Properties

Label 162.4
Level 162
Weight 4
Dimension 576
Nonzero newspaces 4
Newform subspaces 22
Sturm bound 5832
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 22 \)
Sturm bound: \(5832\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(162))\).

Total New Old
Modular forms 2295 576 1719
Cusp forms 2079 576 1503
Eisenstein series 216 0 216

Trace form

\( 576 q + 24 q^{5} - 36 q^{7} - 24 q^{8} - 36 q^{10} + 51 q^{11} + 90 q^{13} + 132 q^{14} - 204 q^{17} - 414 q^{18} - 810 q^{19} - 480 q^{20} - 216 q^{21} + 126 q^{22} + 1416 q^{23} + 1242 q^{25} + 2340 q^{26}+ \cdots + 20754 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(162))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
162.4.a \(\chi_{162}(1, \cdot)\) 162.4.a.a 1 1
162.4.a.b 1
162.4.a.c 1
162.4.a.d 1
162.4.a.e 2
162.4.a.f 2
162.4.a.g 2
162.4.a.h 2
162.4.c \(\chi_{162}(55, \cdot)\) 162.4.c.a 2 2
162.4.c.b 2
162.4.c.c 2
162.4.c.d 2
162.4.c.e 2
162.4.c.f 2
162.4.c.g 2
162.4.c.h 2
162.4.c.i 4
162.4.c.j 4
162.4.e \(\chi_{162}(19, \cdot)\) 162.4.e.a 24 6
162.4.e.b 30
162.4.g \(\chi_{162}(7, \cdot)\) 162.4.g.a 234 18
162.4.g.b 252

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(162))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(162)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)