Properties

Label 1458.4.a.i.1.7
Level $1458$
Weight $4$
Character 1458.1
Self dual yes
Analytic conductor $86.025$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1458,4,Mod(1,1458)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1458, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1458.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1458.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-30,0,60,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.0247847884\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 339 x^{13} - 1151 x^{12} + 35865 x^{11} + 180141 x^{10} - 1644266 x^{9} - 10786662 x^{8} + \cdots + 33185995624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{24} \)
Twist minimal: no (minimal twist has level 54)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-4.70587\) of defining polynomial
Character \(\chi\) \(=\) 1458.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -3.62116 q^{5} -20.2477 q^{7} -8.00000 q^{8} +7.24232 q^{10} -52.1506 q^{11} +26.4418 q^{13} +40.4955 q^{14} +16.0000 q^{16} +47.5095 q^{17} +122.735 q^{19} -14.4846 q^{20} +104.301 q^{22} -100.464 q^{23} -111.887 q^{25} -52.8835 q^{26} -80.9910 q^{28} -87.0110 q^{29} -227.936 q^{31} -32.0000 q^{32} -95.0189 q^{34} +73.3204 q^{35} -120.659 q^{37} -245.469 q^{38} +28.9693 q^{40} -32.0233 q^{41} -284.285 q^{43} -208.602 q^{44} +200.928 q^{46} +251.077 q^{47} +66.9712 q^{49} +223.774 q^{50} +105.767 q^{52} -747.772 q^{53} +188.846 q^{55} +161.982 q^{56} +174.022 q^{58} -610.068 q^{59} +147.508 q^{61} +455.872 q^{62} +64.0000 q^{64} -95.7499 q^{65} +888.870 q^{67} +190.038 q^{68} -146.641 q^{70} +373.659 q^{71} +631.992 q^{73} +241.317 q^{74} +490.938 q^{76} +1055.93 q^{77} +1061.08 q^{79} -57.9386 q^{80} +64.0467 q^{82} -1216.10 q^{83} -172.039 q^{85} +568.570 q^{86} +417.205 q^{88} +301.617 q^{89} -535.386 q^{91} -401.855 q^{92} -502.154 q^{94} -444.442 q^{95} -451.471 q^{97} -133.942 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 30 q^{2} + 60 q^{4} - 15 q^{5} + 42 q^{7} - 120 q^{8} + 30 q^{10} - 33 q^{11} + 117 q^{13} - 84 q^{14} + 240 q^{16} - 102 q^{17} + 171 q^{19} - 60 q^{20} + 66 q^{22} - 174 q^{23} + 600 q^{25} - 234 q^{26}+ \cdots - 4002 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −3.62116 −0.323887 −0.161943 0.986800i \(-0.551776\pi\)
−0.161943 + 0.986800i \(0.551776\pi\)
\(6\) 0 0
\(7\) −20.2477 −1.09328 −0.546638 0.837369i \(-0.684093\pi\)
−0.546638 + 0.837369i \(0.684093\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 7.24232 0.229022
\(11\) −52.1506 −1.42945 −0.714727 0.699403i \(-0.753449\pi\)
−0.714727 + 0.699403i \(0.753449\pi\)
\(12\) 0 0
\(13\) 26.4418 0.564125 0.282062 0.959396i \(-0.408981\pi\)
0.282062 + 0.959396i \(0.408981\pi\)
\(14\) 40.4955 0.773063
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 47.5095 0.677808 0.338904 0.940821i \(-0.389944\pi\)
0.338904 + 0.940821i \(0.389944\pi\)
\(18\) 0 0
\(19\) 122.735 1.48196 0.740980 0.671527i \(-0.234361\pi\)
0.740980 + 0.671527i \(0.234361\pi\)
\(20\) −14.4846 −0.161943
\(21\) 0 0
\(22\) 104.301 1.01078
\(23\) −100.464 −0.910789 −0.455395 0.890290i \(-0.650502\pi\)
−0.455395 + 0.890290i \(0.650502\pi\)
\(24\) 0 0
\(25\) −111.887 −0.895097
\(26\) −52.8835 −0.398897
\(27\) 0 0
\(28\) −80.9910 −0.546638
\(29\) −87.0110 −0.557156 −0.278578 0.960414i \(-0.589863\pi\)
−0.278578 + 0.960414i \(0.589863\pi\)
\(30\) 0 0
\(31\) −227.936 −1.32060 −0.660299 0.751003i \(-0.729570\pi\)
−0.660299 + 0.751003i \(0.729570\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −95.0189 −0.479283
\(35\) 73.3204 0.354097
\(36\) 0 0
\(37\) −120.659 −0.536113 −0.268056 0.963403i \(-0.586381\pi\)
−0.268056 + 0.963403i \(0.586381\pi\)
\(38\) −245.469 −1.04790
\(39\) 0 0
\(40\) 28.9693 0.114511
\(41\) −32.0233 −0.121981 −0.0609903 0.998138i \(-0.519426\pi\)
−0.0609903 + 0.998138i \(0.519426\pi\)
\(42\) 0 0
\(43\) −284.285 −1.00821 −0.504105 0.863642i \(-0.668178\pi\)
−0.504105 + 0.863642i \(0.668178\pi\)
\(44\) −208.602 −0.714727
\(45\) 0 0
\(46\) 200.928 0.644025
\(47\) 251.077 0.779221 0.389610 0.920980i \(-0.372610\pi\)
0.389610 + 0.920980i \(0.372610\pi\)
\(48\) 0 0
\(49\) 66.9712 0.195251
\(50\) 223.774 0.632930
\(51\) 0 0
\(52\) 105.767 0.282062
\(53\) −747.772 −1.93801 −0.969004 0.247046i \(-0.920540\pi\)
−0.969004 + 0.247046i \(0.920540\pi\)
\(54\) 0 0
\(55\) 188.846 0.462981
\(56\) 161.982 0.386531
\(57\) 0 0
\(58\) 174.022 0.393969
\(59\) −610.068 −1.34617 −0.673086 0.739564i \(-0.735032\pi\)
−0.673086 + 0.739564i \(0.735032\pi\)
\(60\) 0 0
\(61\) 147.508 0.309614 0.154807 0.987945i \(-0.450524\pi\)
0.154807 + 0.987945i \(0.450524\pi\)
\(62\) 455.872 0.933803
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −95.7499 −0.182712
\(66\) 0 0
\(67\) 888.870 1.62079 0.810394 0.585886i \(-0.199253\pi\)
0.810394 + 0.585886i \(0.199253\pi\)
\(68\) 190.038 0.338904
\(69\) 0 0
\(70\) −146.641 −0.250385
\(71\) 373.659 0.624580 0.312290 0.949987i \(-0.398904\pi\)
0.312290 + 0.949987i \(0.398904\pi\)
\(72\) 0 0
\(73\) 631.992 1.01327 0.506637 0.862159i \(-0.330888\pi\)
0.506637 + 0.862159i \(0.330888\pi\)
\(74\) 241.317 0.379089
\(75\) 0 0
\(76\) 490.938 0.740980
\(77\) 1055.93 1.56279
\(78\) 0 0
\(79\) 1061.08 1.51115 0.755577 0.655060i \(-0.227357\pi\)
0.755577 + 0.655060i \(0.227357\pi\)
\(80\) −57.9386 −0.0809716
\(81\) 0 0
\(82\) 64.0467 0.0862533
\(83\) −1216.10 −1.60825 −0.804125 0.594460i \(-0.797366\pi\)
−0.804125 + 0.594460i \(0.797366\pi\)
\(84\) 0 0
\(85\) −172.039 −0.219533
\(86\) 568.570 0.712912
\(87\) 0 0
\(88\) 417.205 0.505388
\(89\) 301.617 0.359229 0.179614 0.983737i \(-0.442515\pi\)
0.179614 + 0.983737i \(0.442515\pi\)
\(90\) 0 0
\(91\) −535.386 −0.616744
\(92\) −401.855 −0.455395
\(93\) 0 0
\(94\) −502.154 −0.550992
\(95\) −444.442 −0.479987
\(96\) 0 0
\(97\) −451.471 −0.472576 −0.236288 0.971683i \(-0.575931\pi\)
−0.236288 + 0.971683i \(0.575931\pi\)
\(98\) −133.942 −0.138064
\(99\) 0 0
\(100\) −447.549 −0.447549
\(101\) −1207.88 −1.18999 −0.594993 0.803731i \(-0.702845\pi\)
−0.594993 + 0.803731i \(0.702845\pi\)
\(102\) 0 0
\(103\) 1241.27 1.18743 0.593717 0.804674i \(-0.297660\pi\)
0.593717 + 0.804674i \(0.297660\pi\)
\(104\) −211.534 −0.199448
\(105\) 0 0
\(106\) 1495.54 1.37038
\(107\) 1309.46 1.18309 0.591543 0.806273i \(-0.298519\pi\)
0.591543 + 0.806273i \(0.298519\pi\)
\(108\) 0 0
\(109\) −1059.01 −0.930590 −0.465295 0.885156i \(-0.654052\pi\)
−0.465295 + 0.885156i \(0.654052\pi\)
\(110\) −377.692 −0.327377
\(111\) 0 0
\(112\) −323.964 −0.273319
\(113\) −1385.26 −1.15322 −0.576612 0.817018i \(-0.695625\pi\)
−0.576612 + 0.817018i \(0.695625\pi\)
\(114\) 0 0
\(115\) 363.796 0.294992
\(116\) −348.044 −0.278578
\(117\) 0 0
\(118\) 1220.14 0.951887
\(119\) −961.959 −0.741031
\(120\) 0 0
\(121\) 1388.69 1.04334
\(122\) −295.016 −0.218930
\(123\) 0 0
\(124\) −911.744 −0.660299
\(125\) 857.807 0.613797
\(126\) 0 0
\(127\) 1190.27 0.831648 0.415824 0.909445i \(-0.363493\pi\)
0.415824 + 0.909445i \(0.363493\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 191.500 0.129197
\(131\) 343.987 0.229422 0.114711 0.993399i \(-0.463406\pi\)
0.114711 + 0.993399i \(0.463406\pi\)
\(132\) 0 0
\(133\) −2485.10 −1.62019
\(134\) −1777.74 −1.14607
\(135\) 0 0
\(136\) −380.076 −0.239641
\(137\) −1760.66 −1.09798 −0.548991 0.835829i \(-0.684988\pi\)
−0.548991 + 0.835829i \(0.684988\pi\)
\(138\) 0 0
\(139\) 3179.31 1.94004 0.970019 0.243029i \(-0.0781409\pi\)
0.970019 + 0.243029i \(0.0781409\pi\)
\(140\) 293.281 0.177049
\(141\) 0 0
\(142\) −747.318 −0.441644
\(143\) −1378.95 −0.806391
\(144\) 0 0
\(145\) 315.081 0.180455
\(146\) −1263.98 −0.716493
\(147\) 0 0
\(148\) −482.635 −0.268056
\(149\) 1150.64 0.632643 0.316322 0.948652i \(-0.397552\pi\)
0.316322 + 0.948652i \(0.397552\pi\)
\(150\) 0 0
\(151\) 2862.97 1.54295 0.771474 0.636261i \(-0.219520\pi\)
0.771474 + 0.636261i \(0.219520\pi\)
\(152\) −981.876 −0.523952
\(153\) 0 0
\(154\) −2111.86 −1.10506
\(155\) 825.393 0.427724
\(156\) 0 0
\(157\) 2973.35 1.51146 0.755731 0.654882i \(-0.227282\pi\)
0.755731 + 0.654882i \(0.227282\pi\)
\(158\) −2122.17 −1.06855
\(159\) 0 0
\(160\) 115.877 0.0572556
\(161\) 2034.17 0.995743
\(162\) 0 0
\(163\) −644.242 −0.309576 −0.154788 0.987948i \(-0.549469\pi\)
−0.154788 + 0.987948i \(0.549469\pi\)
\(164\) −128.093 −0.0609903
\(165\) 0 0
\(166\) 2432.21 1.13720
\(167\) 1266.91 0.587043 0.293522 0.955952i \(-0.405173\pi\)
0.293522 + 0.955952i \(0.405173\pi\)
\(168\) 0 0
\(169\) −1497.83 −0.681763
\(170\) 344.079 0.155233
\(171\) 0 0
\(172\) −1137.14 −0.504105
\(173\) 1374.97 0.604262 0.302131 0.953266i \(-0.402302\pi\)
0.302131 + 0.953266i \(0.402302\pi\)
\(174\) 0 0
\(175\) 2265.46 0.978588
\(176\) −834.410 −0.357364
\(177\) 0 0
\(178\) −603.235 −0.254013
\(179\) 1495.97 0.624660 0.312330 0.949974i \(-0.398891\pi\)
0.312330 + 0.949974i \(0.398891\pi\)
\(180\) 0 0
\(181\) −2246.24 −0.922439 −0.461219 0.887286i \(-0.652588\pi\)
−0.461219 + 0.887286i \(0.652588\pi\)
\(182\) 1070.77 0.436104
\(183\) 0 0
\(184\) 803.710 0.322013
\(185\) 436.925 0.173640
\(186\) 0 0
\(187\) −2477.65 −0.968896
\(188\) 1004.31 0.389610
\(189\) 0 0
\(190\) 888.883 0.339402
\(191\) 4579.17 1.73475 0.867375 0.497655i \(-0.165805\pi\)
0.867375 + 0.497655i \(0.165805\pi\)
\(192\) 0 0
\(193\) 1394.34 0.520034 0.260017 0.965604i \(-0.416272\pi\)
0.260017 + 0.965604i \(0.416272\pi\)
\(194\) 902.942 0.334162
\(195\) 0 0
\(196\) 267.885 0.0976257
\(197\) 87.4216 0.0316169 0.0158085 0.999875i \(-0.494968\pi\)
0.0158085 + 0.999875i \(0.494968\pi\)
\(198\) 0 0
\(199\) −4136.77 −1.47361 −0.736803 0.676107i \(-0.763666\pi\)
−0.736803 + 0.676107i \(0.763666\pi\)
\(200\) 895.097 0.316465
\(201\) 0 0
\(202\) 2415.76 0.841447
\(203\) 1761.78 0.609125
\(204\) 0 0
\(205\) 115.962 0.0395079
\(206\) −2482.53 −0.839642
\(207\) 0 0
\(208\) 423.068 0.141031
\(209\) −6400.68 −2.11839
\(210\) 0 0
\(211\) −4378.88 −1.42869 −0.714347 0.699791i \(-0.753276\pi\)
−0.714347 + 0.699791i \(0.753276\pi\)
\(212\) −2991.09 −0.969004
\(213\) 0 0
\(214\) −2618.92 −0.836569
\(215\) 1029.44 0.326546
\(216\) 0 0
\(217\) 4615.19 1.44378
\(218\) 2118.01 0.658027
\(219\) 0 0
\(220\) 755.383 0.231491
\(221\) 1256.23 0.382368
\(222\) 0 0
\(223\) 1142.73 0.343153 0.171576 0.985171i \(-0.445114\pi\)
0.171576 + 0.985171i \(0.445114\pi\)
\(224\) 647.928 0.193266
\(225\) 0 0
\(226\) 2770.52 0.815452
\(227\) 5245.67 1.53378 0.766889 0.641780i \(-0.221804\pi\)
0.766889 + 0.641780i \(0.221804\pi\)
\(228\) 0 0
\(229\) 2794.80 0.806486 0.403243 0.915093i \(-0.367883\pi\)
0.403243 + 0.915093i \(0.367883\pi\)
\(230\) −727.591 −0.208591
\(231\) 0 0
\(232\) 696.088 0.196985
\(233\) −920.848 −0.258913 −0.129457 0.991585i \(-0.541323\pi\)
−0.129457 + 0.991585i \(0.541323\pi\)
\(234\) 0 0
\(235\) −909.191 −0.252379
\(236\) −2440.27 −0.673086
\(237\) 0 0
\(238\) 1923.92 0.523988
\(239\) −2271.82 −0.614861 −0.307431 0.951571i \(-0.599469\pi\)
−0.307431 + 0.951571i \(0.599469\pi\)
\(240\) 0 0
\(241\) −508.396 −0.135887 −0.0679433 0.997689i \(-0.521644\pi\)
−0.0679433 + 0.997689i \(0.521644\pi\)
\(242\) −2777.37 −0.737753
\(243\) 0 0
\(244\) 590.032 0.154807
\(245\) −242.514 −0.0632393
\(246\) 0 0
\(247\) 3245.32 0.836010
\(248\) 1823.49 0.466902
\(249\) 0 0
\(250\) −1715.61 −0.434020
\(251\) 2021.42 0.508331 0.254165 0.967161i \(-0.418199\pi\)
0.254165 + 0.967161i \(0.418199\pi\)
\(252\) 0 0
\(253\) 5239.25 1.30193
\(254\) −2380.54 −0.588064
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −4920.22 −1.19422 −0.597111 0.802159i \(-0.703685\pi\)
−0.597111 + 0.802159i \(0.703685\pi\)
\(258\) 0 0
\(259\) 2443.07 0.586119
\(260\) −383.000 −0.0913562
\(261\) 0 0
\(262\) −687.974 −0.162226
\(263\) 2950.26 0.691715 0.345858 0.938287i \(-0.387588\pi\)
0.345858 + 0.938287i \(0.387588\pi\)
\(264\) 0 0
\(265\) 2707.80 0.627695
\(266\) 4970.20 1.14565
\(267\) 0 0
\(268\) 3555.48 0.810394
\(269\) 1216.81 0.275800 0.137900 0.990446i \(-0.455965\pi\)
0.137900 + 0.990446i \(0.455965\pi\)
\(270\) 0 0
\(271\) 746.032 0.167226 0.0836129 0.996498i \(-0.473354\pi\)
0.0836129 + 0.996498i \(0.473354\pi\)
\(272\) 760.151 0.169452
\(273\) 0 0
\(274\) 3521.32 0.776390
\(275\) 5834.98 1.27950
\(276\) 0 0
\(277\) 1445.92 0.313634 0.156817 0.987628i \(-0.449877\pi\)
0.156817 + 0.987628i \(0.449877\pi\)
\(278\) −6358.61 −1.37181
\(279\) 0 0
\(280\) −586.563 −0.125192
\(281\) −1678.49 −0.356336 −0.178168 0.984000i \(-0.557017\pi\)
−0.178168 + 0.984000i \(0.557017\pi\)
\(282\) 0 0
\(283\) 6931.71 1.45600 0.727999 0.685578i \(-0.240450\pi\)
0.727999 + 0.685578i \(0.240450\pi\)
\(284\) 1494.64 0.312290
\(285\) 0 0
\(286\) 2757.91 0.570204
\(287\) 648.400 0.133358
\(288\) 0 0
\(289\) −2655.85 −0.540576
\(290\) −630.162 −0.127601
\(291\) 0 0
\(292\) 2527.97 0.506637
\(293\) −2544.58 −0.507359 −0.253679 0.967288i \(-0.581641\pi\)
−0.253679 + 0.967288i \(0.581641\pi\)
\(294\) 0 0
\(295\) 2209.16 0.436007
\(296\) 965.270 0.189544
\(297\) 0 0
\(298\) −2301.27 −0.447346
\(299\) −2656.44 −0.513799
\(300\) 0 0
\(301\) 5756.13 1.10225
\(302\) −5725.94 −1.09103
\(303\) 0 0
\(304\) 1963.75 0.370490
\(305\) −534.150 −0.100280
\(306\) 0 0
\(307\) −1787.40 −0.332288 −0.166144 0.986101i \(-0.553132\pi\)
−0.166144 + 0.986101i \(0.553132\pi\)
\(308\) 4223.73 0.781394
\(309\) 0 0
\(310\) −1650.79 −0.302446
\(311\) 4551.43 0.829864 0.414932 0.909852i \(-0.363805\pi\)
0.414932 + 0.909852i \(0.363805\pi\)
\(312\) 0 0
\(313\) 306.354 0.0553232 0.0276616 0.999617i \(-0.491194\pi\)
0.0276616 + 0.999617i \(0.491194\pi\)
\(314\) −5946.71 −1.06876
\(315\) 0 0
\(316\) 4244.33 0.755577
\(317\) 4423.31 0.783715 0.391857 0.920026i \(-0.371833\pi\)
0.391857 + 0.920026i \(0.371833\pi\)
\(318\) 0 0
\(319\) 4537.68 0.796430
\(320\) −231.754 −0.0404858
\(321\) 0 0
\(322\) −4068.33 −0.704097
\(323\) 5831.05 1.00448
\(324\) 0 0
\(325\) −2958.49 −0.504947
\(326\) 1288.48 0.218903
\(327\) 0 0
\(328\) 256.187 0.0431267
\(329\) −5083.75 −0.851903
\(330\) 0 0
\(331\) 3467.73 0.575842 0.287921 0.957654i \(-0.407036\pi\)
0.287921 + 0.957654i \(0.407036\pi\)
\(332\) −4864.42 −0.804125
\(333\) 0 0
\(334\) −2533.81 −0.415102
\(335\) −3218.74 −0.524951
\(336\) 0 0
\(337\) −6166.97 −0.996844 −0.498422 0.866935i \(-0.666087\pi\)
−0.498422 + 0.866935i \(0.666087\pi\)
\(338\) 2995.67 0.482079
\(339\) 0 0
\(340\) −688.158 −0.109766
\(341\) 11887.0 1.88773
\(342\) 0 0
\(343\) 5588.96 0.879812
\(344\) 2274.28 0.356456
\(345\) 0 0
\(346\) −2749.95 −0.427278
\(347\) 867.635 0.134228 0.0671139 0.997745i \(-0.478621\pi\)
0.0671139 + 0.997745i \(0.478621\pi\)
\(348\) 0 0
\(349\) 10191.6 1.56316 0.781582 0.623803i \(-0.214413\pi\)
0.781582 + 0.623803i \(0.214413\pi\)
\(350\) −4530.93 −0.691966
\(351\) 0 0
\(352\) 1668.82 0.252694
\(353\) 1965.19 0.296308 0.148154 0.988964i \(-0.452667\pi\)
0.148154 + 0.988964i \(0.452667\pi\)
\(354\) 0 0
\(355\) −1353.08 −0.202293
\(356\) 1206.47 0.179614
\(357\) 0 0
\(358\) −2991.94 −0.441701
\(359\) 6668.35 0.980339 0.490170 0.871627i \(-0.336935\pi\)
0.490170 + 0.871627i \(0.336935\pi\)
\(360\) 0 0
\(361\) 8204.77 1.19620
\(362\) 4492.47 0.652263
\(363\) 0 0
\(364\) −2141.54 −0.308372
\(365\) −2288.54 −0.328186
\(366\) 0 0
\(367\) −8035.15 −1.14286 −0.571432 0.820649i \(-0.693612\pi\)
−0.571432 + 0.820649i \(0.693612\pi\)
\(368\) −1607.42 −0.227697
\(369\) 0 0
\(370\) −873.850 −0.122782
\(371\) 15140.7 2.11878
\(372\) 0 0
\(373\) 12857.8 1.78486 0.892431 0.451183i \(-0.148998\pi\)
0.892431 + 0.451183i \(0.148998\pi\)
\(374\) 4955.29 0.685113
\(375\) 0 0
\(376\) −2008.62 −0.275496
\(377\) −2300.72 −0.314306
\(378\) 0 0
\(379\) −2336.31 −0.316644 −0.158322 0.987388i \(-0.550608\pi\)
−0.158322 + 0.987388i \(0.550608\pi\)
\(380\) −1777.77 −0.239993
\(381\) 0 0
\(382\) −9158.35 −1.22665
\(383\) −4666.17 −0.622533 −0.311267 0.950323i \(-0.600753\pi\)
−0.311267 + 0.950323i \(0.600753\pi\)
\(384\) 0 0
\(385\) −3823.70 −0.506166
\(386\) −2788.67 −0.367720
\(387\) 0 0
\(388\) −1805.88 −0.236288
\(389\) 9639.91 1.25646 0.628230 0.778028i \(-0.283780\pi\)
0.628230 + 0.778028i \(0.283780\pi\)
\(390\) 0 0
\(391\) −4772.98 −0.617340
\(392\) −535.770 −0.0690318
\(393\) 0 0
\(394\) −174.843 −0.0223565
\(395\) −3842.35 −0.489443
\(396\) 0 0
\(397\) −885.563 −0.111952 −0.0559762 0.998432i \(-0.517827\pi\)
−0.0559762 + 0.998432i \(0.517827\pi\)
\(398\) 8273.54 1.04200
\(399\) 0 0
\(400\) −1790.19 −0.223774
\(401\) 1629.75 0.202957 0.101479 0.994838i \(-0.467643\pi\)
0.101479 + 0.994838i \(0.467643\pi\)
\(402\) 0 0
\(403\) −6027.03 −0.744982
\(404\) −4831.52 −0.594993
\(405\) 0 0
\(406\) −3523.55 −0.430717
\(407\) 6292.42 0.766349
\(408\) 0 0
\(409\) −2781.76 −0.336305 −0.168153 0.985761i \(-0.553780\pi\)
−0.168153 + 0.985761i \(0.553780\pi\)
\(410\) −231.923 −0.0279363
\(411\) 0 0
\(412\) 4965.07 0.593717
\(413\) 12352.5 1.47174
\(414\) 0 0
\(415\) 4403.71 0.520891
\(416\) −846.136 −0.0997241
\(417\) 0 0
\(418\) 12801.4 1.49793
\(419\) −10878.0 −1.26832 −0.634161 0.773201i \(-0.718654\pi\)
−0.634161 + 0.773201i \(0.718654\pi\)
\(420\) 0 0
\(421\) −5262.79 −0.609246 −0.304623 0.952473i \(-0.598530\pi\)
−0.304623 + 0.952473i \(0.598530\pi\)
\(422\) 8757.76 1.01024
\(423\) 0 0
\(424\) 5982.18 0.685189
\(425\) −5315.70 −0.606704
\(426\) 0 0
\(427\) −2986.70 −0.338493
\(428\) 5237.84 0.591543
\(429\) 0 0
\(430\) −2058.88 −0.230903
\(431\) −507.234 −0.0566881 −0.0283441 0.999598i \(-0.509023\pi\)
−0.0283441 + 0.999598i \(0.509023\pi\)
\(432\) 0 0
\(433\) 1544.74 0.171444 0.0857222 0.996319i \(-0.472680\pi\)
0.0857222 + 0.996319i \(0.472680\pi\)
\(434\) −9230.38 −1.02090
\(435\) 0 0
\(436\) −4236.02 −0.465295
\(437\) −12330.4 −1.34975
\(438\) 0 0
\(439\) −8267.85 −0.898868 −0.449434 0.893314i \(-0.648374\pi\)
−0.449434 + 0.893314i \(0.648374\pi\)
\(440\) −1510.77 −0.163689
\(441\) 0 0
\(442\) −2512.47 −0.270375
\(443\) −15491.0 −1.66140 −0.830698 0.556724i \(-0.812058\pi\)
−0.830698 + 0.556724i \(0.812058\pi\)
\(444\) 0 0
\(445\) −1092.21 −0.116349
\(446\) −2285.47 −0.242646
\(447\) 0 0
\(448\) −1295.86 −0.136659
\(449\) 3727.10 0.391743 0.195871 0.980630i \(-0.437246\pi\)
0.195871 + 0.980630i \(0.437246\pi\)
\(450\) 0 0
\(451\) 1670.04 0.174366
\(452\) −5541.04 −0.576612
\(453\) 0 0
\(454\) −10491.3 −1.08454
\(455\) 1938.72 0.199755
\(456\) 0 0
\(457\) 15863.9 1.62381 0.811906 0.583789i \(-0.198430\pi\)
0.811906 + 0.583789i \(0.198430\pi\)
\(458\) −5589.59 −0.570272
\(459\) 0 0
\(460\) 1455.18 0.147496
\(461\) 7045.89 0.711843 0.355922 0.934516i \(-0.384167\pi\)
0.355922 + 0.934516i \(0.384167\pi\)
\(462\) 0 0
\(463\) −4614.93 −0.463227 −0.231614 0.972808i \(-0.574400\pi\)
−0.231614 + 0.972808i \(0.574400\pi\)
\(464\) −1392.18 −0.139289
\(465\) 0 0
\(466\) 1841.70 0.183079
\(467\) 16591.2 1.64401 0.822003 0.569483i \(-0.192857\pi\)
0.822003 + 0.569483i \(0.192857\pi\)
\(468\) 0 0
\(469\) −17997.6 −1.77197
\(470\) 1818.38 0.178459
\(471\) 0 0
\(472\) 4880.55 0.475944
\(473\) 14825.6 1.44119
\(474\) 0 0
\(475\) −13732.4 −1.32650
\(476\) −3847.84 −0.370515
\(477\) 0 0
\(478\) 4543.64 0.434772
\(479\) 782.869 0.0746768 0.0373384 0.999303i \(-0.488112\pi\)
0.0373384 + 0.999303i \(0.488112\pi\)
\(480\) 0 0
\(481\) −3190.43 −0.302435
\(482\) 1016.79 0.0960864
\(483\) 0 0
\(484\) 5554.74 0.521670
\(485\) 1634.85 0.153061
\(486\) 0 0
\(487\) −6863.12 −0.638599 −0.319300 0.947654i \(-0.603448\pi\)
−0.319300 + 0.947654i \(0.603448\pi\)
\(488\) −1180.06 −0.109465
\(489\) 0 0
\(490\) 485.027 0.0447169
\(491\) 18986.5 1.74511 0.872557 0.488513i \(-0.162461\pi\)
0.872557 + 0.488513i \(0.162461\pi\)
\(492\) 0 0
\(493\) −4133.85 −0.377645
\(494\) −6490.63 −0.591149
\(495\) 0 0
\(496\) −3646.98 −0.330149
\(497\) −7565.75 −0.682838
\(498\) 0 0
\(499\) 1889.80 0.169537 0.0847686 0.996401i \(-0.472985\pi\)
0.0847686 + 0.996401i \(0.472985\pi\)
\(500\) 3431.23 0.306898
\(501\) 0 0
\(502\) −4042.85 −0.359444
\(503\) −14200.1 −1.25875 −0.629374 0.777102i \(-0.716689\pi\)
−0.629374 + 0.777102i \(0.716689\pi\)
\(504\) 0 0
\(505\) 4373.93 0.385421
\(506\) −10478.5 −0.920605
\(507\) 0 0
\(508\) 4761.07 0.415824
\(509\) −3810.78 −0.331847 −0.165923 0.986139i \(-0.553060\pi\)
−0.165923 + 0.986139i \(0.553060\pi\)
\(510\) 0 0
\(511\) −12796.4 −1.10779
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 9840.44 0.844442
\(515\) −4494.83 −0.384594
\(516\) 0 0
\(517\) −13093.8 −1.11386
\(518\) −4886.13 −0.414449
\(519\) 0 0
\(520\) 765.999 0.0645986
\(521\) −2856.90 −0.240236 −0.120118 0.992760i \(-0.538327\pi\)
−0.120118 + 0.992760i \(0.538327\pi\)
\(522\) 0 0
\(523\) −4295.63 −0.359148 −0.179574 0.983744i \(-0.557472\pi\)
−0.179574 + 0.983744i \(0.557472\pi\)
\(524\) 1375.95 0.114711
\(525\) 0 0
\(526\) −5900.53 −0.489116
\(527\) −10829.1 −0.895111
\(528\) 0 0
\(529\) −2074.03 −0.170463
\(530\) −5415.61 −0.443847
\(531\) 0 0
\(532\) −9940.39 −0.810095
\(533\) −846.753 −0.0688123
\(534\) 0 0
\(535\) −4741.77 −0.383186
\(536\) −7110.96 −0.573035
\(537\) 0 0
\(538\) −2433.62 −0.195020
\(539\) −3492.59 −0.279103
\(540\) 0 0
\(541\) −10906.1 −0.866713 −0.433357 0.901223i \(-0.642671\pi\)
−0.433357 + 0.901223i \(0.642671\pi\)
\(542\) −1492.06 −0.118247
\(543\) 0 0
\(544\) −1520.30 −0.119821
\(545\) 3834.83 0.301406
\(546\) 0 0
\(547\) 8766.70 0.685260 0.342630 0.939471i \(-0.388682\pi\)
0.342630 + 0.939471i \(0.388682\pi\)
\(548\) −7042.64 −0.548991
\(549\) 0 0
\(550\) −11670.0 −0.904744
\(551\) −10679.3 −0.825683
\(552\) 0 0
\(553\) −21484.5 −1.65211
\(554\) −2891.83 −0.221773
\(555\) 0 0
\(556\) 12717.2 0.970019
\(557\) 17472.2 1.32912 0.664562 0.747233i \(-0.268618\pi\)
0.664562 + 0.747233i \(0.268618\pi\)
\(558\) 0 0
\(559\) −7516.99 −0.568756
\(560\) 1173.13 0.0885243
\(561\) 0 0
\(562\) 3356.98 0.251967
\(563\) 10249.2 0.767236 0.383618 0.923492i \(-0.374678\pi\)
0.383618 + 0.923492i \(0.374678\pi\)
\(564\) 0 0
\(565\) 5016.25 0.373514
\(566\) −13863.4 −1.02955
\(567\) 0 0
\(568\) −2989.27 −0.220822
\(569\) −9368.76 −0.690262 −0.345131 0.938555i \(-0.612165\pi\)
−0.345131 + 0.938555i \(0.612165\pi\)
\(570\) 0 0
\(571\) −20528.3 −1.50452 −0.752262 0.658864i \(-0.771037\pi\)
−0.752262 + 0.658864i \(0.771037\pi\)
\(572\) −5515.81 −0.403195
\(573\) 0 0
\(574\) −1296.80 −0.0942986
\(575\) 11240.6 0.815245
\(576\) 0 0
\(577\) 18795.5 1.35609 0.678047 0.735018i \(-0.262826\pi\)
0.678047 + 0.735018i \(0.262826\pi\)
\(578\) 5311.70 0.382245
\(579\) 0 0
\(580\) 1260.32 0.0902277
\(581\) 24623.4 1.75826
\(582\) 0 0
\(583\) 38996.8 2.77029
\(584\) −5055.93 −0.358247
\(585\) 0 0
\(586\) 5089.16 0.358757
\(587\) −12756.4 −0.896955 −0.448478 0.893794i \(-0.648034\pi\)
−0.448478 + 0.893794i \(0.648034\pi\)
\(588\) 0 0
\(589\) −27975.6 −1.95707
\(590\) −4418.31 −0.308304
\(591\) 0 0
\(592\) −1930.54 −0.134028
\(593\) 4347.81 0.301085 0.150542 0.988604i \(-0.451898\pi\)
0.150542 + 0.988604i \(0.451898\pi\)
\(594\) 0 0
\(595\) 3483.41 0.240010
\(596\) 4602.55 0.316322
\(597\) 0 0
\(598\) 5312.88 0.363311
\(599\) 7730.40 0.527305 0.263652 0.964618i \(-0.415073\pi\)
0.263652 + 0.964618i \(0.415073\pi\)
\(600\) 0 0
\(601\) 5990.34 0.406574 0.203287 0.979119i \(-0.434838\pi\)
0.203287 + 0.979119i \(0.434838\pi\)
\(602\) −11512.3 −0.779409
\(603\) 0 0
\(604\) 11451.9 0.771474
\(605\) −5028.66 −0.337924
\(606\) 0 0
\(607\) −8643.22 −0.577953 −0.288977 0.957336i \(-0.593315\pi\)
−0.288977 + 0.957336i \(0.593315\pi\)
\(608\) −3927.51 −0.261976
\(609\) 0 0
\(610\) 1068.30 0.0709086
\(611\) 6638.92 0.439578
\(612\) 0 0
\(613\) −15902.2 −1.04777 −0.523887 0.851788i \(-0.675518\pi\)
−0.523887 + 0.851788i \(0.675518\pi\)
\(614\) 3574.81 0.234963
\(615\) 0 0
\(616\) −8447.46 −0.552529
\(617\) −16869.3 −1.10070 −0.550350 0.834934i \(-0.685506\pi\)
−0.550350 + 0.834934i \(0.685506\pi\)
\(618\) 0 0
\(619\) −11336.2 −0.736090 −0.368045 0.929808i \(-0.619973\pi\)
−0.368045 + 0.929808i \(0.619973\pi\)
\(620\) 3301.57 0.213862
\(621\) 0 0
\(622\) −9102.85 −0.586802
\(623\) −6107.07 −0.392736
\(624\) 0 0
\(625\) 10879.6 0.696297
\(626\) −612.708 −0.0391194
\(627\) 0 0
\(628\) 11893.4 0.755731
\(629\) −5732.43 −0.363382
\(630\) 0 0
\(631\) −4497.55 −0.283748 −0.141874 0.989885i \(-0.545313\pi\)
−0.141874 + 0.989885i \(0.545313\pi\)
\(632\) −8488.66 −0.534274
\(633\) 0 0
\(634\) −8846.61 −0.554170
\(635\) −4310.16 −0.269360
\(636\) 0 0
\(637\) 1770.84 0.110146
\(638\) −9075.35 −0.563161
\(639\) 0 0
\(640\) 463.509 0.0286278
\(641\) 1828.88 0.112693 0.0563467 0.998411i \(-0.482055\pi\)
0.0563467 + 0.998411i \(0.482055\pi\)
\(642\) 0 0
\(643\) −7174.69 −0.440034 −0.220017 0.975496i \(-0.570611\pi\)
−0.220017 + 0.975496i \(0.570611\pi\)
\(644\) 8136.66 0.497872
\(645\) 0 0
\(646\) −11662.1 −0.710278
\(647\) 25129.0 1.52693 0.763465 0.645849i \(-0.223496\pi\)
0.763465 + 0.645849i \(0.223496\pi\)
\(648\) 0 0
\(649\) 31815.4 1.92429
\(650\) 5916.99 0.357051
\(651\) 0 0
\(652\) −2576.97 −0.154788
\(653\) −11805.4 −0.707475 −0.353737 0.935345i \(-0.615089\pi\)
−0.353737 + 0.935345i \(0.615089\pi\)
\(654\) 0 0
\(655\) −1245.63 −0.0743067
\(656\) −512.373 −0.0304951
\(657\) 0 0
\(658\) 10167.5 0.602386
\(659\) 22560.4 1.33358 0.666791 0.745245i \(-0.267668\pi\)
0.666791 + 0.745245i \(0.267668\pi\)
\(660\) 0 0
\(661\) −24301.4 −1.42997 −0.714987 0.699137i \(-0.753568\pi\)
−0.714987 + 0.699137i \(0.753568\pi\)
\(662\) −6935.46 −0.407182
\(663\) 0 0
\(664\) 9728.84 0.568602
\(665\) 8998.94 0.524758
\(666\) 0 0
\(667\) 8741.45 0.507452
\(668\) 5067.63 0.293522
\(669\) 0 0
\(670\) 6437.49 0.371197
\(671\) −7692.63 −0.442579
\(672\) 0 0
\(673\) 13809.4 0.790956 0.395478 0.918475i \(-0.370579\pi\)
0.395478 + 0.918475i \(0.370579\pi\)
\(674\) 12333.9 0.704875
\(675\) 0 0
\(676\) −5991.33 −0.340882
\(677\) 1886.30 0.107085 0.0535423 0.998566i \(-0.482949\pi\)
0.0535423 + 0.998566i \(0.482949\pi\)
\(678\) 0 0
\(679\) 9141.27 0.516656
\(680\) 1376.32 0.0776166
\(681\) 0 0
\(682\) −23774.0 −1.33483
\(683\) −19956.8 −1.11804 −0.559022 0.829153i \(-0.688823\pi\)
−0.559022 + 0.829153i \(0.688823\pi\)
\(684\) 0 0
\(685\) 6375.64 0.355621
\(686\) −11177.9 −0.622121
\(687\) 0 0
\(688\) −4548.56 −0.252053
\(689\) −19772.4 −1.09328
\(690\) 0 0
\(691\) −19652.6 −1.08194 −0.540970 0.841042i \(-0.681943\pi\)
−0.540970 + 0.841042i \(0.681943\pi\)
\(692\) 5499.90 0.302131
\(693\) 0 0
\(694\) −1735.27 −0.0949134
\(695\) −11512.8 −0.628352
\(696\) 0 0
\(697\) −1521.41 −0.0826794
\(698\) −20383.2 −1.10532
\(699\) 0 0
\(700\) 9061.85 0.489294
\(701\) 18729.0 1.00911 0.504554 0.863380i \(-0.331657\pi\)
0.504554 + 0.863380i \(0.331657\pi\)
\(702\) 0 0
\(703\) −14809.0 −0.794497
\(704\) −3337.64 −0.178682
\(705\) 0 0
\(706\) −3930.39 −0.209521
\(707\) 24456.9 1.30098
\(708\) 0 0
\(709\) −7655.20 −0.405497 −0.202748 0.979231i \(-0.564987\pi\)
−0.202748 + 0.979231i \(0.564987\pi\)
\(710\) 2706.16 0.143043
\(711\) 0 0
\(712\) −2412.94 −0.127007
\(713\) 22899.3 1.20279
\(714\) 0 0
\(715\) 4993.41 0.261179
\(716\) 5983.88 0.312330
\(717\) 0 0
\(718\) −13336.7 −0.693205
\(719\) −18128.9 −0.940326 −0.470163 0.882580i \(-0.655805\pi\)
−0.470163 + 0.882580i \(0.655805\pi\)
\(720\) 0 0
\(721\) −25132.9 −1.29819
\(722\) −16409.5 −0.845844
\(723\) 0 0
\(724\) −8984.95 −0.461219
\(725\) 9735.41 0.498709
\(726\) 0 0
\(727\) −12803.2 −0.653158 −0.326579 0.945170i \(-0.605896\pi\)
−0.326579 + 0.945170i \(0.605896\pi\)
\(728\) 4283.09 0.218052
\(729\) 0 0
\(730\) 4577.09 0.232063
\(731\) −13506.2 −0.683373
\(732\) 0 0
\(733\) −339.698 −0.0171174 −0.00855868 0.999963i \(-0.502724\pi\)
−0.00855868 + 0.999963i \(0.502724\pi\)
\(734\) 16070.3 0.808127
\(735\) 0 0
\(736\) 3214.84 0.161006
\(737\) −46355.1 −2.31684
\(738\) 0 0
\(739\) 12426.9 0.618582 0.309291 0.950967i \(-0.399908\pi\)
0.309291 + 0.950967i \(0.399908\pi\)
\(740\) 1747.70 0.0868199
\(741\) 0 0
\(742\) −30281.4 −1.49820
\(743\) 15019.3 0.741592 0.370796 0.928714i \(-0.379085\pi\)
0.370796 + 0.928714i \(0.379085\pi\)
\(744\) 0 0
\(745\) −4166.64 −0.204905
\(746\) −25715.7 −1.26209
\(747\) 0 0
\(748\) −9910.59 −0.484448
\(749\) −26513.6 −1.29344
\(750\) 0 0
\(751\) −30388.6 −1.47656 −0.738280 0.674494i \(-0.764362\pi\)
−0.738280 + 0.674494i \(0.764362\pi\)
\(752\) 4017.24 0.194805
\(753\) 0 0
\(754\) 4601.45 0.222248
\(755\) −10367.3 −0.499740
\(756\) 0 0
\(757\) 19500.3 0.936262 0.468131 0.883659i \(-0.344928\pi\)
0.468131 + 0.883659i \(0.344928\pi\)
\(758\) 4672.61 0.223901
\(759\) 0 0
\(760\) 3555.53 0.169701
\(761\) −3455.08 −0.164581 −0.0822907 0.996608i \(-0.526224\pi\)
−0.0822907 + 0.996608i \(0.526224\pi\)
\(762\) 0 0
\(763\) 21442.5 1.01739
\(764\) 18316.7 0.867375
\(765\) 0 0
\(766\) 9332.34 0.440197
\(767\) −16131.3 −0.759409
\(768\) 0 0
\(769\) 4888.93 0.229258 0.114629 0.993408i \(-0.463432\pi\)
0.114629 + 0.993408i \(0.463432\pi\)
\(770\) 7647.40 0.357913
\(771\) 0 0
\(772\) 5577.35 0.260017
\(773\) 8683.60 0.404046 0.202023 0.979381i \(-0.435248\pi\)
0.202023 + 0.979381i \(0.435248\pi\)
\(774\) 0 0
\(775\) 25503.1 1.18206
\(776\) 3611.77 0.167081
\(777\) 0 0
\(778\) −19279.8 −0.888451
\(779\) −3930.37 −0.180770
\(780\) 0 0
\(781\) −19486.5 −0.892808
\(782\) 9545.96 0.436525
\(783\) 0 0
\(784\) 1071.54 0.0488128
\(785\) −10767.0 −0.489542
\(786\) 0 0
\(787\) −14830.2 −0.671716 −0.335858 0.941913i \(-0.609026\pi\)
−0.335858 + 0.941913i \(0.609026\pi\)
\(788\) 349.686 0.0158085
\(789\) 0 0
\(790\) 7684.71 0.346088
\(791\) 28048.4 1.26079
\(792\) 0 0
\(793\) 3900.37 0.174661
\(794\) 1771.13 0.0791623
\(795\) 0 0
\(796\) −16547.1 −0.736803
\(797\) −38300.7 −1.70223 −0.851116 0.524977i \(-0.824074\pi\)
−0.851116 + 0.524977i \(0.824074\pi\)
\(798\) 0 0
\(799\) 11928.5 0.528162
\(800\) 3580.39 0.158232
\(801\) 0 0
\(802\) −3259.50 −0.143512
\(803\) −32958.8 −1.44843
\(804\) 0 0
\(805\) −7366.04 −0.322508
\(806\) 12054.1 0.526782
\(807\) 0 0
\(808\) 9663.04 0.420724
\(809\) −28776.2 −1.25058 −0.625290 0.780393i \(-0.715019\pi\)
−0.625290 + 0.780393i \(0.715019\pi\)
\(810\) 0 0
\(811\) 4006.85 0.173489 0.0867444 0.996231i \(-0.472354\pi\)
0.0867444 + 0.996231i \(0.472354\pi\)
\(812\) 7047.11 0.304563
\(813\) 0 0
\(814\) −12584.8 −0.541890
\(815\) 2332.90 0.100268
\(816\) 0 0
\(817\) −34891.6 −1.49413
\(818\) 5563.51 0.237804
\(819\) 0 0
\(820\) 463.847 0.0197539
\(821\) 12196.4 0.518464 0.259232 0.965815i \(-0.416531\pi\)
0.259232 + 0.965815i \(0.416531\pi\)
\(822\) 0 0
\(823\) 25125.7 1.06419 0.532093 0.846686i \(-0.321406\pi\)
0.532093 + 0.846686i \(0.321406\pi\)
\(824\) −9930.14 −0.419821
\(825\) 0 0
\(826\) −24705.0 −1.04068
\(827\) 21592.3 0.907904 0.453952 0.891026i \(-0.350014\pi\)
0.453952 + 0.891026i \(0.350014\pi\)
\(828\) 0 0
\(829\) −4498.87 −0.188483 −0.0942414 0.995549i \(-0.530043\pi\)
−0.0942414 + 0.995549i \(0.530043\pi\)
\(830\) −8807.42 −0.368325
\(831\) 0 0
\(832\) 1692.27 0.0705156
\(833\) 3181.77 0.132343
\(834\) 0 0
\(835\) −4587.67 −0.190135
\(836\) −25602.7 −1.05920
\(837\) 0 0
\(838\) 21756.1 0.896839
\(839\) −4651.63 −0.191409 −0.0957044 0.995410i \(-0.530510\pi\)
−0.0957044 + 0.995410i \(0.530510\pi\)
\(840\) 0 0
\(841\) −16818.1 −0.689577
\(842\) 10525.6 0.430802
\(843\) 0 0
\(844\) −17515.5 −0.714347
\(845\) 5423.90 0.220814
\(846\) 0 0
\(847\) −28117.8 −1.14066
\(848\) −11964.4 −0.484502
\(849\) 0 0
\(850\) 10631.4 0.429005
\(851\) 12121.8 0.488286
\(852\) 0 0
\(853\) −526.648 −0.0211396 −0.0105698 0.999944i \(-0.503365\pi\)
−0.0105698 + 0.999944i \(0.503365\pi\)
\(854\) 5973.41 0.239351
\(855\) 0 0
\(856\) −10475.7 −0.418284
\(857\) 33910.0 1.35162 0.675812 0.737074i \(-0.263793\pi\)
0.675812 + 0.737074i \(0.263793\pi\)
\(858\) 0 0
\(859\) −35076.1 −1.39323 −0.696614 0.717447i \(-0.745311\pi\)
−0.696614 + 0.717447i \(0.745311\pi\)
\(860\) 4117.77 0.163273
\(861\) 0 0
\(862\) 1014.47 0.0400846
\(863\) 41934.5 1.65408 0.827039 0.562145i \(-0.190024\pi\)
0.827039 + 0.562145i \(0.190024\pi\)
\(864\) 0 0
\(865\) −4979.00 −0.195712
\(866\) −3089.48 −0.121230
\(867\) 0 0
\(868\) 18460.8 0.721888
\(869\) −55336.1 −2.16013
\(870\) 0 0
\(871\) 23503.3 0.914327
\(872\) 8472.05 0.329013
\(873\) 0 0
\(874\) 24660.8 0.954419
\(875\) −17368.7 −0.671049
\(876\) 0 0
\(877\) −5432.70 −0.209178 −0.104589 0.994516i \(-0.533353\pi\)
−0.104589 + 0.994516i \(0.533353\pi\)
\(878\) 16535.7 0.635596
\(879\) 0 0
\(880\) 3021.53 0.115745
\(881\) −30295.4 −1.15854 −0.579272 0.815134i \(-0.696663\pi\)
−0.579272 + 0.815134i \(0.696663\pi\)
\(882\) 0 0
\(883\) −982.972 −0.0374628 −0.0187314 0.999825i \(-0.505963\pi\)
−0.0187314 + 0.999825i \(0.505963\pi\)
\(884\) 5024.93 0.191184
\(885\) 0 0
\(886\) 30981.9 1.17478
\(887\) 43878.6 1.66099 0.830496 0.557024i \(-0.188057\pi\)
0.830496 + 0.557024i \(0.188057\pi\)
\(888\) 0 0
\(889\) −24100.3 −0.909220
\(890\) 2184.41 0.0822715
\(891\) 0 0
\(892\) 4570.93 0.171576
\(893\) 30815.8 1.15477
\(894\) 0 0
\(895\) −5417.15 −0.202319
\(896\) 2591.71 0.0966328
\(897\) 0 0
\(898\) −7454.19 −0.277004
\(899\) 19832.9 0.735779
\(900\) 0 0
\(901\) −35526.2 −1.31360
\(902\) −3340.07 −0.123295
\(903\) 0 0
\(904\) 11082.1 0.407726
\(905\) 8133.99 0.298766
\(906\) 0 0
\(907\) 26008.0 0.952128 0.476064 0.879411i \(-0.342063\pi\)
0.476064 + 0.879411i \(0.342063\pi\)
\(908\) 20982.7 0.766889
\(909\) 0 0
\(910\) −3877.44 −0.141248
\(911\) 39452.4 1.43481 0.717407 0.696654i \(-0.245329\pi\)
0.717407 + 0.696654i \(0.245329\pi\)
\(912\) 0 0
\(913\) 63420.6 2.29892
\(914\) −31727.8 −1.14821
\(915\) 0 0
\(916\) 11179.2 0.403243
\(917\) −6964.96 −0.250821
\(918\) 0 0
\(919\) 1286.40 0.0461745 0.0230872 0.999733i \(-0.492650\pi\)
0.0230872 + 0.999733i \(0.492650\pi\)
\(920\) −2910.37 −0.104296
\(921\) 0 0
\(922\) −14091.8 −0.503349
\(923\) 9880.20 0.352341
\(924\) 0 0
\(925\) 13500.2 0.479873
\(926\) 9229.87 0.327551
\(927\) 0 0
\(928\) 2784.35 0.0984923
\(929\) 35390.7 1.24987 0.624937 0.780675i \(-0.285125\pi\)
0.624937 + 0.780675i \(0.285125\pi\)
\(930\) 0 0
\(931\) 8219.68 0.289355
\(932\) −3683.39 −0.129457
\(933\) 0 0
\(934\) −33182.5 −1.16249
\(935\) 8971.96 0.313812
\(936\) 0 0
\(937\) 43283.5 1.50908 0.754541 0.656253i \(-0.227860\pi\)
0.754541 + 0.656253i \(0.227860\pi\)
\(938\) 35995.2 1.25297
\(939\) 0 0
\(940\) −3636.76 −0.126190
\(941\) −49221.1 −1.70517 −0.852583 0.522592i \(-0.824965\pi\)
−0.852583 + 0.522592i \(0.824965\pi\)
\(942\) 0 0
\(943\) 3217.19 0.111099
\(944\) −9761.10 −0.336543
\(945\) 0 0
\(946\) −29651.3 −1.01908
\(947\) 5252.21 0.180226 0.0901129 0.995932i \(-0.471277\pi\)
0.0901129 + 0.995932i \(0.471277\pi\)
\(948\) 0 0
\(949\) 16711.0 0.571613
\(950\) 27464.8 0.937976
\(951\) 0 0
\(952\) 7695.68 0.261994
\(953\) 24759.7 0.841599 0.420800 0.907154i \(-0.361750\pi\)
0.420800 + 0.907154i \(0.361750\pi\)
\(954\) 0 0
\(955\) −16581.9 −0.561862
\(956\) −9087.28 −0.307431
\(957\) 0 0
\(958\) −1565.74 −0.0528045
\(959\) 35649.4 1.20040
\(960\) 0 0
\(961\) 22163.8 0.743977
\(962\) 6380.86 0.213854
\(963\) 0 0
\(964\) −2033.58 −0.0679433
\(965\) −5049.12 −0.168432
\(966\) 0 0
\(967\) 24572.7 0.817171 0.408586 0.912720i \(-0.366022\pi\)
0.408586 + 0.912720i \(0.366022\pi\)
\(968\) −11109.5 −0.368876
\(969\) 0 0
\(970\) −3269.70 −0.108231
\(971\) −48144.1 −1.59116 −0.795580 0.605849i \(-0.792834\pi\)
−0.795580 + 0.605849i \(0.792834\pi\)
\(972\) 0 0
\(973\) −64373.8 −2.12100
\(974\) 13726.2 0.451558
\(975\) 0 0
\(976\) 2360.13 0.0774035
\(977\) −28410.3 −0.930323 −0.465161 0.885226i \(-0.654004\pi\)
−0.465161 + 0.885226i \(0.654004\pi\)
\(978\) 0 0
\(979\) −15729.5 −0.513501
\(980\) −970.055 −0.0316197
\(981\) 0 0
\(982\) −37973.1 −1.23398
\(983\) −8667.36 −0.281227 −0.140613 0.990065i \(-0.544907\pi\)
−0.140613 + 0.990065i \(0.544907\pi\)
\(984\) 0 0
\(985\) −316.568 −0.0102403
\(986\) 8267.69 0.267035
\(987\) 0 0
\(988\) 12981.3 0.418005
\(989\) 28560.3 0.918267
\(990\) 0 0
\(991\) 50964.8 1.63365 0.816826 0.576884i \(-0.195732\pi\)
0.816826 + 0.576884i \(0.195732\pi\)
\(992\) 7293.95 0.233451
\(993\) 0 0
\(994\) 15131.5 0.482839
\(995\) 14979.9 0.477281
\(996\) 0 0
\(997\) 36469.5 1.15848 0.579238 0.815159i \(-0.303350\pi\)
0.579238 + 0.815159i \(0.303350\pi\)
\(998\) −3779.60 −0.119881
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.4.a.i.1.7 15
3.2 odd 2 1458.4.a.j.1.9 15
27.4 even 9 54.4.e.b.43.5 30
27.7 even 9 54.4.e.b.49.5 yes 30
27.20 odd 18 162.4.e.b.37.3 30
27.23 odd 18 162.4.e.b.127.3 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.4.e.b.43.5 30 27.4 even 9
54.4.e.b.49.5 yes 30 27.7 even 9
162.4.e.b.37.3 30 27.20 odd 18
162.4.e.b.127.3 30 27.23 odd 18
1458.4.a.i.1.7 15 1.1 even 1 trivial
1458.4.a.j.1.9 15 3.2 odd 2