0.316644 −0.158322 0.987388i \(-0.550608\pi\)
−0.158322 + 0.987388i \(0.550608\pi\)
\(380\) 1361.85 1142.73i 0.183846 0.154265i
\(381\) 0 0
\(382\) −1590.33 + 9019.21i −0.213006 + 1.20802i
\(383\) −4384.77 + 1595.92i −0.584990 + 0.212919i −0.617524 0.786552i \(-0.711864\pi\)
0.0325346 + 0.999471i \(0.489642\pi\)
\(384\) 0 0
\(385\) −663.979 3765.61i −0.0878948 0.498476i
\(386\) −1394.34 2415.06i −0.183860 0.318455i
\(387\) 0 0
\(388\) 902.942 1563.94i 0.118144 0.204632i
\(389\) 9058.55 + 3297.04i 1.18069 + 0.429735i 0.856444 0.516240i \(-0.172669\pi\)
0.324242 + 0.945974i \(0.394891\pi\)
\(390\) 0 0
\(391\) −3656.32 3068.01i −0.472910 0.396819i
\(392\) 410.423 + 344.386i 0.0528814 + 0.0443728i
\(393\) 0 0
\(394\) 164.299 + 59.7999i 0.0210083 + 0.00764638i
\(395\) −1921.18 + 3327.58i −0.244721 + 0.423870i
\(396\) 0 0
\(397\) 442.781 + 766.920i 0.0559762 + 0.0969537i 0.892656 0.450739i \(-0.148840\pi\)
−0.836679 + 0.547693i \(0.815506\pi\)
\(398\) −1436.68 8147.84i −0.180941 1.02617i
\(399\) 0 0
\(400\) 1682.23 612.283i 0.210279 0.0765353i
\(401\) −283.003 + 1604.99i −0.0352431 + 0.199874i −0.997345 0.0728149i \(-0.976802\pi\)
0.962102 + 0.272689i \(0.0879129\pi\)
\(402\) 0 0
\(403\) −4616.97 + 3874.10i −0.570689 + 0.478865i
\(404\) 4831.52 0.594993
\(405\) 0 0
\(406\) −3523.55 −0.430717
\(407\) −4820.28 + 4044.69i −0.587057 + 0.492599i
\(408\) 0 0
\(409\) −483.047 + 2739.49i −0.0583988 + 0.331196i −0.999984 0.00557746i \(-0.998225\pi\)
0.941586 + 0.336774i \(0.109336\pi\)
\(410\) −217.937 + 79.3225i −0.0262515 + 0.00955477i
\(411\) 0 0
\(412\) 862.175 + 4889.64i 0.103098 + 0.584697i
\(413\) 6176.26 + 10697.6i 0.735868 + 1.27456i
\(414\) 0 0
\(415\) −2201.86 + 3813.73i −0.260445 + 0.451105i
\(416\) −795.108 289.396i −0.0937100 0.0341077i
\(417\) 0 0
\(418\) 9806.41 + 8228.56i 1.14748 + 0.962851i
\(419\) 8333.06 + 6992.27i 0.971591 + 0.815261i 0.982799 0.184676i \(-0.0591235\pi\)
−0.0112088 + 0.999937i \(0.503568\pi\)
\(420\) 0 0
\(421\) 4945.40 + 1799.98i 0.572504 + 0.208374i 0.612017 0.790845i \(-0.290358\pi\)
−0.0395130 + 0.999219i \(0.512581\pi\)
\(422\) 4378.88 7584.44i 0.505120 0.874893i
\(423\) 0 0
\(424\) −2991.09 5180.72i −0.342595 0.593391i
\(425\) 923.062 + 5234.94i 0.105353 + 0.597487i
\(426\) 0 0
\(427\) 2806.58 1021.51i 0.318080 0.115772i
\(428\) −909.541 + 5158.27i −0.102720 + 0.582556i
\(429\) 0 0
\(430\) −1577.20 + 1323.42i −0.176882 + 0.148421i
\(431\) 507.234 0.0566881 0.0283441 0.999598i \(-0.490977\pi\)
0.0283441 + 0.999598i \(0.490977\pi\)
\(432\) 0 0
\(433\) 1544.74 0.171444 0.0857222 0.996319i \(-0.472680\pi\)
0.0857222 + 0.996319i \(0.472680\pi\)
\(434\) 7070.88 5933.17i 0.782058 0.656225i
\(435\) 0 0
\(436\) −735.578 + 4171.67i −0.0807977 + 0.458226i
\(437\) −11586.8 + 4217.24i −1.26835 + 0.461643i
\(438\) 0 0
\(439\) −1435.70 8142.25i −0.156087 0.885212i −0.957785 0.287484i \(-0.907181\pi\)
0.801699 0.597728i \(-0.203930\pi\)
\(440\) −755.383 1308.36i −0.0818443 0.141758i
\(441\) 0 0
\(442\) 1256.23 2175.86i 0.135188 0.234152i
\(443\) −14556.8 5298.22i −1.56120 0.568231i −0.590190 0.807264i \(-0.700947\pi\)
−0.971011 + 0.239034i \(0.923169\pi\)
\(444\) 0 0
\(445\) −836.678 702.056i −0.0891288 0.0747880i
\(446\) 1750.77 + 1469.07i 0.185877 + 0.155970i
\(447\) 0 0
\(448\) 1217.71 + 443.209i 0.128418 + 0.0467403i
\(449\) 1863.55 3227.76i 0.195871 0.339259i −0.751314 0.659944i \(-0.770580\pi\)
0.947186 + 0.320685i \(0.103913\pi\)
\(450\) 0 0
\(451\) −835.018 1446.29i −0.0871828 0.151005i
\(452\) 962.191 + 5456.86i 0.100128 + 0.567852i
\(453\) 0 0
\(454\) 9858.64 3588.25i 1.01914 0.370936i
\(455\) −336.655 + 1909.27i −0.0346871 + 0.196720i
\(456\) 0 0
\(457\) 12152.4 10197.1i 1.24391 1.04377i 0.246704 0.969091i \(-0.420653\pi\)
0.997208 0.0746748i \(-0.0237919\pi\)
\(458\) 5589.59 0.570272
\(459\) 0 0
\(460\) 1455.18 0.147496
\(461\) −5397.46 + 4529.01i −0.545303 + 0.457564i −0.873347 0.487099i \(-0.838055\pi\)
0.328043 + 0.944663i \(0.393611\pi\)
\(462\) 0 0
\(463\) −801.375 + 4544.82i −0.0804385 + 0.456190i 0.917809 + 0.397021i \(0.129956\pi\)
−0.998248 + 0.0591685i \(0.981155\pi\)
\(464\) −1308.22 + 476.152i −0.130889 + 0.0476397i
\(465\) 0 0
\(466\) 319.807 + 1813.72i 0.0317914 + 0.180298i
\(467\) 8295.62 + 14368.4i 0.822003 + 1.42375i 0.904188 + 0.427134i \(0.140477\pi\)
−0.0821852 + 0.996617i \(0.526190\pi\)
\(468\) 0 0
\(469\) 8998.81 15586.4i 0.885984 1.53457i
\(470\) 1708.72 + 621.923i 0.167697 + 0.0610366i
\(471\) 0 0
\(472\) 3738.72 + 3137.16i 0.364594 + 0.305931i
\(473\) −11357.1 9529.73i −1.10402 0.926379i
\(474\) 0 0
\(475\) 12904.3 + 4696.76i 1.24650 + 0.453689i
\(476\) −1923.92 + 3332.33i −0.185258 + 0.320876i
\(477\) 0 0
\(478\) −2271.82 3934.91i −0.217386 0.376524i
\(479\) −135.944 770.976i −0.0129675 0.0735423i 0.977637 0.210298i \(-0.0674435\pi\)
−0.990605 + 0.136756i \(0.956332\pi\)
\(480\) 0 0
\(481\) 2998.02 1091.19i 0.284196 0.103439i
\(482\) −176.564 + 1001.35i −0.0166852 + 0.0946266i
\(483\) 0 0
\(484\) 4255.18 3570.52i 0.399622 0.335323i
\(485\) −1634.85 −0.153061
\(486\) 0 0
\(487\) −6863.12 −0.638599 −0.319300 0.947654i \(-0.603448\pi\)
−0.319300 + 0.947654i \(0.603448\pi\)
\(488\) 903.981 758.530i 0.0838551 0.0703628i
\(489\) 0 0
\(490\) 84.2241 477.659i 0.00776501 0.0440376i
\(491\) 17841.5 6493.78i 1.63987 0.596864i 0.652854 0.757484i \(-0.273572\pi\)
0.987016 + 0.160620i \(0.0513494\pi\)
\(492\) 0 0
\(493\) −717.835 4071.04i −0.0655774 0.371908i
\(494\) −3245.32 5621.05i −0.295574 0.511950i
\(495\) 0 0
\(496\) 1823.49 3158.37i 0.165075 0.285918i
\(497\) −7109.48 2587.64i −0.641657 0.233544i
\(498\) 0 0
\(499\) 1447.67 + 1214.74i 0.129873 + 0.108976i 0.705410 0.708799i \(-0.250763\pi\)
−0.575538 + 0.817775i \(0.695207\pi\)
\(500\) −2628.47 2205.55i −0.235098 0.197270i
\(501\) 0 0
\(502\) 3799.03 + 1382.73i 0.337767 + 0.122937i
\(503\) −7100.04 + 12297.6i −0.629374 + 1.09011i 0.358303 + 0.933605i \(0.383355\pi\)
−0.987677 + 0.156503i \(0.949978\pi\)
\(504\) 0 0
\(505\) −2186.97 3787.94i −0.192710 0.333784i
\(506\) 1819.57 + 10319.3i 0.159861 + 0.906619i
\(507\) 0 0
\(508\) −4473.95 + 1628.38i −0.390747 + 0.142220i
\(509\) 661.736 3752.89i 0.0576246 0.326805i −0.942345 0.334644i \(-0.891384\pi\)
0.999969 + 0.00783851i \(0.00249510\pi\)
\(510\) 0 0
\(511\) −9802.62 + 8225.37i −0.848615 + 0.712073i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 9840.44 0.844442
\(515\) 3443.24 2889.22i 0.294616 0.247212i
\(516\) 0 0
\(517\) −2273.72 + 12894.9i −0.193420 + 1.09694i
\(518\) −4591.46 + 1671.16i −0.389454 + 0.141750i
\(519\) 0 0
\(520\) 133.014 + 754.362i 0.0112174 + 0.0636172i
\(521\) −1428.45 2474.15i −0.120118 0.208051i 0.799696 0.600405i \(-0.204994\pi\)
−0.919814 + 0.392355i \(0.871661\pi\)
\(522\) 0 0
\(523\) 2147.81 3720.12i 0.179574 0.311032i −0.762161 0.647388i \(-0.775861\pi\)
0.941735 + 0.336356i \(0.109195\pi\)
\(524\) 1292.97 + 470.602i 0.107793 + 0.0392334i
\(525\) 0 0
\(526\) −4520.07 3792.79i −0.374685 0.314398i
\(527\) 8295.58 + 6960.82i 0.685695 + 0.575366i
\(528\) 0 0
\(529\) 1948.95 + 709.359i 0.160183 + 0.0583019i
\(530\) −2707.80 + 4690.05i −0.221924 + 0.384383i
\(531\) 0 0
\(532\) 4970.20 + 8608.63i 0.405048 + 0.701563i
\(533\) 147.037 + 833.889i 0.0119491 + 0.0677669i
\(534\) 0 0
\(535\) 4455.80 1621.78i 0.360077 0.131057i
\(536\) 1234.81 7002.93i 0.0995065 0.564329i
\(537\) 0 0
\(538\) −1864.26 + 1564.30i −0.149394 + 0.125357i
\(539\) 3492.59 0.279103
\(540\) 0 0
\(541\) −10906.1 −0.866713 −0.433357 0.901223i \(-0.642671\pi\)
−0.433357 + 0.901223i \(0.642671\pi\)
\(542\) 1142.99 959.080i 0.0905821 0.0760074i
\(543\) 0 0
\(544\) −263.998 + 1497.21i −0.0208066 + 0.118000i
\(545\) 3603.56 1311.59i 0.283229 0.103087i
\(546\) 0 0
\(547\) 1522.32 + 8633.51i 0.118994 + 0.674849i 0.984695 + 0.174287i \(0.0557621\pi\)
−0.865701 + 0.500562i \(0.833127\pi\)
\(548\) −3521.32 6099.11i −0.274495 0.475440i
\(549\) 0 0
\(550\) 5834.98 10106.5i 0.452372 0.783531i
\(551\) −10035.2 3652.52i −0.775888 0.282400i
\(552\) 0 0
\(553\) −16458.1 13810.0i −1.26559 1.06195i
\(554\) 2215.27 + 1858.83i 0.169888 + 0.142553i
\(555\) 0 0
\(556\) −11950.3 4349.55i −0.911520 0.331766i
\(557\) 8736.12 15131.4i 0.664562 1.15106i −0.314842 0.949144i \(-0.601951\pi\)
0.979404 0.201911i \(-0.0647153\pi\)
\(558\) 0 0
\(559\) 3758.50 + 6509.91i 0.284378 + 0.492558i
\(560\) −203.711 1155.30i −0.0153721 0.0871794i
\(561\) 0 0
\(562\) −3154.53 + 1148.15i −0.236772 + 0.0861779i
\(563\) −1779.76 + 10093.5i −0.133229 + 0.755580i 0.842848 + 0.538152i \(0.180878\pi\)
−0.976077 + 0.217427i \(0.930234\pi\)
\(564\) 0 0
\(565\) 3842.67 3224.38i 0.286128 0.240090i
\(566\) 13863.4 1.02955
\(567\) 0 0
\(568\) −2989.27 −0.220822
\(569\) 7176.89 6022.12i 0.528771 0.443692i −0.338906 0.940820i \(-0.610057\pi\)
0.867677 + 0.497129i \(0.165612\pi\)
\(570\) 0 0
\(571\) −3564.71 + 20216.4i −0.261258 + 1.48167i 0.518225 + 0.855244i \(0.326593\pi\)
−0.779483 + 0.626423i \(0.784518\pi\)
\(572\) −5183.17 + 1886.52i −0.378880 + 0.137901i
\(573\) 0 0
\(574\) −225.187 1277.10i −0.0163748 0.0928660i
\(575\) 5620.31 + 9734.65i 0.407623 + 0.706023i
\(576\) 0 0
\(577\) −9397.75 + 16277.4i −0.678047 + 1.17441i 0.297521 + 0.954715i \(0.403840\pi\)
−0.975568 + 0.219697i \(0.929493\pi\)
\(578\) 4991.37 + 1816.71i 0.359193 + 0.130736i
\(579\) 0 0
\(580\) 965.464 + 810.120i 0.0691185 + 0.0579973i
\(581\) −18862.6 15827.6i −1.34691 1.13019i
\(582\) 0 0
\(583\) −36645.0 13337.7i −2.60322 0.947496i
\(584\) −2527.97 + 4378.57i −0.179123 + 0.310251i
\(585\) 0 0
\(586\) −2544.58 4407.35i −0.179378 0.310692i
\(587\) 2215.12 + 12562.6i 0.155755 + 0.883328i 0.958093 + 0.286458i \(0.0924780\pi\)
−0.802338 + 0.596870i \(0.796411\pi\)
\(588\) 0 0
\(589\) 26288.5 9568.22i 1.83905 0.669358i
\(590\) 767.232 4351.19i 0.0535364 0.303620i
\(591\) 0 0
\(592\) −1478.88 + 1240.93i −0.102672 + 0.0861517i
\(593\) −4347.81 −0.301085 −0.150542 0.988604i \(-0.548102\pi\)
−0.150542 + 0.988604i \(0.548102\pi\)
\(594\) 0 0
\(595\) 3483.41 0.240010
\(596\) −3525.76 + 2958.46i −0.242316 + 0.203328i
\(597\) 0 0
\(598\) 922.572 5232.16i 0.0630882 0.357791i
\(599\) 7264.20 2643.95i 0.495505 0.180349i −0.0821664 0.996619i \(-0.526184\pi\)
0.577671 + 0.816270i \(0.303962\pi\)
\(600\) 0 0
\(601\) 1040.21 + 5899.33i 0.0706008 + 0.400397i 0.999545 + 0.0301763i \(0.00960689\pi\)
−0.928944 + 0.370221i \(0.879282\pi\)
\(602\) −5756.13 9969.91i −0.389705 0.674988i
\(603\) 0 0
\(604\) −5725.94 + 9917.62i −0.385737 + 0.668116i
\(605\) −4725.39 1719.90i −0.317545 0.115577i
\(606\) 0 0
\(607\) −6621.09 5555.76i −0.442738 0.371501i 0.393995 0.919113i \(-0.371093\pi\)
−0.836733 + 0.547612i \(0.815537\pi\)
\(608\) 3008.64 + 2524.55i 0.200685 + 0.168395i
\(609\) 0 0
\(610\) −1003.87 365.380i −0.0666322 0.0242522i
\(611\) 3319.46 5749.48i 0.219789 0.380686i
\(612\) 0 0
\(613\) 7951.11 + 13771.7i 0.523887 + 0.907398i 0.999613 + 0.0278051i \(0.00885177\pi\)
−0.475727 + 0.879593i \(0.657815\pi\)
\(614\) −620.759 3520.50i −0.0408009 0.231394i
\(615\) 0 0
\(616\) 7938.01 2889.20i 0.519207 0.188976i
\(617\) 2929.32 16613.0i 0.191134 1.08398i −0.726682 0.686974i \(-0.758939\pi\)
0.917817 0.397004i \(-0.129950\pi\)
\(618\) 0 0
\(619\) −8684.02 + 7286.75i −0.563877 + 0.473149i −0.879608 0.475700i \(-0.842195\pi\)
0.315730 + 0.948849i \(0.397750\pi\)
\(620\) −3301.57 −0.213862
\(621\) 0 0
\(622\) −9102.85 −0.586802
\(623\) 4678.29 3925.55i 0.300853 0.252446i
\(624\) 0 0
\(625\) 1889.23 10714.4i 0.120911 0.685719i
\(626\) −575.757 + 209.558i −0.0367602 + 0.0133796i
\(627\) 0 0
\(628\) 2065.27 + 11712.7i 0.131231 + 0.744250i
\(629\) −2866.22 4964.43i −0.181691 0.314698i
\(630\) 0 0
\(631\) 2248.78 3895.00i 0.141874 0.245733i −0.786328 0.617809i \(-0.788021\pi\)
0.928202 + 0.372076i \(0.121354\pi\)
\(632\) −7976.74 2903.29i −0.502053 0.182732i
\(633\) 0 0
\(634\) −6776.90 5686.49i −0.424519 0.356214i
\(635\) 3301.77 + 2770.51i 0.206341 + 0.173141i
\(636\) 0 0
\(637\) −1664.04 605.662i −0.103504 0.0376722i
\(638\) −4537.68 + 7859.48i −0.281580 + 0.487712i
\(639\) 0 0
\(640\) −231.754 401.410i −0.0143139 0.0247924i
\(641\) −317.582 1801.10i −0.0195690 0.110981i 0.973459 0.228863i \(-0.0735008\pi\)
−0.993028 + 0.117882i \(0.962390\pi\)
\(642\) 0 0
\(643\) 6742.00 2453.89i 0.413497 0.150501i −0.126891 0.991917i \(-0.540500\pi\)
0.540388 + 0.841416i \(0.318278\pi\)
\(644\) −1412.92 + 8013.05i −0.0864545 + 0.490308i
\(645\) 0 0
\(646\) −8933.69 + 7496.26i −0.544104 + 0.456558i
\(647\) −25129.0 −1.52693 −0.763465 0.645849i \(-0.776504\pi\)
−0.763465 + 0.645849i \(0.776504\pi\)
\(648\) 0 0
\(649\) 31815.4 1.92429
\(650\) −4532.68 + 3803.37i −0.273517 + 0.229508i
\(651\) 0 0
\(652\) −447.486 + 2537.82i −0.0268787 + 0.152437i
\(653\) −11093.4 + 4037.68i −0.664809 + 0.241971i −0.652311 0.757951i \(-0.726200\pi\)
−0.0124975 + 0.999922i \(0.503978\pi\)
\(654\) 0 0
\(655\) −216.302 1226.71i −0.0129032 0.0731778i
\(656\) −256.187 443.728i −0.0152476 0.0264096i
\(657\) 0 0
\(658\) −5083.75 + 8805.31i −0.301193 + 0.521682i
\(659\) 21199.9 + 7716.13i 1.25316 + 0.456112i 0.881467 0.472245i \(-0.156556\pi\)
0.371689 + 0.928357i \(0.378779\pi\)
\(660\) 0 0
\(661\) −18615.9 15620.6i −1.09542 0.919170i −0.0983153 0.995155i \(-0.531345\pi\)
−0.997109 + 0.0759852i \(0.975790\pi\)
\(662\) 5312.87 + 4458.03i 0.311919 + 0.261731i
\(663\) 0 0
\(664\) −9142.11 3327.46i −0.534312 0.194473i
\(665\) 4499.47 7793.31i 0.262379 0.454454i
\(666\) 0 0
\(667\) −4370.73 7570.32i −0.253726 0.439466i
\(668\) −879.984 4990.64i −0.0509695 0.289062i
\(669\) 0 0
\(670\) −6049.26 + 2201.75i −0.348811 + 0.126957i
\(671\) 1335.81 7575.76i 0.0768531 0.435855i
\(672\) 0 0
\(673\) 10578.6 8876.52i 0.605908 0.508417i −0.287431 0.957801i \(-0.592801\pi\)
0.893338 + 0.449385i \(0.148357\pi\)
\(674\) −12333.9 −0.704875
\(675\) 0 0
\(676\) −5991.33 −0.340882
\(677\) −1444.99 + 1212.49i −0.0820316 + 0.0688327i −0.682881 0.730529i \(-0.739273\pi\)
0.600850 + 0.799362i \(0.294829\pi\)
\(678\) 0 0
\(679\) 1587.36 9002.39i 0.0897164 0.508807i
\(680\) 1293.31 470.728i 0.0729358 0.0265464i
\(681\) 0 0
\(682\) −4128.31 23412.8i −0.231791 1.31455i
\(683\) −9978.38 17283.1i −0.559022 0.968255i −0.997578 0.0695513i \(-0.977843\pi\)
0.438556 0.898704i \(-0.355490\pi\)
\(684\) 0 0
\(685\) −3187.82 + 5521.47i −0.177811 + 0.307977i
\(686\) −10503.8 3823.07i −0.584603 0.212778i
\(687\) 0 0
\(688\) −3484.40 2923.76i −0.193083 0.162016i
\(689\) 15146.5 + 12709.5i 0.837500 + 0.702746i
\(690\) 0 0
\(691\) 18467.4 + 6721.59i 1.01669 + 0.370045i 0.795999 0.605298i \(-0.206946\pi\)
0.220692 + 0.975343i \(0.429168\pi\)
\(692\) 2749.95 4763.05i 0.151066 0.261653i
\(693\) 0 0
\(694\) 867.635 + 1502.79i 0.0474567 + 0.0821974i
\(695\) 1999.17 + 11337.9i 0.109112 + 0.618806i
\(696\) 0 0
\(697\) 1429.66 520.353i 0.0776932 0.0282780i
\(698\) 3539.51 20073.5i 0.191937 1.08853i
\(699\) 0 0
\(700\) 6941.78 5824.85i 0.374821 0.314512i
\(701\) −18729.0 −1.00911 −0.504554 0.863380i \(-0.668343\pi\)
−0.504554 + 0.863380i \(0.668343\pi\)
\(702\) 0 0
\(703\) −14809.0 −0.794497
\(704\) 2556.78 2145.39i 0.136878 0.114854i
\(705\) 0 0
\(706\) −682.505 + 3870.68i −0.0363830 + 0.206338i
\(707\) 22981.9 8364.74i 1.22252 0.444962i
\(708\) 0 0
\(709\) −1329.31 7538.90i −0.0704138 0.399336i −0.999561 0.0296265i \(-0.990568\pi\)
0.929147 0.369710i \(-0.120543\pi\)
\(710\) 1353.08 + 2343.60i 0.0715214 + 0.123879i
\(711\) 0 0
\(712\) 1206.47 2089.67i 0.0635033 0.109991i
\(713\) 21518.3 + 7832.03i 1.13025 + 0.411377i
\(714\) 0 0
\(715\) 3825.18 + 3209.70i 0.200075 + 0.167883i
\(716\) −4583.92 3846.37i −0.239259 0.200762i
\(717\) 0 0
\(718\) 12532.4 + 4561.42i 0.651399 + 0.237090i
\(719\) −9064.45 + 15700.1i −0.470163 + 0.814346i −0.999418 0.0341168i \(-0.989138\pi\)
0.529255 + 0.848463i \(0.322471\pi\)
\(720\) 0 0
\(721\) 12566.4 + 21765.7i 0.649096 + 1.12427i
\(722\) 2849.49 + 16160.2i 0.146879 + 0.832994i
\(723\) 0 0
\(724\) 8443.09 3073.03i 0.433405 0.157746i
\(725\) −1690.54 + 9587.51i −0.0866000 + 0.491133i
\(726\) 0 0
\(727\) −9807.85 + 8229.76i −0.500348 + 0.419842i −0.857718 0.514121i \(-0.828118\pi\)
0.357369 + 0.933963i \(0.383674\pi\)
\(728\) −4283.09 −0.218052
\(729\) 0 0
\(730\) 4577.09 0.232063
\(731\) 10346.4 8681.63i 0.523494 0.439264i
\(732\) 0 0
\(733\) −58.9879 + 334.537i −0.00297240 + 0.0168573i −0.986258 0.165213i \(-0.947169\pi\)
0.983285 + 0.182070i \(0.0582799\pi\)
\(734\) 15101.1 5496.37i 0.759391 0.276396i
\(735\) 0 0
\(736\) 558.251 + 3166.00i 0.0279584 + 0.158560i
\(737\) −23177.6 40144.7i −1.15842 2.00644i
\(738\) 0 0
\(739\) −6213.47 + 10762.0i −0.309291 + 0.535708i −0.978208 0.207630i \(-0.933425\pi\)
0.668916 + 0.743338i \(0.266758\pi\)
\(740\) 1642.30 + 597.748i 0.0815840 + 0.0296941i
\(741\) 0 0
\(742\) −23196.9 19464.5i −1.14769 0.963025i
\(743\) −11505.4 9654.19i −0.568093 0.476686i 0.312920 0.949780i \(-0.398693\pi\)
−0.881012 + 0.473093i \(0.843137\pi\)
\(744\) 0 0
\(745\) 3915.36 + 1425.08i 0.192547 + 0.0700815i
\(746\) −12857.8 + 22270.4i −0.631044 + 1.09300i
\(747\) 0 0
\(748\) 4955.29 + 8582.82i 0.242224 + 0.419544i
\(749\) 4604.04 + 26110.8i 0.224603 + 1.27379i
\(750\) 0 0
\(751\) 28556.0 10393.5i 1.38751 0.505014i 0.463066 0.886324i \(-0.346749\pi\)
0.924447 + 0.381310i \(0.124527\pi\)
\(752\) −697.586 + 3956.20i −0.0338276 + 0.191846i
\(753\) 0 0
\(754\) 3524.91 2957.75i 0.170252 0.142858i
\(755\) 10367.3 0.499740
\(756\) 0 0
\(757\) 19500.3 0.936262 0.468131 0.883659i \(-0.344928\pi\)
0.468131 + 0.883659i \(0.344928\pi\)
\(758\) −3579.43 + 3003.50i −0.171518 + 0.143921i
\(759\) 0 0
\(760\) 617.412 3501.52i 0.0294683 0.167123i
\(761\) −3246.71 + 1181.71i −0.154656 + 0.0562902i −0.418188 0.908360i \(-0.637335\pi\)
0.263532 + 0.964651i \(0.415112\pi\)
\(762\) 0 0
\(763\) 3723.45 + 21116.7i 0.176668 + 1.00194i
\(764\) 9158.35 + 15862.7i 0.433688 + 0.751169i
\(765\) 0 0
\(766\) −4666.17 + 8082.04i −0.220099 + 0.381222i
\(767\) −15158.4 5517.22i −0.713611 0.259733i
\(768\) 0 0
\(769\) 3745.14 + 3142.54i 0.175622 + 0.147364i 0.726361 0.687313i \(-0.241210\pi\)
−0.550740 + 0.834677i \(0.685654\pi\)
\(770\) −5858.25 4915.66i −0.274178 0.230062i
\(771\) 0 0
\(772\) −5240.99 1907.57i −0.244336 0.0889311i
\(773\) 4341.80 7520.22i 0.202023 0.349914i −0.747157 0.664647i \(-0.768582\pi\)
0.949180 + 0.314733i \(0.101915\pi\)
\(774\) 0 0
\(775\) −12751.6 22086.3i −0.591032 1.02370i
\(776\) −627.177 3556.90i −0.0290133 0.164543i
\(777\) 0 0
\(778\) 18117.1 6594.09i 0.834871 0.303868i
\(779\) 682.501 3870.66i 0.0313904 0.178024i
\(780\) 0 0
\(781\) −14927.6 + 12525.7i −0.683931 + 0.573886i
\(782\) −9545.96 −0.436525
\(783\) 0 0
\(784\) 1071.54 0.0488128
\(785\) 8248.00 6920.89i 0.375011 0.314672i
\(786\) 0 0
\(787\) −2575.24 + 14604.9i −0.116642 + 0.661512i 0.869282 + 0.494317i \(0.164582\pi\)
−0.985924 + 0.167194i \(0.946529\pi\)
\(788\) 328.598 119.600i 0.0148551 0.00540681i
\(789\) 0 0
\(790\) 1334.44 + 7567.96i 0.0600976 + 0.340830i
\(791\) 14024.2 + 24290.6i 0.630395 + 1.09188i
\(792\) 0 0
\(793\) −1950.18 + 3377.82i −0.0873305 + 0.151261i
\(794\) 1664.31 + 605.761i 0.0743883 + 0.0270751i
\(795\) 0 0
\(796\) −12675.8 10636.3i −0.564424 0.473608i
\(797\) 29340.0 + 24619.2i 1.30399 + 1.09417i 0.989442 + 0.144931i \(0.0462960\pi\)
0.314544 + 0.949243i \(0.398148\pi\)
\(798\) 0 0
\(799\) −11209.2 4079.80i −0.496310 0.180642i
\(800\) 1790.19 3100.71i 0.0791162 0.137033i
\(801\) 0 0
\(802\) 1629.75 + 2822.81i 0.0717561 + 0.124285i
\(803\) 5723.23 + 32458.0i 0.251517 + 1.42642i
\(804\) 0 0
\(805\) 6921.82 2519.33i 0.303058 0.110304i
\(806\) −2093.16 + 11870.9i −0.0914747 + 0.518779i
\(807\) 0 0
\(808\) 7402.32 6211.28i 0.322293 0.270436i
\(809\) 28776.2 1.25058 0.625290 0.780393i \(-0.284981\pi\)
0.625290 + 0.780393i \(0.284981\pi\)
\(810\) 0 0
\(811\) 4006.85 0.173489 0.0867444 0.996231i \(-0.472354\pi\)
0.0867444 + 0.996231i \(0.472354\pi\)
\(812\) −5398.40 + 4529.79i −0.233309 + 0.195769i
\(813\) 0 0
\(814\) −2185.34 + 12393.7i −0.0940983 + 0.533658i
\(815\) 2192.21 797.900i 0.0942207 0.0342935i
\(816\) 0 0
\(817\) −6058.86 34361.5i −0.259452 1.47143i
\(818\) 2781.76 + 4818.14i 0.118902 + 0.205944i
\(819\) 0 0
\(820\) −231.923 + 401.703i −0.00987697 + 0.0171074i
\(821\) 11460.9 + 4171.43i 0.487197 + 0.177325i 0.573927 0.818907i \(-0.305419\pi\)
−0.0867299 + 0.996232i \(0.527642\pi\)
\(822\) 0 0
\(823\) 19247.4 + 16150.5i 0.815214 + 0.684046i 0.951846 0.306576i \(-0.0991833\pi\)
−0.136632 + 0.990622i \(0.543628\pi\)
\(824\) 7606.93 + 6382.97i 0.321602 + 0.269856i
\(825\) 0 0
\(826\) 23215.1 + 8449.62i 0.977915 + 0.355932i
\(827\) 10796.1 18699.5i 0.453952 0.786268i −0.544675 0.838647i \(-0.683347\pi\)
0.998627 + 0.0523790i \(0.0166804\pi\)
\(828\) 0 0
\(829\) 2249.44 + 3896.14i 0.0942414 + 0.163231i 0.909292 0.416159i \(-0.136624\pi\)
−0.815050 + 0.579390i \(0.803291\pi\)
\(830\) 1529.39 + 8673.62i 0.0639590 + 0.362730i
\(831\) 0 0
\(832\) −1590.22 + 578.791i −0.0662630 + 0.0241178i
\(833\) −552.508 + 3133.43i −0.0229811 + 0.130332i
\(834\) 0 0
\(835\) −3514.36 + 2948.90i −0.145652 + 0.122217i
\(836\) 25602.7 1.05920
\(837\) 0 0
\(838\) 21756.1 0.896839
\(839\) 3563.35 2990.01i 0.146628 0.123035i −0.566523 0.824046i \(-0.691712\pi\)
0.713151 + 0.701011i \(0.247267\pi\)
\(840\) 0 0
\(841\) −2920.43 + 16562.6i −0.119744 + 0.679101i
\(842\) 9890.80 3599.96i 0.404821 0.147343i
\(843\) 0 0
\(844\) −3041.54 17249.4i −0.124045 0.703495i
\(845\) 2711.95 + 4697.23i 0.110407 + 0.191230i
\(846\) 0 0
\(847\) 14058.9 24350.7i 0.570329 0.987839i
\(848\) −11242.8 4092.05i −0.455283 0.165709i
\(849\) 0 0
\(850\) 8144.12 + 6833.73i 0.328637 + 0.275759i
\(851\) −9285.86 7791.76i −0.374048 0.313864i
\(852\) 0 0
\(853\) 494.887 + 180.124i 0.0198647 + 0.00723017i 0.351933 0.936025i \(-0.385524\pi\)
−0.332069 + 0.943255i \(0.607747\pi\)
\(854\) 2986.70 5173.12i 0.119676 0.207284i
\(855\) 0 0
\(856\) 5237.84 + 9072.21i 0.209142 + 0.362245i
\(857\) −5888.40 33394.8i −0.234707 1.33109i −0.843230 0.537554i \(-0.819349\pi\)
0.608523 0.793537i \(-0.291763\pi\)
\(858\) 0 0
\(859\) 32960.8 11996.7i 1.30921 0.476512i 0.409221 0.912435i \(-0.365800\pi\)
0.899984 + 0.435923i \(0.143578\pi\)
\(860\) −715.043 + 4055.21i −0.0283520 + 0.160792i
\(861\) 0 0
\(862\) 777.127 652.087i 0.0307065 0.0257659i
\(863\) −41934.5 −1.65408 −0.827039 0.562145i \(-0.809976\pi\)
−0.827039 + 0.562145i \(0.809976\pi\)
\(864\) 0 0
\(865\) −4979.00 −0.195712
\(866\) 2366.68 1985.88i 0.0928672 0.0779248i
\(867\) 0 0
\(868\) 3205.68 18180.3i 0.125355 0.710921i
\(869\) −51998.9 + 18926.1i −2.02985 + 0.738807i
\(870\) 0 0
\(871\) 4081.30 + 23146.2i 0.158771 + 0.900436i
\(872\) 4236.02 + 7337.01i 0.164507 + 0.284934i
\(873\) 0 0
\(874\) −12330.4 + 21356.8i −0.477210 + 0.826551i
\(875\) −16321.2 5940.43i −0.630580 0.229512i
\(876\) 0 0
\(877\) −4161.69 3492.07i −0.160240 0.134457i 0.559142 0.829072i \(-0.311131\pi\)
−0.719382 + 0.694615i \(0.755575\pi\)
\(878\) −12667.1 10628.9i −0.486895 0.408553i
\(879\) 0 0
\(880\) −2839.31 1033.43i −0.108765 0.0395872i
\(881\) −15147.7 + 26236.6i −0.579272 + 1.00333i 0.416291 + 0.909232i \(0.363330\pi\)
−0.995563 + 0.0940975i \(0.970003\pi\)
\(882\) 0 0
\(883\) 491.486 + 851.279i 0.0187314 + 0.0324437i 0.875239 0.483690i \(-0.160704\pi\)
−0.856508 + 0.516134i \(0.827371\pi\)
\(884\) −872.571 4948.59i −0.0331988 0.188280i
\(885\) 0 0
\(886\) −29113.5 + 10596.4i −1.10394 + 0.401800i
\(887\) −7619.45 + 43212.0i −0.288428 + 1.63576i 0.404347 + 0.914606i \(0.367499\pi\)
−0.692776 + 0.721153i \(0.743612\pi\)
\(888\) 0 0
\(889\) −18461.9 + 15491.3i −0.696503 + 0.584435i
\(890\) −2184.41 −0.0822715
\(891\) 0 0
\(892\) 4570.93 0.171576
\(893\) −23606.3 + 19808.0i −0.884608 + 0.742274i
\(894\) 0 0
\(895\) −940.679 + 5334.85i −0.0351323 + 0.199245i
\(896\) 2435.41 886.418i 0.0908051 0.0330504i
\(897\) 0 0
\(898\) −1294.41 7340.95i −0.0481013 0.272796i
\(899\) 9916.47 + 17175.8i 0.367890 + 0.637203i
\(900\) 0 0
\(901\) 17763.1 30766.6i 0.656798 1.13761i
\(902\) −3138.64 1142.37i −0.115860 0.0421694i
\(903\) 0 0
\(904\) 8489.36 + 7123.42i 0.312336 + 0.262081i
\(905\) −6231.00 5228.43i −0.228868 0.192043i
\(906\) 0 0
\(907\) −24439.5 8895.25i −0.894708 0.325647i −0.146578 0.989199i \(-0.546826\pi\)
−0.748130 + 0.663552i \(0.769048\pi\)
\(908\) 10491.3 18171.5i 0.383444 0.664145i
\(909\) 0 0
\(910\) 1938.72 + 3357.96i 0.0706241 + 0.122325i
\(911\) −6850.83 38853.0i −0.249153 1.41302i −0.810647 0.585535i \(-0.800884\pi\)
0.561494 0.827481i \(-0.310227\pi\)
\(912\) 0 0
\(913\) −59595.9 + 21691.1i −2.16028 + 0.786277i
\(914\) 5509.47 31245.8i 0.199384 1.13076i
\(915\) 0 0
\(916\) 8563.75 7185.84i 0.308902 0.259200i
\(917\) 6964.96 0.250821
\(918\) 0 0
\(919\) 1286.40 0.0461745 0.0230872 0.999733i \(-0.492650\pi\)
0.0230872 + 0.999733i \(0.492650\pi\)
\(920\) 2229.47 1870.75i 0.0798950 0.0670399i
\(921\) 0 0
\(922\) −2447.01 + 13877.7i −0.0874057 + 0.495702i
\(923\) 9284.35 3379.23i 0.331092 0.120508i
\(924\) 0 0
\(925\) 2344.28 + 13295.1i 0.0833291 + 0.472583i
\(926\) 4614.93 + 7993.30i 0.163775 + 0.283667i
\(927\) 0 0
\(928\) −1392.18 + 2411.32i −0.0492461 + 0.0852968i
\(929\) 33256.4 + 12104.3i 1.17450 + 0.427482i 0.854255 0.519854i \(-0.174014\pi\)
0.320242 + 0.947336i \(0.396236\pi\)
\(930\) 0 0
\(931\) 6296.64 + 5283.51i 0.221659 + 0.185994i
\(932\) 2821.64 + 2367.64i 0.0991695 + 0.0832131i
\(933\) 0 0
\(934\) 31181.3 + 11349.1i 1.09238 + 0.397594i
\(935\) 4485.98 7769.95i 0.156906 0.271769i
\(936\) 0 0
\(937\) −21641.7 37484.6i −0.754541 1.30690i −0.945602 0.325325i \(-0.894526\pi\)
0.191062 0.981578i \(-0.438807\pi\)
\(938\) −6250.51 35448.4i −0.217576 1.23393i
\(939\) 0 0
\(940\) 3417.44 1243.85i 0.118579 0.0431594i
\(941\) 8547.15 48473.3i 0.296099 1.67926i −0.366603 0.930377i \(-0.619479\pi\)
0.662702 0.748883i \(-0.269410\pi\)
\(942\) 0 0
\(943\) 2464.51 2067.97i 0.0851065 0.0714128i
\(944\) 9761.10 0.336543
\(945\) 0 0
\(946\) −29651.3 −1.01908
\(947\) −4023.43 + 3376.06i −0.138061 + 0.115847i −0.709203 0.705004i \(-0.750945\pi\)
0.571142 + 0.820851i \(0.306501\pi\)
\(948\) 0 0
\(949\) 2901.83 16457.1i 0.0992596 0.562929i
\(950\) 25808.5 9393.53i 0.881409 0.320807i
\(951\) 0 0
\(952\) 1336.34 + 7578.76i 0.0454948 + 0.258014i
\(953\) 12379.8 + 21442.5i 0.420800 + 0.728846i 0.996018 0.0891537i \(-0.0284162\pi\)
−0.575218 + 0.818000i \(0.695083\pi\)
\(954\) 0 0
\(955\) 8290.96 14360.4i 0.280931 0.486587i
\(956\) −8539.25 3108.03i −0.288890 0.105147i
\(957\) 0 0
\(958\) −1199.43 1006.44i −0.0404506 0.0339421i
\(959\) −27309.0 22915.0i −0.919557 0.771600i
\(960\) 0 0
\(961\) −20827.2 7580.47i −0.699109 0.254455i
\(962\) 3190.43 5525.98i 0.106927 0.185203i
\(963\) 0 0
\(964\) 1016.79 + 1761.14i 0.0339717 + 0.0588406i
\(965\) 876.771 + 4972.41i 0.0292479 + 0.165873i
\(966\) 0 0
\(967\) −23090.8 + 8404.36i −0.767890 + 0.279489i −0.696114 0.717932i \(-0.745089\pi\)
−0.0717763 + 0.997421i \(0.522867\pi\)
\(968\) 1929.14 10940.7i 0.0640547 0.363272i
\(969\) 0 0
\(970\) −2504.73 + 2101.72i −0.0829094 + 0.0695693i
\(971\) 48144.1 1.59116 0.795580 0.605849i \(-0.207166\pi\)
0.795580 + 0.605849i \(0.207166\pi\)
\(972\) 0 0
\(973\) −64373.8 −2.12100
\(974\) −10514.9 + 8823.06i −0.345913 + 0.290256i
\(975\) 0 0
\(976\) 409.832 2324.27i 0.0134410 0.0762276i
\(977\) −26696.9 + 9716.89i −0.874218 + 0.318189i −0.739874 0.672746i \(-0.765115\pi\)
−0.134344 + 0.990935i \(0.542893\pi\)
\(978\) 0 0
\(979\) −2731.40 15490.6i −0.0891686 0.505700i
\(980\) −485.027 840.092i −0.0158098 0.0273834i
\(981\) 0 0
\(982\) 18986.5 32885.7i 0.616991 1.06866i
\(983\) −8144.66 2964.41i −0.264267 0.0961852i 0.206489 0.978449i \(-0.433796\pi\)
−0.470755 + 0.882264i \(0.656019\pi\)
\(984\) 0 0
\(985\) −242.505 203.486i −0.00784452 0.00658233i
\(986\) −6333.42 5314.37i −0.204561 0.171647i
\(987\) 0 0
\(988\) −12198.4 4439.85i −0.392796 0.142966i
\(989\) 14280.2 24734.0i 0.459133 0.795242i
\(990\) 0 0
\(991\) −25482.4 44136.8i −0.816826 1.41478i −0.908009 0.418950i \(-0.862398\pi\)
0.0911833 0.995834i \(-0.470935\pi\)
\(992\) −1266.58 7183.14i −0.0405383 0.229904i
\(993\) 0 0
\(994\) −14219.0 + 5175.28i −0.453720 + 0.165141i
\(995\) −2601.23 + 14752.3i −0.0828790 + 0.470030i
\(996\) 0 0
\(997\) 27937.3 23442.1i 0.887444 0.744654i −0.0802518 0.996775i \(-0.525572\pi\)
0.967696 + 0.252121i \(0.0811280\pi\)
\(998\) 3779.60 0.119881
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.4.e.b.37.3 30
3.2 odd 2 54.4.e.b.49.5 yes 30
27.4 even 9 1458.4.a.j.1.9 15
27.11 odd 18 54.4.e.b.43.5 30
27.16 even 9 inner 162.4.e.b.127.3 30
27.23 odd 18 1458.4.a.i.1.7 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.4.e.b.43.5 30 27.11 odd 18
54.4.e.b.49.5 yes 30 3.2 odd 2
162.4.e.b.37.3 30 1.1 even 1 trivial
162.4.e.b.127.3 30 27.16 even 9 inner
1458.4.a.i.1.7 15 27.23 odd 18
1458.4.a.j.1.9 15 27.4 even 9