Properties

Label 162.12.c.l.109.1
Level $162$
Weight $12$
Character 162.109
Analytic conductor $124.472$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,12,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-64,0,-2048,3720] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.471595251\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{109})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 28x^{2} + 27x + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(-2.36008 + 4.08777i\) of defining polynomial
Character \(\chi\) \(=\) 162.109
Dual form 162.12.c.l.55.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-16.0000 - 27.7128i) q^{2} +(-512.000 + 886.810i) q^{4} +(-1888.88 + 3271.64i) q^{5} +(26504.7 + 45907.4i) q^{7} +32768.0 q^{8} +120888. q^{10} +(-95717.6 - 165788. i) q^{11} +(662649. - 1.14774e6i) q^{13} +(848149. - 1.46904e6i) q^{14} +(-524288. - 908093. i) q^{16} -7.39161e6 q^{17} -6.06542e6 q^{19} +(-1.93422e6 - 3.35016e6i) q^{20} +(-3.06296e6 + 5.30521e6i) q^{22} +(-2.32666e7 + 4.02989e7i) q^{23} +(1.72783e7 + 2.99269e7i) q^{25} -4.24096e7 q^{26} -5.42816e7 q^{28} +(3.25031e7 + 5.62970e7i) q^{29} +(2.79570e7 - 4.84230e7i) q^{31} +(-1.67772e7 + 2.90590e7i) q^{32} +(1.18266e8 + 2.04842e8i) q^{34} -2.00257e8 q^{35} -2.00878e8 q^{37} +(9.70467e7 + 1.68090e8i) q^{38} +(-6.18949e7 + 1.07205e8i) q^{40} +(2.86262e8 - 4.95820e8i) q^{41} +(-4.83786e7 - 8.37942e7i) q^{43} +1.96030e8 q^{44} +1.48906e9 q^{46} +(1.19837e9 + 2.07563e9i) q^{47} +(-4.16332e8 + 7.21107e8i) q^{49} +(5.52906e8 - 9.57661e8i) q^{50} +(6.78553e8 + 1.17529e9i) q^{52} -3.14068e9 q^{53} +7.23197e8 q^{55} +(8.68505e8 + 1.50429e9i) q^{56} +(1.04010e9 - 1.80150e9i) q^{58} +(1.10233e9 - 1.90930e9i) q^{59} +(-5.47943e9 - 9.49066e9i) q^{61} -1.78925e9 q^{62} +1.07374e9 q^{64} +(2.50333e9 + 4.33590e9i) q^{65} +(5.31673e9 - 9.20885e9i) q^{67} +(3.78450e9 - 6.55495e9i) q^{68} +(3.20411e9 + 5.54968e9i) q^{70} -2.95131e10 q^{71} +2.30487e10 q^{73} +(3.21404e9 + 5.56689e9i) q^{74} +(3.10550e9 - 5.37888e9i) q^{76} +(5.07392e9 - 8.78829e9i) q^{77} +(1.66109e10 + 2.87710e10i) q^{79} +3.96127e9 q^{80} -1.83207e10 q^{82} +(-1.17076e10 - 2.02782e10i) q^{83} +(1.39619e10 - 2.41827e10i) q^{85} +(-1.54812e9 + 2.68142e9i) q^{86} +(-3.13647e9 - 5.43253e9i) q^{88} +4.47401e10 q^{89} +7.02532e10 q^{91} +(-2.38250e10 - 4.12660e10i) q^{92} +(3.83477e10 - 6.64202e10i) q^{94} +(1.14569e10 - 1.98439e10i) q^{95} +(-1.23184e10 - 2.13361e10i) q^{97} +2.66452e10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{2} - 2048 q^{4} + 3720 q^{5} + 6794 q^{7} + 131072 q^{8} - 238080 q^{10} + 832632 q^{11} - 984634 q^{13} + 217408 q^{14} - 2097152 q^{16} - 10222128 q^{17} - 45838540 q^{19} + 3809280 q^{20}+ \cdots + 63436390656 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 27.7128i −0.353553 0.612372i
\(3\) 0 0
\(4\) −512.000 + 886.810i −0.250000 + 0.433013i
\(5\) −1888.88 + 3271.64i −0.270315 + 0.468199i −0.968942 0.247286i \(-0.920461\pi\)
0.698628 + 0.715486i \(0.253794\pi\)
\(6\) 0 0
\(7\) 26504.7 + 45907.4i 0.596051 + 1.03239i 0.993398 + 0.114722i \(0.0365976\pi\)
−0.397347 + 0.917668i \(0.630069\pi\)
\(8\) 32768.0 0.353553
\(9\) 0 0
\(10\) 120888. 0.382283
\(11\) −95717.6 165788.i −0.179197 0.310379i 0.762408 0.647096i \(-0.224017\pi\)
−0.941606 + 0.336717i \(0.890683\pi\)
\(12\) 0 0
\(13\) 662649. 1.14774e6i 0.494989 0.857346i −0.504995 0.863123i \(-0.668506\pi\)
0.999983 + 0.00577689i \(0.00183885\pi\)
\(14\) 848149. 1.46904e6i 0.421471 0.730010i
\(15\) 0 0
\(16\) −524288. 908093.i −0.125000 0.216506i
\(17\) −7.39161e6 −1.26261 −0.631306 0.775534i \(-0.717481\pi\)
−0.631306 + 0.775534i \(0.717481\pi\)
\(18\) 0 0
\(19\) −6.06542e6 −0.561974 −0.280987 0.959712i \(-0.590662\pi\)
−0.280987 + 0.959712i \(0.590662\pi\)
\(20\) −1.93422e6 3.35016e6i −0.135157 0.234100i
\(21\) 0 0
\(22\) −3.06296e6 + 5.30521e6i −0.126712 + 0.219471i
\(23\) −2.32666e7 + 4.02989e7i −0.753753 + 1.30554i 0.192239 + 0.981348i \(0.438425\pi\)
−0.945992 + 0.324190i \(0.894908\pi\)
\(24\) 0 0
\(25\) 1.72783e7 + 2.99269e7i 0.353860 + 0.612903i
\(26\) −4.24096e7 −0.700020
\(27\) 0 0
\(28\) −5.42816e7 −0.596051
\(29\) 3.25031e7 + 5.62970e7i 0.294263 + 0.509678i 0.974813 0.223023i \(-0.0715926\pi\)
−0.680550 + 0.732701i \(0.738259\pi\)
\(30\) 0 0
\(31\) 2.79570e7 4.84230e7i 0.175389 0.303782i −0.764907 0.644141i \(-0.777215\pi\)
0.940296 + 0.340359i \(0.110548\pi\)
\(32\) −1.67772e7 + 2.90590e7i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.18266e8 + 2.04842e8i 0.446401 + 0.773189i
\(35\) −2.00257e8 −0.644485
\(36\) 0 0
\(37\) −2.00878e8 −0.476236 −0.238118 0.971236i \(-0.576531\pi\)
−0.238118 + 0.971236i \(0.576531\pi\)
\(38\) 9.70467e7 + 1.68090e8i 0.198688 + 0.344137i
\(39\) 0 0
\(40\) −6.18949e7 + 1.07205e8i −0.0955707 + 0.165533i
\(41\) 2.86262e8 4.95820e8i 0.385880 0.668363i −0.606011 0.795456i \(-0.707231\pi\)
0.991891 + 0.127093i \(0.0405647\pi\)
\(42\) 0 0
\(43\) −4.83786e7 8.37942e7i −0.0501854 0.0869236i 0.839841 0.542832i \(-0.182648\pi\)
−0.890027 + 0.455908i \(0.849315\pi\)
\(44\) 1.96030e8 0.179197
\(45\) 0 0
\(46\) 1.48906e9 1.06597
\(47\) 1.19837e9 + 2.07563e9i 0.762169 + 1.32011i 0.941731 + 0.336368i \(0.109199\pi\)
−0.179562 + 0.983747i \(0.557468\pi\)
\(48\) 0 0
\(49\) −4.16332e8 + 7.21107e8i −0.210553 + 0.364688i
\(50\) 5.52906e8 9.57661e8i 0.250217 0.433388i
\(51\) 0 0
\(52\) 6.78553e8 + 1.17529e9i 0.247494 + 0.428673i
\(53\) −3.14068e9 −1.03159 −0.515794 0.856713i \(-0.672503\pi\)
−0.515794 + 0.856713i \(0.672503\pi\)
\(54\) 0 0
\(55\) 7.23197e8 0.193759
\(56\) 8.68505e8 + 1.50429e9i 0.210736 + 0.365005i
\(57\) 0 0
\(58\) 1.04010e9 1.80150e9i 0.208075 0.360397i
\(59\) 1.10233e9 1.90930e9i 0.200737 0.347686i −0.748029 0.663666i \(-0.769000\pi\)
0.948766 + 0.315980i \(0.102333\pi\)
\(60\) 0 0
\(61\) −5.47943e9 9.49066e9i −0.830657 1.43874i −0.897518 0.440977i \(-0.854632\pi\)
0.0668618 0.997762i \(-0.478701\pi\)
\(62\) −1.78925e9 −0.248037
\(63\) 0 0
\(64\) 1.07374e9 0.125000
\(65\) 2.50333e9 + 4.33590e9i 0.267606 + 0.463507i
\(66\) 0 0
\(67\) 5.31673e9 9.20885e9i 0.481098 0.833286i −0.518667 0.854976i \(-0.673571\pi\)
0.999765 + 0.0216904i \(0.00690483\pi\)
\(68\) 3.78450e9 6.55495e9i 0.315653 0.546727i
\(69\) 0 0
\(70\) 3.20411e9 + 5.54968e9i 0.227860 + 0.394665i
\(71\) −2.95131e10 −1.94131 −0.970653 0.240486i \(-0.922693\pi\)
−0.970653 + 0.240486i \(0.922693\pi\)
\(72\) 0 0
\(73\) 2.30487e10 1.30128 0.650641 0.759386i \(-0.274500\pi\)
0.650641 + 0.759386i \(0.274500\pi\)
\(74\) 3.21404e9 + 5.56689e9i 0.168375 + 0.291634i
\(75\) 0 0
\(76\) 3.10550e9 5.37888e9i 0.140493 0.243342i
\(77\) 5.07392e9 8.78829e9i 0.213622 0.370003i
\(78\) 0 0
\(79\) 1.66109e10 + 2.87710e10i 0.607358 + 1.05198i 0.991674 + 0.128774i \(0.0411041\pi\)
−0.384316 + 0.923202i \(0.625563\pi\)
\(80\) 3.96127e9 0.135157
\(81\) 0 0
\(82\) −1.83207e10 −0.545716
\(83\) −1.17076e10 2.02782e10i −0.326242 0.565067i 0.655521 0.755177i \(-0.272449\pi\)
−0.981763 + 0.190109i \(0.939116\pi\)
\(84\) 0 0
\(85\) 1.39619e10 2.41827e10i 0.341303 0.591154i
\(86\) −1.54812e9 + 2.68142e9i −0.0354864 + 0.0614643i
\(87\) 0 0
\(88\) −3.13647e9 5.43253e9i −0.0633559 0.109736i
\(89\) 4.47401e10 0.849281 0.424641 0.905362i \(-0.360400\pi\)
0.424641 + 0.905362i \(0.360400\pi\)
\(90\) 0 0
\(91\) 7.02532e10 1.18015
\(92\) −2.38250e10 4.12660e10i −0.376876 0.652769i
\(93\) 0 0
\(94\) 3.83477e10 6.64202e10i 0.538935 0.933462i
\(95\) 1.14569e10 1.98439e10i 0.151910 0.263116i
\(96\) 0 0
\(97\) −1.23184e10 2.13361e10i −0.145650 0.252273i 0.783965 0.620805i \(-0.213194\pi\)
−0.929615 + 0.368532i \(0.879861\pi\)
\(98\) 2.66452e10 0.297767
\(99\) 0 0
\(100\) −3.53860e10 −0.353860
\(101\) −4.17542e10 7.23205e10i −0.395306 0.684689i 0.597835 0.801620i \(-0.296028\pi\)
−0.993140 + 0.116930i \(0.962695\pi\)
\(102\) 0 0
\(103\) −8.77375e10 + 1.51966e11i −0.745728 + 1.29164i 0.204125 + 0.978945i \(0.434565\pi\)
−0.949854 + 0.312695i \(0.898768\pi\)
\(104\) 2.17137e10 3.76092e10i 0.175005 0.303117i
\(105\) 0 0
\(106\) 5.02509e10 + 8.70371e10i 0.364721 + 0.631716i
\(107\) 2.96445e10 0.204330 0.102165 0.994767i \(-0.467423\pi\)
0.102165 + 0.994767i \(0.467423\pi\)
\(108\) 0 0
\(109\) 2.52394e11 1.57120 0.785602 0.618732i \(-0.212353\pi\)
0.785602 + 0.618732i \(0.212353\pi\)
\(110\) −1.15712e10 2.00418e10i −0.0685041 0.118653i
\(111\) 0 0
\(112\) 2.77922e10 4.81374e10i 0.149013 0.258097i
\(113\) −1.75265e11 + 3.03568e11i −0.894877 + 1.54997i −0.0609200 + 0.998143i \(0.519403\pi\)
−0.833957 + 0.551830i \(0.813930\pi\)
\(114\) 0 0
\(115\) −8.78956e10 1.52240e11i −0.407501 0.705813i
\(116\) −6.65663e10 −0.294263
\(117\) 0 0
\(118\) −7.05493e10 −0.283885
\(119\) −1.95912e11 3.39330e11i −0.752581 1.30351i
\(120\) 0 0
\(121\) 1.24332e11 2.15350e11i 0.435777 0.754787i
\(122\) −1.75342e11 + 3.03701e11i −0.587363 + 1.01734i
\(123\) 0 0
\(124\) 2.86280e10 + 4.95851e10i 0.0876943 + 0.151891i
\(125\) −3.15008e11 −0.923244
\(126\) 0 0
\(127\) 8.86417e9 0.0238077 0.0119039 0.999929i \(-0.496211\pi\)
0.0119039 + 0.999929i \(0.496211\pi\)
\(128\) −1.71799e10 2.97564e10i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 8.01067e10 1.38749e11i 0.189226 0.327749i
\(131\) 1.22666e11 2.12463e11i 0.277799 0.481162i −0.693038 0.720901i \(-0.743728\pi\)
0.970837 + 0.239739i \(0.0770617\pi\)
\(132\) 0 0
\(133\) −1.60762e11 2.78448e11i −0.334965 0.580176i
\(134\) −3.40271e11 −0.680375
\(135\) 0 0
\(136\) −2.42208e11 −0.446401
\(137\) −2.18990e11 3.79302e11i −0.387670 0.671463i 0.604466 0.796631i \(-0.293387\pi\)
−0.992136 + 0.125167i \(0.960053\pi\)
\(138\) 0 0
\(139\) −2.08201e11 + 3.60615e11i −0.340331 + 0.589470i −0.984494 0.175418i \(-0.943872\pi\)
0.644163 + 0.764888i \(0.277206\pi\)
\(140\) 1.02532e11 1.77590e11i 0.161121 0.279070i
\(141\) 0 0
\(142\) 4.72209e11 + 8.17891e11i 0.686355 + 1.18880i
\(143\) −2.53709e11 −0.354803
\(144\) 0 0
\(145\) −2.45578e11 −0.318174
\(146\) −3.68780e11 6.38745e11i −0.460073 0.796869i
\(147\) 0 0
\(148\) 1.02849e11 1.78140e11i 0.119059 0.206216i
\(149\) 6.58285e11 1.14018e12i 0.734327 1.27189i −0.220691 0.975344i \(-0.570831\pi\)
0.955018 0.296548i \(-0.0958354\pi\)
\(150\) 0 0
\(151\) −3.10088e11 5.37088e11i −0.321449 0.556766i 0.659338 0.751846i \(-0.270837\pi\)
−0.980787 + 0.195081i \(0.937503\pi\)
\(152\) −1.98752e11 −0.198688
\(153\) 0 0
\(154\) −3.24731e11 −0.302106
\(155\) 1.05615e11 + 1.82931e11i 0.0948203 + 0.164234i
\(156\) 0 0
\(157\) −2.98794e11 + 5.17527e11i −0.249991 + 0.432997i −0.963523 0.267625i \(-0.913761\pi\)
0.713532 + 0.700623i \(0.247094\pi\)
\(158\) 5.31550e11 9.20671e11i 0.429467 0.743859i
\(159\) 0 0
\(160\) −6.33804e10 1.09778e11i −0.0477854 0.0827667i
\(161\) −2.46669e12 −1.79710
\(162\) 0 0
\(163\) −1.93116e12 −1.31458 −0.657290 0.753638i \(-0.728297\pi\)
−0.657290 + 0.753638i \(0.728297\pi\)
\(164\) 2.93132e11 + 5.07719e11i 0.192940 + 0.334182i
\(165\) 0 0
\(166\) −3.74644e11 + 6.48903e11i −0.230688 + 0.399563i
\(167\) 4.50210e11 7.79786e11i 0.268210 0.464553i −0.700190 0.713957i \(-0.746901\pi\)
0.968400 + 0.249404i \(0.0802347\pi\)
\(168\) 0 0
\(169\) 1.78720e10 + 3.09552e10i 0.00997232 + 0.0172726i
\(170\) −8.93560e11 −0.482675
\(171\) 0 0
\(172\) 9.90794e10 0.0501854
\(173\) −1.77155e12 3.06841e12i −0.869158 1.50543i −0.862859 0.505445i \(-0.831328\pi\)
−0.00629914 0.999980i \(-0.502005\pi\)
\(174\) 0 0
\(175\) −9.15912e11 + 1.58641e12i −0.421837 + 0.730642i
\(176\) −1.00367e11 + 1.73841e11i −0.0447994 + 0.0775948i
\(177\) 0 0
\(178\) −7.15841e11 1.23987e12i −0.300266 0.520076i
\(179\) −3.54131e12 −1.44036 −0.720182 0.693785i \(-0.755942\pi\)
−0.720182 + 0.693785i \(0.755942\pi\)
\(180\) 0 0
\(181\) 2.51189e12 0.961098 0.480549 0.876968i \(-0.340437\pi\)
0.480549 + 0.876968i \(0.340437\pi\)
\(182\) −1.12405e12 1.94691e12i −0.417247 0.722693i
\(183\) 0 0
\(184\) −7.62398e11 + 1.32051e12i −0.266492 + 0.461577i
\(185\) 3.79434e11 6.57200e11i 0.128734 0.222973i
\(186\) 0 0
\(187\) 7.07507e11 + 1.22544e12i 0.226257 + 0.391888i
\(188\) −2.45425e12 −0.762169
\(189\) 0 0
\(190\) −7.33240e11 −0.214833
\(191\) −3.15663e12 5.46745e12i −0.898546 1.55633i −0.829353 0.558724i \(-0.811291\pi\)
−0.0691926 0.997603i \(-0.522042\pi\)
\(192\) 0 0
\(193\) 5.44962e11 9.43902e11i 0.146488 0.253724i −0.783439 0.621468i \(-0.786536\pi\)
0.929927 + 0.367744i \(0.119870\pi\)
\(194\) −3.94189e11 + 6.82756e11i −0.102990 + 0.178384i
\(195\) 0 0
\(196\) −4.26323e11 7.38414e11i −0.105276 0.182344i
\(197\) −4.77834e12 −1.14740 −0.573698 0.819067i \(-0.694492\pi\)
−0.573698 + 0.819067i \(0.694492\pi\)
\(198\) 0 0
\(199\) −3.39102e12 −0.770261 −0.385130 0.922862i \(-0.625844\pi\)
−0.385130 + 0.922862i \(0.625844\pi\)
\(200\) 5.66176e11 + 9.80645e11i 0.125108 + 0.216694i
\(201\) 0 0
\(202\) −1.33614e12 + 2.31425e12i −0.279523 + 0.484149i
\(203\) −1.72297e12 + 2.98426e12i −0.350791 + 0.607588i
\(204\) 0 0
\(205\) 1.08143e12 + 1.87309e12i 0.208618 + 0.361337i
\(206\) 5.61520e12 1.05462
\(207\) 0 0
\(208\) −1.38968e12 −0.247494
\(209\) 5.80567e11 + 1.00557e12i 0.100704 + 0.174425i
\(210\) 0 0
\(211\) 5.35886e12 9.28182e12i 0.882102 1.52785i 0.0331032 0.999452i \(-0.489461\pi\)
0.848999 0.528394i \(-0.177206\pi\)
\(212\) 1.60803e12 2.78519e12i 0.257897 0.446691i
\(213\) 0 0
\(214\) −4.74311e11 8.21531e11i −0.0722417 0.125126i
\(215\) 3.65526e11 0.0542634
\(216\) 0 0
\(217\) 2.96397e12 0.418162
\(218\) −4.03830e12 6.99454e12i −0.555505 0.962162i
\(219\) 0 0
\(220\) −3.70277e11 + 6.41338e11i −0.0484397 + 0.0839001i
\(221\) −4.89804e12 + 8.48366e12i −0.624979 + 1.08249i
\(222\) 0 0
\(223\) −9.87717e11 1.71078e12i −0.119938 0.207738i 0.799805 0.600260i \(-0.204936\pi\)
−0.919743 + 0.392522i \(0.871603\pi\)
\(224\) −1.77870e12 −0.210736
\(225\) 0 0
\(226\) 1.12169e13 1.26555
\(227\) −8.21078e12 1.42215e13i −0.904154 1.56604i −0.822049 0.569417i \(-0.807169\pi\)
−0.0821051 0.996624i \(-0.526164\pi\)
\(228\) 0 0
\(229\) 8.30337e12 1.43819e13i 0.871283 1.50911i 0.0106134 0.999944i \(-0.496622\pi\)
0.860670 0.509163i \(-0.170045\pi\)
\(230\) −2.81266e12 + 4.87167e12i −0.288147 + 0.499085i
\(231\) 0 0
\(232\) 1.06506e12 + 1.84474e12i 0.104038 + 0.180198i
\(233\) 1.39122e13 1.32721 0.663605 0.748083i \(-0.269026\pi\)
0.663605 + 0.748083i \(0.269026\pi\)
\(234\) 0 0
\(235\) −9.05429e12 −0.824102
\(236\) 1.12879e12 + 1.95512e12i 0.100368 + 0.173843i
\(237\) 0 0
\(238\) −6.26919e12 + 1.08586e13i −0.532155 + 0.921719i
\(239\) 7.86403e12 1.36209e13i 0.652314 1.12984i −0.330246 0.943895i \(-0.607132\pi\)
0.982560 0.185946i \(-0.0595349\pi\)
\(240\) 0 0
\(241\) −7.90047e11 1.36840e12i −0.0625978 0.108423i 0.833028 0.553231i \(-0.186605\pi\)
−0.895626 + 0.444808i \(0.853272\pi\)
\(242\) −7.95726e12 −0.616281
\(243\) 0 0
\(244\) 1.12219e13 0.830657
\(245\) −1.57280e12 2.72417e12i −0.113831 0.197161i
\(246\) 0 0
\(247\) −4.01925e12 + 6.96154e12i −0.278171 + 0.481806i
\(248\) 9.16095e11 1.58672e12i 0.0620093 0.107403i
\(249\) 0 0
\(250\) 5.04013e12 + 8.72976e12i 0.326416 + 0.565369i
\(251\) −1.45264e13 −0.920351 −0.460176 0.887828i \(-0.652214\pi\)
−0.460176 + 0.887828i \(0.652214\pi\)
\(252\) 0 0
\(253\) 8.90807e12 0.540282
\(254\) −1.41827e11 2.45651e11i −0.00841729 0.0145792i
\(255\) 0 0
\(256\) −5.49756e11 + 9.52205e11i −0.0312500 + 0.0541266i
\(257\) −2.43750e12 + 4.22187e12i −0.135616 + 0.234895i −0.925833 0.377933i \(-0.876635\pi\)
0.790216 + 0.612828i \(0.209968\pi\)
\(258\) 0 0
\(259\) −5.32420e12 9.22178e12i −0.283861 0.491661i
\(260\) −5.12683e12 −0.267606
\(261\) 0 0
\(262\) −7.85060e12 −0.392867
\(263\) 7.13284e12 + 1.23544e13i 0.349547 + 0.605434i 0.986169 0.165742i \(-0.0530020\pi\)
−0.636622 + 0.771176i \(0.719669\pi\)
\(264\) 0 0
\(265\) 5.93238e12 1.02752e13i 0.278854 0.482989i
\(266\) −5.14438e12 + 8.91033e12i −0.236856 + 0.410247i
\(267\) 0 0
\(268\) 5.44433e12 + 9.42986e12i 0.240549 + 0.416643i
\(269\) −1.72215e13 −0.745475 −0.372737 0.927937i \(-0.621581\pi\)
−0.372737 + 0.927937i \(0.621581\pi\)
\(270\) 0 0
\(271\) 2.46849e13 1.02589 0.512944 0.858422i \(-0.328555\pi\)
0.512944 + 0.858422i \(0.328555\pi\)
\(272\) 3.87533e12 + 6.71227e12i 0.157826 + 0.273363i
\(273\) 0 0
\(274\) −7.00769e12 + 1.21377e13i −0.274124 + 0.474796i
\(275\) 3.30767e12 5.72906e12i 0.126822 0.219661i
\(276\) 0 0
\(277\) −4.80945e12 8.33021e12i −0.177197 0.306914i 0.763722 0.645545i \(-0.223370\pi\)
−0.940919 + 0.338631i \(0.890036\pi\)
\(278\) 1.33249e13 0.481300
\(279\) 0 0
\(280\) −6.56202e12 −0.227860
\(281\) 1.66223e13 + 2.87907e13i 0.565988 + 0.980321i 0.996957 + 0.0779537i \(0.0248386\pi\)
−0.430969 + 0.902367i \(0.641828\pi\)
\(282\) 0 0
\(283\) 1.46871e13 2.54388e13i 0.480962 0.833051i −0.518799 0.854896i \(-0.673621\pi\)
0.999761 + 0.0218449i \(0.00695401\pi\)
\(284\) 1.51107e13 2.61725e13i 0.485326 0.840610i
\(285\) 0 0
\(286\) 4.05934e12 + 7.03098e12i 0.125442 + 0.217272i
\(287\) 3.03491e13 0.920015
\(288\) 0 0
\(289\) 2.03640e13 0.594188
\(290\) 3.92925e12 + 6.80565e12i 0.112492 + 0.194841i
\(291\) 0 0
\(292\) −1.18010e13 + 2.04398e13i −0.325320 + 0.563472i
\(293\) 2.37463e13 4.11298e13i 0.642428 1.11272i −0.342461 0.939532i \(-0.611261\pi\)
0.984889 0.173186i \(-0.0554061\pi\)
\(294\) 0 0
\(295\) 4.16436e12 + 7.21288e12i 0.108524 + 0.187970i
\(296\) −6.58236e12 −0.168375
\(297\) 0 0
\(298\) −4.21302e13 −1.03850
\(299\) 3.08351e13 + 5.34080e13i 0.746198 + 1.29245i
\(300\) 0 0
\(301\) 2.56452e12 4.44188e12i 0.0598260 0.103622i
\(302\) −9.92282e12 + 1.71868e13i −0.227299 + 0.393693i
\(303\) 0 0
\(304\) 3.18003e12 + 5.50797e12i 0.0702467 + 0.121671i
\(305\) 4.14000e13 0.898155
\(306\) 0 0
\(307\) −6.85550e13 −1.43476 −0.717378 0.696684i \(-0.754658\pi\)
−0.717378 + 0.696684i \(0.754658\pi\)
\(308\) 5.19570e12 + 8.99921e12i 0.106811 + 0.185002i
\(309\) 0 0
\(310\) 3.37968e12 5.85378e12i 0.0670481 0.116131i
\(311\) −2.82350e12 + 4.89045e12i −0.0550308 + 0.0953161i −0.892228 0.451584i \(-0.850859\pi\)
0.837198 + 0.546900i \(0.184192\pi\)
\(312\) 0 0
\(313\) −4.79841e13 8.31109e13i −0.902825 1.56374i −0.823810 0.566865i \(-0.808156\pi\)
−0.0790147 0.996873i \(-0.525177\pi\)
\(314\) 1.91228e13 0.353541
\(315\) 0 0
\(316\) −3.40192e13 −0.607358
\(317\) 1.37213e13 + 2.37659e13i 0.240751 + 0.416993i 0.960928 0.276797i \(-0.0892729\pi\)
−0.720177 + 0.693790i \(0.755940\pi\)
\(318\) 0 0
\(319\) 6.22223e12 1.07772e13i 0.105462 0.182666i
\(320\) −2.02817e12 + 3.51290e12i −0.0337894 + 0.0585249i
\(321\) 0 0
\(322\) 3.94670e13 + 6.83589e13i 0.635371 + 1.10049i
\(323\) 4.48332e13 0.709555
\(324\) 0 0
\(325\) 4.57978e13 0.700626
\(326\) 3.08986e13 + 5.35180e13i 0.464774 + 0.805013i
\(327\) 0 0
\(328\) 9.38022e12 1.62470e13i 0.136429 0.236302i
\(329\) −6.35246e13 + 1.10028e14i −0.908582 + 1.57371i
\(330\) 0 0
\(331\) 5.95979e12 + 1.03227e13i 0.0824474 + 0.142803i 0.904301 0.426896i \(-0.140393\pi\)
−0.821853 + 0.569699i \(0.807060\pi\)
\(332\) 2.39772e13 0.326242
\(333\) 0 0
\(334\) −2.88134e13 −0.379306
\(335\) 2.00854e13 + 3.47889e13i 0.260096 + 0.450499i
\(336\) 0 0
\(337\) −5.60348e13 + 9.70551e13i −0.702252 + 1.21634i 0.265421 + 0.964132i \(0.414489\pi\)
−0.967674 + 0.252205i \(0.918844\pi\)
\(338\) 5.71904e11 9.90567e11i 0.00705150 0.0122136i
\(339\) 0 0
\(340\) 1.42970e13 + 2.47631e13i 0.170651 + 0.295577i
\(341\) −1.07039e13 −0.125717
\(342\) 0 0
\(343\) 6.06779e13 0.690101
\(344\) −1.58527e12 2.74577e12i −0.0177432 0.0307321i
\(345\) 0 0
\(346\) −5.66894e13 + 9.81890e13i −0.614587 + 1.06450i
\(347\) −4.05120e13 + 7.01688e13i −0.432286 + 0.748741i −0.997070 0.0764975i \(-0.975626\pi\)
0.564784 + 0.825239i \(0.308960\pi\)
\(348\) 0 0
\(349\) −8.99111e13 1.55731e14i −0.929551 1.61003i −0.784073 0.620668i \(-0.786861\pi\)
−0.145478 0.989361i \(-0.546472\pi\)
\(350\) 5.86183e13 0.596567
\(351\) 0 0
\(352\) 6.42350e12 0.0633559
\(353\) 3.91733e13 + 6.78502e13i 0.380390 + 0.658855i 0.991118 0.132985i \(-0.0424564\pi\)
−0.610728 + 0.791841i \(0.709123\pi\)
\(354\) 0 0
\(355\) 5.57468e13 9.65562e13i 0.524764 0.908917i
\(356\) −2.29069e13 + 3.96759e13i −0.212320 + 0.367750i
\(357\) 0 0
\(358\) 5.66610e13 + 9.81397e13i 0.509246 + 0.882039i
\(359\) 1.87927e14 1.66329 0.831646 0.555306i \(-0.187399\pi\)
0.831646 + 0.555306i \(0.187399\pi\)
\(360\) 0 0
\(361\) −7.97009e13 −0.684185
\(362\) −4.01902e13 6.96114e13i −0.339799 0.588550i
\(363\) 0 0
\(364\) −3.59696e13 + 6.23012e13i −0.295038 + 0.511021i
\(365\) −4.35364e13 + 7.54072e13i −0.351756 + 0.609259i
\(366\) 0 0
\(367\) −2.96521e13 5.13589e13i −0.232483 0.402673i 0.726055 0.687637i \(-0.241352\pi\)
−0.958538 + 0.284964i \(0.908018\pi\)
\(368\) 4.87935e13 0.376876
\(369\) 0 0
\(370\) −2.42838e13 −0.182057
\(371\) −8.32427e13 1.44181e14i −0.614879 1.06500i
\(372\) 0 0
\(373\) 6.15276e11 1.06569e12i 0.00441237 0.00764245i −0.863811 0.503816i \(-0.831929\pi\)
0.868223 + 0.496174i \(0.165262\pi\)
\(374\) 2.26402e13 3.92140e13i 0.159988 0.277107i
\(375\) 0 0
\(376\) 3.92680e13 + 6.80142e13i 0.269467 + 0.466731i
\(377\) 8.61525e13 0.582627
\(378\) 0 0
\(379\) 1.21423e13 0.0797600 0.0398800 0.999204i \(-0.487302\pi\)
0.0398800 + 0.999204i \(0.487302\pi\)
\(380\) 1.17318e13 + 2.03201e13i 0.0759550 + 0.131558i
\(381\) 0 0
\(382\) −1.01012e14 + 1.74958e14i −0.635368 + 1.10049i
\(383\) 1.06199e14 1.83942e14i 0.658457 1.14048i −0.322559 0.946550i \(-0.604543\pi\)
0.981015 0.193931i \(-0.0621237\pi\)
\(384\) 0 0
\(385\) 1.91681e13 + 3.32001e13i 0.115490 + 0.200035i
\(386\) −3.48776e13 −0.207165
\(387\) 0 0
\(388\) 2.52281e13 0.145650
\(389\) 8.40877e13 + 1.45644e14i 0.478641 + 0.829030i 0.999700 0.0244903i \(-0.00779627\pi\)
−0.521059 + 0.853521i \(0.674463\pi\)
\(390\) 0 0
\(391\) 1.71977e14 2.97873e14i 0.951697 1.64839i
\(392\) −1.36424e13 + 2.36292e13i −0.0744416 + 0.128937i
\(393\) 0 0
\(394\) 7.64535e13 + 1.32421e14i 0.405666 + 0.702633i
\(395\) −1.25504e14 −0.656712
\(396\) 0 0
\(397\) −1.43772e13 −0.0731691 −0.0365845 0.999331i \(-0.511648\pi\)
−0.0365845 + 0.999331i \(0.511648\pi\)
\(398\) 5.42562e13 + 9.39746e13i 0.272328 + 0.471687i
\(399\) 0 0
\(400\) 1.81176e13 3.13806e13i 0.0884649 0.153226i
\(401\) 6.31228e13 1.09332e14i 0.304013 0.526566i −0.673028 0.739617i \(-0.735007\pi\)
0.977041 + 0.213051i \(0.0683401\pi\)
\(402\) 0 0
\(403\) −3.70514e13 6.41749e13i −0.173631 0.300737i
\(404\) 8.55127e13 0.395306
\(405\) 0 0
\(406\) 1.10270e14 0.496093
\(407\) 1.92275e13 + 3.33030e13i 0.0853403 + 0.147814i
\(408\) 0 0
\(409\) 5.21006e13 9.02410e13i 0.225095 0.389875i −0.731253 0.682106i \(-0.761064\pi\)
0.956348 + 0.292231i \(0.0943976\pi\)
\(410\) 3.46057e13 5.99389e13i 0.147515 0.255504i
\(411\) 0 0
\(412\) −8.98432e13 1.55613e14i −0.372864 0.645820i
\(413\) 1.16868e14 0.478597
\(414\) 0 0
\(415\) 8.84574e13 0.352752
\(416\) 2.22348e13 + 3.85118e13i 0.0875025 + 0.151559i
\(417\) 0 0
\(418\) 1.85782e13 3.21783e13i 0.0712087 0.123337i
\(419\) −2.24905e12 + 3.89548e12i −0.00850791 + 0.0147361i −0.870248 0.492614i \(-0.836042\pi\)
0.861740 + 0.507350i \(0.169375\pi\)
\(420\) 0 0
\(421\) −6.92552e13 1.19953e14i −0.255212 0.442040i 0.709741 0.704462i \(-0.248812\pi\)
−0.964953 + 0.262423i \(0.915479\pi\)
\(422\) −3.42967e14 −1.24748
\(423\) 0 0
\(424\) −1.02914e14 −0.364721
\(425\) −1.27714e14 2.21208e14i −0.446787 0.773859i
\(426\) 0 0
\(427\) 2.90461e14 5.03093e14i 0.990227 1.71512i
\(428\) −1.51780e13 + 2.62890e13i −0.0510826 + 0.0884776i
\(429\) 0 0
\(430\) −5.84842e12 1.01298e13i −0.0191850 0.0332294i
\(431\) −3.59012e14 −1.16275 −0.581373 0.813637i \(-0.697484\pi\)
−0.581373 + 0.813637i \(0.697484\pi\)
\(432\) 0 0
\(433\) 2.15274e14 0.679684 0.339842 0.940482i \(-0.389626\pi\)
0.339842 + 0.940482i \(0.389626\pi\)
\(434\) −4.74234e13 8.21398e13i −0.147843 0.256071i
\(435\) 0 0
\(436\) −1.29226e14 + 2.23825e14i −0.392801 + 0.680351i
\(437\) 1.41121e14 2.44430e14i 0.423589 0.733678i
\(438\) 0 0
\(439\) 2.78955e14 + 4.83164e14i 0.816543 + 1.41429i 0.908215 + 0.418504i \(0.137446\pi\)
−0.0916720 + 0.995789i \(0.529221\pi\)
\(440\) 2.36977e13 0.0685041
\(441\) 0 0
\(442\) 3.13475e14 0.883853
\(443\) 1.38874e14 + 2.40537e14i 0.386723 + 0.669824i 0.992007 0.126186i \(-0.0402736\pi\)
−0.605283 + 0.796010i \(0.706940\pi\)
\(444\) 0 0
\(445\) −8.45087e13 + 1.46373e14i −0.229573 + 0.397633i
\(446\) −3.16069e13 + 5.47448e13i −0.0848087 + 0.146893i
\(447\) 0 0
\(448\) 2.84592e13 + 4.92927e13i 0.0745063 + 0.129049i
\(449\) −5.80134e14 −1.50028 −0.750142 0.661277i \(-0.770015\pi\)
−0.750142 + 0.661277i \(0.770015\pi\)
\(450\) 0 0
\(451\) −1.09601e14 −0.276595
\(452\) −1.79471e14 3.10853e14i −0.447438 0.774986i
\(453\) 0 0
\(454\) −2.62745e14 + 4.55088e14i −0.639333 + 1.10736i
\(455\) −1.32700e14 + 2.29843e14i −0.319013 + 0.552547i
\(456\) 0 0
\(457\) −8.13864e13 1.40965e14i −0.190991 0.330806i 0.754588 0.656199i \(-0.227837\pi\)
−0.945579 + 0.325393i \(0.894503\pi\)
\(458\) −5.31416e14 −1.23218
\(459\) 0 0
\(460\) 1.80010e14 0.407501
\(461\) −5.65219e13 9.78988e13i −0.126433 0.218989i 0.795859 0.605482i \(-0.207020\pi\)
−0.922292 + 0.386493i \(0.873686\pi\)
\(462\) 0 0
\(463\) 2.75506e14 4.77190e14i 0.601776 1.04231i −0.390776 0.920486i \(-0.627793\pi\)
0.992552 0.121821i \(-0.0388735\pi\)
\(464\) 3.40819e13 5.90316e13i 0.0735657 0.127420i
\(465\) 0 0
\(466\) −2.22596e14 3.85548e14i −0.469240 0.812747i
\(467\) −4.19636e14 −0.874238 −0.437119 0.899404i \(-0.644001\pi\)
−0.437119 + 0.899404i \(0.644001\pi\)
\(468\) 0 0
\(469\) 5.63673e14 1.14703
\(470\) 1.44869e14 + 2.50920e14i 0.291364 + 0.504657i
\(471\) 0 0
\(472\) 3.61213e13 6.25638e13i 0.0709711 0.122926i
\(473\) −9.26137e12 + 1.60412e13i −0.0179862 + 0.0311530i
\(474\) 0 0
\(475\) −1.04800e14 1.81519e14i −0.198860 0.344435i
\(476\) 4.01228e14 0.752581
\(477\) 0 0
\(478\) −5.03298e14 −0.922511
\(479\) −2.38849e14 4.13699e14i −0.432791 0.749616i 0.564322 0.825555i \(-0.309138\pi\)
−0.997112 + 0.0759394i \(0.975804\pi\)
\(480\) 0 0
\(481\) −1.33111e14 + 2.30556e14i −0.235731 + 0.408299i
\(482\) −2.52815e13 + 4.37888e13i −0.0442633 + 0.0766663i
\(483\) 0 0
\(484\) 1.27316e14 + 2.20518e14i 0.217888 + 0.377394i
\(485\) 9.30721e13 0.157485
\(486\) 0 0
\(487\) −9.07190e14 −1.50068 −0.750342 0.661050i \(-0.770111\pi\)
−0.750342 + 0.661050i \(0.770111\pi\)
\(488\) −1.79550e14 3.10990e14i −0.293681 0.508671i
\(489\) 0 0
\(490\) −5.03297e13 + 8.71736e13i −0.0804907 + 0.139414i
\(491\) 3.02857e13 5.24563e13i 0.0478948 0.0829563i −0.841084 0.540904i \(-0.818082\pi\)
0.888979 + 0.457948i \(0.151415\pi\)
\(492\) 0 0
\(493\) −2.40250e14 4.16125e14i −0.371540 0.643525i
\(494\) 2.57232e14 0.393393
\(495\) 0 0
\(496\) −5.86301e13 −0.0876943
\(497\) −7.82235e14 1.35487e15i −1.15712 2.00418i
\(498\) 0 0
\(499\) −3.99825e14 + 6.92517e14i −0.578518 + 1.00202i 0.417132 + 0.908846i \(0.363035\pi\)
−0.995650 + 0.0931762i \(0.970298\pi\)
\(500\) 1.61284e14 2.79352e14i 0.230811 0.399776i
\(501\) 0 0
\(502\) 2.32423e14 + 4.02568e14i 0.325393 + 0.563598i
\(503\) 3.09482e14 0.428560 0.214280 0.976772i \(-0.431259\pi\)
0.214280 + 0.976772i \(0.431259\pi\)
\(504\) 0 0
\(505\) 3.15475e14 0.427428
\(506\) −1.42529e14 2.46868e14i −0.191019 0.330854i
\(507\) 0 0
\(508\) −4.53845e12 + 7.86083e12i −0.00595193 + 0.0103090i
\(509\) 1.60238e14 2.77540e14i 0.207882 0.360063i −0.743165 0.669108i \(-0.766676\pi\)
0.951047 + 0.309045i \(0.100010\pi\)
\(510\) 0 0
\(511\) 6.10899e14 + 1.05811e15i 0.775630 + 1.34343i
\(512\) 3.51844e13 0.0441942
\(513\) 0 0
\(514\) 1.56000e14 0.191791
\(515\) −3.31452e14 5.74091e14i −0.403163 0.698299i
\(516\) 0 0
\(517\) 2.29409e14 3.97348e14i 0.273157 0.473122i
\(518\) −1.70374e14 + 2.95097e14i −0.200720 + 0.347657i
\(519\) 0 0
\(520\) 8.20292e13 + 1.42079e14i 0.0946129 + 0.163874i
\(521\) −1.59747e14 −0.182317 −0.0911583 0.995836i \(-0.529057\pi\)
−0.0911583 + 0.995836i \(0.529057\pi\)
\(522\) 0 0
\(523\) −1.60413e15 −1.79259 −0.896293 0.443462i \(-0.853750\pi\)
−0.896293 + 0.443462i \(0.853750\pi\)
\(524\) 1.25610e14 + 2.17562e14i 0.138899 + 0.240581i
\(525\) 0 0
\(526\) 2.28251e14 3.95342e14i 0.247167 0.428106i
\(527\) −2.06647e14 + 3.57924e14i −0.221448 + 0.383559i
\(528\) 0 0
\(529\) −6.06260e14 1.05007e15i −0.636287 1.10208i
\(530\) −3.79672e14 −0.394359
\(531\) 0 0
\(532\) 3.29241e14 0.334965
\(533\) −3.79382e14 6.57109e14i −0.382012 0.661664i
\(534\) 0 0
\(535\) −5.59949e13 + 9.69860e13i −0.0552335 + 0.0956673i
\(536\) 1.74219e14 3.01756e14i 0.170094 0.294611i
\(537\) 0 0
\(538\) 2.75544e14 + 4.77256e14i 0.263565 + 0.456508i
\(539\) 1.59401e14 0.150922
\(540\) 0 0
\(541\) 1.42984e14 0.132649 0.0663243 0.997798i \(-0.478873\pi\)
0.0663243 + 0.997798i \(0.478873\pi\)
\(542\) −3.94958e14 6.84088e14i −0.362706 0.628226i
\(543\) 0 0
\(544\) 1.24011e14 2.14793e14i 0.111600 0.193297i
\(545\) −4.76742e14 + 8.25741e14i −0.424720 + 0.735636i
\(546\) 0 0
\(547\) −1.08411e14 1.87774e14i −0.0946550 0.163947i 0.814810 0.579729i \(-0.196841\pi\)
−0.909465 + 0.415781i \(0.863508\pi\)
\(548\) 4.48492e14 0.387670
\(549\) 0 0
\(550\) −2.11691e14 −0.179353
\(551\) −1.97145e14 3.41465e14i −0.165368 0.286426i
\(552\) 0 0
\(553\) −8.80534e14 + 1.52513e15i −0.724033 + 1.25406i
\(554\) −1.53902e14 + 2.66567e14i −0.125297 + 0.217021i
\(555\) 0 0
\(556\) −2.13198e14 3.69269e14i −0.170165 0.294735i
\(557\) −1.11565e15 −0.881707 −0.440853 0.897579i \(-0.645324\pi\)
−0.440853 + 0.897579i \(0.645324\pi\)
\(558\) 0 0
\(559\) −1.28232e14 −0.0993648
\(560\) 1.04992e14 + 1.81852e14i 0.0805607 + 0.139535i
\(561\) 0 0
\(562\) 5.31915e14 9.21304e14i 0.400214 0.693191i
\(563\) −7.34687e13 + 1.27251e14i −0.0547402 + 0.0948127i −0.892097 0.451844i \(-0.850766\pi\)
0.837357 + 0.546657i \(0.184100\pi\)
\(564\) 0 0
\(565\) −6.62109e14 1.14681e15i −0.483797 0.837961i
\(566\) −9.39975e14 −0.680184
\(567\) 0 0
\(568\) −9.67085e14 −0.686355
\(569\) 1.07662e15 + 1.86476e15i 0.756738 + 1.31071i 0.944506 + 0.328495i \(0.106542\pi\)
−0.187767 + 0.982214i \(0.560125\pi\)
\(570\) 0 0
\(571\) −5.58642e14 + 9.67597e14i −0.385155 + 0.667107i −0.991791 0.127872i \(-0.959185\pi\)
0.606636 + 0.794980i \(0.292519\pi\)
\(572\) 1.29899e14 2.24991e14i 0.0887007 0.153634i
\(573\) 0 0
\(574\) −4.85585e14 8.41058e14i −0.325274 0.563392i
\(575\) −1.60803e15 −1.06689
\(576\) 0 0
\(577\) 1.96428e15 1.27860 0.639301 0.768956i \(-0.279224\pi\)
0.639301 + 0.768956i \(0.279224\pi\)
\(578\) −3.25823e14 5.64343e14i −0.210077 0.363865i
\(579\) 0 0
\(580\) 1.25736e14 2.17781e14i 0.0795436 0.137774i
\(581\) 6.20614e14 1.07493e15i 0.388913 0.673618i
\(582\) 0 0
\(583\) 3.00618e14 + 5.20686e14i 0.184858 + 0.320183i
\(584\) 7.55261e14 0.460073
\(585\) 0 0
\(586\) −1.51976e15 −0.908530
\(587\) 6.26342e14 + 1.08486e15i 0.370939 + 0.642485i 0.989710 0.143086i \(-0.0457027\pi\)
−0.618772 + 0.785571i \(0.712369\pi\)
\(588\) 0 0
\(589\) −1.69571e14 + 2.93706e14i −0.0985638 + 0.170718i
\(590\) 1.33259e14 2.30812e14i 0.0767382 0.132915i
\(591\) 0 0
\(592\) 1.05318e14 + 1.82416e14i 0.0595295 + 0.103108i
\(593\) 1.44789e15 0.810837 0.405418 0.914131i \(-0.367126\pi\)
0.405418 + 0.914131i \(0.367126\pi\)
\(594\) 0 0
\(595\) 1.48022e15 0.813735
\(596\) 6.74084e14 + 1.16755e15i 0.367163 + 0.635946i
\(597\) 0 0
\(598\) 9.86724e14 1.70906e15i 0.527642 0.913903i
\(599\) 1.71290e14 2.96682e14i 0.0907578 0.157197i −0.817072 0.576535i \(-0.804404\pi\)
0.907830 + 0.419338i \(0.137738\pi\)
\(600\) 0 0
\(601\) 1.22917e15 + 2.12898e15i 0.639443 + 1.10755i 0.985555 + 0.169354i \(0.0541682\pi\)
−0.346113 + 0.938193i \(0.612498\pi\)
\(602\) −1.64129e14 −0.0846068
\(603\) 0 0
\(604\) 6.35061e14 0.321449
\(605\) 4.69698e14 + 8.13540e14i 0.235594 + 0.408060i
\(606\) 0 0
\(607\) −1.00431e15 + 1.73951e15i −0.494686 + 0.856821i −0.999981 0.00612539i \(-0.998050\pi\)
0.505295 + 0.862946i \(0.331384\pi\)
\(608\) 1.01761e14 1.76255e14i 0.0496719 0.0860343i
\(609\) 0 0
\(610\) −6.62400e14 1.14731e15i −0.317546 0.550006i
\(611\) 3.17638e15 1.50906
\(612\) 0 0
\(613\) 1.54595e14 0.0721379 0.0360689 0.999349i \(-0.488516\pi\)
0.0360689 + 0.999349i \(0.488516\pi\)
\(614\) 1.09688e15 + 1.89985e15i 0.507263 + 0.878605i
\(615\) 0 0
\(616\) 1.66262e14 2.87975e14i 0.0755266 0.130816i
\(617\) 1.31836e15 2.28347e15i 0.593562 1.02808i −0.400186 0.916434i \(-0.631055\pi\)
0.993748 0.111645i \(-0.0356120\pi\)
\(618\) 0 0
\(619\) 7.74322e14 + 1.34117e15i 0.342470 + 0.593176i 0.984891 0.173176i \(-0.0554030\pi\)
−0.642420 + 0.766352i \(0.722070\pi\)
\(620\) −2.16300e14 −0.0948203
\(621\) 0 0
\(622\) 1.80704e14 0.0778253
\(623\) 1.18582e15 + 2.05390e15i 0.506215 + 0.876790i
\(624\) 0 0
\(625\) −2.48654e14 + 4.30682e14i −0.104293 + 0.180641i
\(626\) −1.53549e15 + 2.65955e15i −0.638394 + 1.10573i
\(627\) 0 0
\(628\) −3.05966e14 5.29948e14i −0.124996 0.216499i
\(629\) 1.48481e15 0.601301
\(630\) 0 0
\(631\) 9.61087e12 0.00382473 0.00191237 0.999998i \(-0.499391\pi\)
0.00191237 + 0.999998i \(0.499391\pi\)
\(632\) 5.44307e14 + 9.42767e14i 0.214734 + 0.371929i
\(633\) 0 0
\(634\) 4.39080e14 7.60510e14i 0.170237 0.294859i
\(635\) −1.67434e13 + 2.90004e13i −0.00643558 + 0.0111467i
\(636\) 0 0
\(637\) 5.51764e14 + 9.55683e14i 0.208442 + 0.361033i
\(638\) −3.98223e14 −0.149146
\(639\) 0 0
\(640\) 1.29803e14 0.0477854
\(641\) 1.97963e15 + 3.42882e15i 0.722544 + 1.25148i 0.959977 + 0.280079i \(0.0903606\pi\)
−0.237433 + 0.971404i \(0.576306\pi\)
\(642\) 0 0
\(643\) 1.61670e15 2.80020e15i 0.580054 1.00468i −0.415419 0.909630i \(-0.636365\pi\)
0.995472 0.0950520i \(-0.0303017\pi\)
\(644\) 1.26294e15 2.18748e15i 0.449275 0.778167i
\(645\) 0 0
\(646\) −7.17331e14 1.24245e15i −0.250866 0.434512i
\(647\) −1.30706e15 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(648\) 0 0
\(649\) −4.22051e14 −0.143886
\(650\) −7.32765e14 1.26919e15i −0.247709 0.429044i
\(651\) 0 0
\(652\) 9.88755e14 1.71257e15i 0.328645 0.569230i
\(653\) −1.49130e15 + 2.58301e15i −0.491523 + 0.851342i −0.999952 0.00976141i \(-0.996893\pi\)
0.508430 + 0.861103i \(0.330226\pi\)
\(654\) 0 0
\(655\) 4.63402e14 + 8.02636e14i 0.150186 + 0.260130i
\(656\) −6.00334e14 −0.192940
\(657\) 0 0
\(658\) 4.06557e15 1.28493
\(659\) 1.35575e15 + 2.34823e15i 0.424923 + 0.735988i 0.996413 0.0846209i \(-0.0269679\pi\)
−0.571490 + 0.820609i \(0.693635\pi\)
\(660\) 0 0
\(661\) −7.96824e14 + 1.38014e15i −0.245615 + 0.425417i −0.962304 0.271975i \(-0.912323\pi\)
0.716690 + 0.697392i \(0.245656\pi\)
\(662\) 1.90713e14 3.30325e14i 0.0582991 0.100977i
\(663\) 0 0
\(664\) −3.83636e14 6.64477e14i −0.115344 0.199782i
\(665\) 1.21464e15 0.362184
\(666\) 0 0
\(667\) −3.02494e15 −0.887206
\(668\) 4.61015e14 + 7.98501e14i 0.134105 + 0.232276i
\(669\) 0 0
\(670\) 6.42732e14 1.11324e15i 0.183916 0.318551i
\(671\) −1.04896e15 + 1.81684e15i −0.297703 + 0.515637i
\(672\) 0 0
\(673\) 2.05247e15 + 3.55498e15i 0.573052 + 0.992555i 0.996250 + 0.0865183i \(0.0275741\pi\)
−0.423198 + 0.906037i \(0.639093\pi\)
\(674\) 3.58623e15 0.993135
\(675\) 0 0
\(676\) −3.66019e13 −0.00997232
\(677\) −2.31200e15 4.00450e15i −0.624814 1.08221i −0.988577 0.150718i \(-0.951842\pi\)
0.363763 0.931491i \(-0.381492\pi\)
\(678\) 0 0
\(679\) 6.52991e14 1.13101e15i 0.173629 0.300735i
\(680\) 4.57503e14 7.92418e14i 0.120669 0.209004i
\(681\) 0 0
\(682\) 1.71263e14 + 2.96635e14i 0.0444476 + 0.0769855i
\(683\) 2.30592e15 0.593651 0.296825 0.954932i \(-0.404072\pi\)
0.296825 + 0.954932i \(0.404072\pi\)
\(684\) 0 0
\(685\) 1.65459e15 0.419171
\(686\) −9.70846e14 1.68155e15i −0.243988 0.422599i
\(687\) 0 0
\(688\) −5.07287e13 + 8.78646e13i −0.0125463 + 0.0217309i
\(689\) −2.08117e15 + 3.60469e15i −0.510624 + 0.884428i
\(690\) 0 0
\(691\) 6.06069e14 + 1.04974e15i 0.146350 + 0.253486i 0.929876 0.367874i \(-0.119914\pi\)
−0.783526 + 0.621359i \(0.786581\pi\)
\(692\) 3.62812e15 0.869158
\(693\) 0 0
\(694\) 2.59277e15 0.611345
\(695\) −7.86534e14 1.36232e15i −0.183993 0.318685i
\(696\) 0 0
\(697\) −2.11593e15 + 3.66490e15i −0.487216 + 0.843883i
\(698\) −2.87715e15 + 4.98338e15i −0.657292 + 1.13846i
\(699\) 0 0
\(700\) −9.37893e14 1.62448e15i −0.210918 0.365321i
\(701\) 4.25099e15 0.948507 0.474254 0.880388i \(-0.342718\pi\)
0.474254 + 0.880388i \(0.342718\pi\)
\(702\) 0 0
\(703\) 1.21841e15 0.267632
\(704\) −1.02776e14 1.78013e14i −0.0223997 0.0387974i
\(705\) 0 0
\(706\) 1.25355e15 2.17120e15i 0.268976 0.465881i
\(707\) 2.21336e15 3.83366e15i 0.471244 0.816219i
\(708\) 0 0
\(709\) −4.07734e15 7.06215e15i −0.854717 1.48041i −0.876908 0.480659i \(-0.840398\pi\)
0.0221910 0.999754i \(-0.492936\pi\)
\(710\) −3.56779e15 −0.742128
\(711\) 0 0
\(712\) 1.46604e15 0.300266
\(713\) 1.30093e15 + 2.25327e15i 0.264399 + 0.457953i
\(714\) 0 0
\(715\) 4.79226e14 8.30044e14i 0.0959085 0.166118i
\(716\) 1.81315e15 3.14047e15i 0.360091 0.623696i
\(717\) 0 0
\(718\) −3.00682e15 5.20797e15i −0.588063 1.01855i
\(719\) 6.49021e15 1.25965 0.629825 0.776737i \(-0.283127\pi\)
0.629825 + 0.776737i \(0.283127\pi\)
\(720\) 0 0
\(721\) −9.30182e15 −1.77797
\(722\) 1.27521e15 + 2.20874e15i 0.241896 + 0.418976i
\(723\) 0 0
\(724\) −1.28609e15 + 2.22757e15i −0.240275 + 0.416168i
\(725\) −1.12320e15 + 1.94543e15i −0.208255 + 0.360709i
\(726\) 0 0
\(727\) 1.11414e15 + 1.92974e15i 0.203470 + 0.352420i 0.949644 0.313331i \(-0.101445\pi\)
−0.746174 + 0.665750i \(0.768112\pi\)
\(728\) 2.30206e15 0.417247
\(729\) 0 0
\(730\) 2.78633e15 0.497458
\(731\) 3.57596e14 + 6.19374e14i 0.0633646 + 0.109751i
\(732\) 0 0
\(733\) 2.90019e15 5.02327e15i 0.506237 0.876829i −0.493737 0.869611i \(-0.664369\pi\)
0.999974 0.00721720i \(-0.00229733\pi\)
\(734\) −9.48867e14 + 1.64349e15i −0.164391 + 0.284733i
\(735\) 0 0
\(736\) −7.80696e14 1.35221e15i −0.133246 0.230789i
\(737\) −2.03562e15 −0.344846
\(738\) 0 0
\(739\) 5.26802e15 0.879231 0.439615 0.898186i \(-0.355115\pi\)
0.439615 + 0.898186i \(0.355115\pi\)
\(740\) 3.88541e14 + 6.72973e14i 0.0643668 + 0.111487i
\(741\) 0 0
\(742\) −2.66377e15 + 4.61378e15i −0.434785 + 0.753070i
\(743\) −6.79730e14 + 1.17733e15i −0.110128 + 0.190747i −0.915822 0.401585i \(-0.868459\pi\)
0.805694 + 0.592332i \(0.201793\pi\)
\(744\) 0 0
\(745\) 2.48685e15 + 4.30734e15i 0.396999 + 0.687623i
\(746\) −3.93777e13 −0.00624003
\(747\) 0 0
\(748\) −1.44897e15 −0.226257
\(749\) 7.85717e14 + 1.36090e15i 0.121791 + 0.210949i
\(750\) 0 0
\(751\) −3.24157e15 + 5.61456e15i −0.495148 + 0.857622i −0.999984 0.00559339i \(-0.998220\pi\)
0.504836 + 0.863215i \(0.331553\pi\)
\(752\) 1.25658e15 2.17646e15i 0.190542 0.330029i
\(753\) 0 0
\(754\) −1.37844e15 2.38753e15i −0.205990 0.356785i
\(755\) 2.34288e15 0.347570
\(756\) 0 0
\(757\) −7.16904e15 −1.04817 −0.524087 0.851664i \(-0.675594\pi\)
−0.524087 + 0.851664i \(0.675594\pi\)
\(758\) −1.94277e14 3.36497e14i −0.0281994 0.0488428i
\(759\) 0 0
\(760\) 3.75419e14 6.50244e14i 0.0537083 0.0930254i
\(761\) 1.10296e15 1.91038e15i 0.156655 0.271334i −0.777006 0.629494i \(-0.783262\pi\)
0.933660 + 0.358160i \(0.116596\pi\)
\(762\) 0 0
\(763\) 6.68961e15 + 1.15867e16i 0.936517 + 1.62210i
\(764\) 6.46478e15 0.898546
\(765\) 0 0
\(766\) −6.79674e15 −0.931198
\(767\) −1.46092e15 2.53039e15i −0.198725 0.344202i
\(768\) 0 0
\(769\) −5.11710e15 + 8.86308e15i −0.686166 + 1.18847i 0.286903 + 0.957960i \(0.407374\pi\)
−0.973069 + 0.230515i \(0.925959\pi\)
\(770\) 6.13379e14 1.06240e15i 0.0816639 0.141446i
\(771\) 0 0
\(772\) 5.58041e14 + 9.66555e14i 0.0732438 + 0.126862i
\(773\) −9.26990e15 −1.20806 −0.604029 0.796962i \(-0.706439\pi\)
−0.604029 + 0.796962i \(0.706439\pi\)
\(774\) 0 0
\(775\) 1.93220e15 0.248252
\(776\) −4.03650e14 6.99142e14i −0.0514950 0.0891920i
\(777\) 0 0
\(778\) 2.69081e15 4.66061e15i 0.338450 0.586213i
\(779\) −1.73630e15 + 3.00735e15i −0.216854 + 0.375603i
\(780\) 0 0
\(781\) 2.82492e15 + 4.89291e15i 0.347877 + 0.602541i
\(782\) −1.10065e16 −1.34590
\(783\) 0 0
\(784\) 8.73110e14 0.105276
\(785\) −1.12878e15 1.95510e15i −0.135153 0.234091i
\(786\) 0 0
\(787\) −3.63589e15 + 6.29755e15i −0.429289 + 0.743551i −0.996810 0.0798083i \(-0.974569\pi\)
0.567521 + 0.823359i \(0.307903\pi\)
\(788\) 2.44651e15 4.23748e15i 0.286849 0.496837i
\(789\) 0 0
\(790\) 2.00807e15 + 3.47808e15i 0.232183 + 0.402152i
\(791\) −1.85813e16 −2.13357
\(792\) 0 0
\(793\) −1.45238e16 −1.64466
\(794\) 2.30036e14 + 3.98434e14i 0.0258692 + 0.0448067i
\(795\) 0 0
\(796\) 1.73620e15 3.00719e15i 0.192565 0.333533i
\(797\) 1.02973e15 1.78355e15i 0.113424 0.196455i −0.803725 0.595001i \(-0.797152\pi\)
0.917148 + 0.398546i \(0.130485\pi\)
\(798\) 0 0
\(799\) −8.85785e15 1.53422e16i −0.962323 1.66679i
\(800\) −1.15953e15 −0.125108
\(801\) 0 0
\(802\) −4.03986e15 −0.429939
\(803\) −2.20617e15 3.82120e15i −0.233186 0.403891i
\(804\) 0 0
\(805\) 4.65929e15 8.07012e15i 0.485783 0.841400i
\(806\) −1.18564e15 + 2.05360e15i −0.122776 + 0.212653i
\(807\) 0 0
\(808\) −1.36820e15 2.36980e15i −0.139762 0.242074i
\(809\) −4.11963e14 −0.0417966 −0.0208983 0.999782i \(-0.506653\pi\)
−0.0208983 + 0.999782i \(0.506653\pi\)
\(810\) 0 0
\(811\) 1.59926e16 1.60068 0.800341 0.599545i \(-0.204652\pi\)
0.800341 + 0.599545i \(0.204652\pi\)
\(812\) −1.76432e15 3.05589e15i −0.175395 0.303794i
\(813\) 0 0
\(814\) 6.15281e14 1.06570e15i 0.0603447 0.104520i
\(815\) 3.64774e15 6.31807e15i 0.355351 0.615485i
\(816\) 0 0
\(817\) 2.93437e14 + 5.08247e14i 0.0282029 + 0.0488488i
\(818\) −3.33444e15 −0.318332
\(819\) 0 0
\(820\) −2.21477e15 −0.208618
\(821\) 4.58116e15 + 7.93480e15i 0.428635 + 0.742418i 0.996752 0.0805296i \(-0.0256612\pi\)
−0.568117 + 0.822948i \(0.692328\pi\)
\(822\) 0 0
\(823\) −2.67931e15 + 4.64070e15i −0.247357 + 0.428435i −0.962792 0.270245i \(-0.912895\pi\)
0.715435 + 0.698680i \(0.246229\pi\)
\(824\) −2.87498e15 + 4.97962e15i −0.263655 + 0.456664i
\(825\) 0 0
\(826\) −1.86989e15 3.23874e15i −0.169210 0.293080i
\(827\) −1.52149e16 −1.36770 −0.683849 0.729624i \(-0.739695\pi\)
−0.683849 + 0.729624i \(0.739695\pi\)
\(828\) 0 0
\(829\) −7.51363e15 −0.666500 −0.333250 0.942839i \(-0.608145\pi\)
−0.333250 + 0.942839i \(0.608145\pi\)
\(830\) −1.41532e15 2.45140e15i −0.124717 0.216016i
\(831\) 0 0
\(832\) 7.11514e14 1.23238e15i 0.0618736 0.107168i
\(833\) 3.07736e15 5.33014e15i 0.265846 0.460459i
\(834\) 0 0
\(835\) 1.70079e15 + 2.94585e15i 0.145002 + 0.251151i
\(836\) −1.18900e15 −0.100704
\(837\) 0 0
\(838\) 1.43939e14 0.0120320
\(839\) −3.11876e15 5.40184e15i −0.258994 0.448592i 0.706978 0.707235i \(-0.250058\pi\)
−0.965973 + 0.258644i \(0.916724\pi\)
\(840\) 0 0
\(841\) 3.98736e15 6.90630e15i 0.326819 0.566067i
\(842\) −2.21617e15 + 3.83851e15i −0.180462 + 0.312569i
\(843\) 0 0
\(844\) 5.48747e15 + 9.50458e15i 0.441051 + 0.763923i
\(845\) −1.35032e14 −0.0107827
\(846\) 0 0
\(847\) 1.31815e16 1.03898
\(848\) 1.64662e15 + 2.85203e15i 0.128949 + 0.223345i
\(849\) 0 0
\(850\) −4.08686e15 + 7.07865e15i −0.315926 + 0.547201i
\(851\) 4.67373e15 8.09514e15i 0.358964 0.621744i
\(852\) 0 0
\(853\) −9.28192e15 1.60768e16i −0.703749 1.21893i −0.967141 0.254241i \(-0.918174\pi\)
0.263391 0.964689i \(-0.415159\pi\)
\(854\) −1.85895e16 −1.40039
\(855\) 0 0
\(856\) 9.71390e14 0.0722417
\(857\) −8.68618e15 1.50449e16i −0.641851 1.11172i −0.985019 0.172445i \(-0.944833\pi\)
0.343168 0.939274i \(-0.388500\pi\)
\(858\) 0 0
\(859\) −5.83406e15 + 1.01049e16i −0.425607 + 0.737173i −0.996477 0.0838676i \(-0.973273\pi\)
0.570870 + 0.821041i \(0.306606\pi\)
\(860\) −1.87149e14 + 3.24152e14i −0.0135659 + 0.0234967i
\(861\) 0 0
\(862\) 5.74420e15 + 9.94925e15i 0.411093 + 0.712033i
\(863\) 1.75417e16 1.24742 0.623709 0.781657i \(-0.285625\pi\)
0.623709 + 0.781657i \(0.285625\pi\)
\(864\) 0 0
\(865\) 1.33850e16 0.939785
\(866\) −3.44438e15 5.96584e15i −0.240305 0.416220i
\(867\) 0 0
\(868\) −1.51755e15 + 2.62847e15i −0.104541 + 0.181069i
\(869\) 3.17992e15 5.50778e15i 0.217674 0.377023i
\(870\) 0 0
\(871\) −7.04626e15 1.22045e16i −0.476276 0.824934i
\(872\) 8.27043e15 0.555505
\(873\) 0 0
\(874\) −9.03177e15 −0.599046
\(875\) −8.34918e15 1.44612e16i −0.550300 0.953148i
\(876\) 0 0
\(877\) 1.06994e16 1.85319e16i 0.696403 1.20621i −0.273302 0.961928i \(-0.588116\pi\)
0.969705 0.244278i \(-0.0785508\pi\)
\(878\) 8.92655e15 1.54612e16i 0.577383 1.00006i
\(879\) 0 0
\(880\) −3.79164e14 6.56730e14i −0.0242199 0.0419500i
\(881\) −1.47188e16 −0.934338 −0.467169 0.884168i \(-0.654726\pi\)
−0.467169 + 0.884168i \(0.654726\pi\)
\(882\) 0 0
\(883\) −4.13136e15 −0.259006 −0.129503 0.991579i \(-0.541338\pi\)
−0.129503 + 0.991579i \(0.541338\pi\)
\(884\) −5.01560e15 8.68727e15i −0.312489 0.541247i
\(885\) 0 0
\(886\) 4.44396e15 7.69717e15i 0.273455 0.473637i
\(887\) 2.97729e15 5.15681e15i 0.182071 0.315356i −0.760515 0.649321i \(-0.775053\pi\)
0.942586 + 0.333965i \(0.108387\pi\)
\(888\) 0 0
\(889\) 2.34942e14 + 4.06931e14i 0.0141906 + 0.0245788i
\(890\) 5.40856e15 0.324666
\(891\) 0 0
\(892\) 2.02284e15 0.119938
\(893\) −7.26859e15 1.25896e16i −0.428319 0.741870i
\(894\) 0 0
\(895\) 6.68912e15 1.15859e16i 0.389352 0.674377i
\(896\) 9.10693e14 1.57737e15i 0.0526839 0.0912512i
\(897\) 0 0
\(898\) 9.28214e15 + 1.60771e16i 0.530430 + 0.918733i
\(899\) 3.63475e15 0.206441
\(900\) 0 0
\(901\) 2.32147e16 1.30250
\(902\) 1.75362e15 + 3.03735e15i 0.0977910 + 0.169379i
\(903\) 0 0
\(904\) −5.74308e15 + 9.94730e15i −0.316387 + 0.547998i
\(905\) −4.74466e15 + 8.21799e15i −0.259799 + 0.449985i
\(906\) 0 0
\(907\) −1.10715e16 1.91764e16i −0.598918 1.03736i −0.992981 0.118273i \(-0.962264\pi\)
0.394063 0.919083i \(-0.371069\pi\)
\(908\) 1.68157e16 0.904154
\(909\) 0 0
\(910\) 8.49280e15 0.451153
\(911\) −1.03450e16 1.79181e16i −0.546235 0.946107i −0.998528 0.0542375i \(-0.982727\pi\)
0.452293 0.891869i \(-0.350606\pi\)
\(912\) 0 0
\(913\) −2.24125e15 + 3.88196e15i −0.116923 + 0.202517i
\(914\) −2.60436e15 + 4.51089e15i −0.135051 + 0.233915i
\(915\) 0 0
\(916\) 8.50265e15 + 1.47270e16i 0.435642 + 0.754553i
\(917\) 1.30048e16 0.662329
\(918\) 0 0
\(919\) 9.82530e15 0.494436 0.247218 0.968960i \(-0.420484\pi\)
0.247218 + 0.968960i \(0.420484\pi\)
\(920\) −2.88016e15 4.98859e15i −0.144073 0.249543i
\(921\) 0 0
\(922\) −1.80870e15 + 3.13276e15i −0.0894019 + 0.154849i
\(923\) −1.95568e16 + 3.38734e16i −0.960924 + 1.66437i
\(924\) 0 0
\(925\) −3.47083e15 6.01165e15i −0.168521 0.291887i
\(926\) −1.76324e16 −0.851040
\(927\) 0 0
\(928\) −2.18124e15 −0.104038
\(929\) −8.48895e13 1.47033e14i −0.00402502 0.00697153i 0.864006 0.503482i \(-0.167948\pi\)
−0.868031 + 0.496510i \(0.834615\pi\)
\(930\) 0 0
\(931\) 2.52523e15 4.37382e15i 0.118325 0.204945i
\(932\) −7.12307e15 + 1.23375e16i −0.331803 + 0.574699i
\(933\) 0 0
\(934\) 6.71417e15 + 1.16293e16i 0.309090 + 0.535359i
\(935\) −5.34559e15 −0.244642
\(936\) 0 0
\(937\) −3.07118e16 −1.38911 −0.694556 0.719439i \(-0.744399\pi\)
−0.694556 + 0.719439i \(0.744399\pi\)
\(938\) −9.01877e15 1.56210e16i −0.405538 0.702412i
\(939\) 0 0
\(940\) 4.63579e15 8.02943e15i 0.206026 0.356847i
\(941\) −1.02605e16 + 1.77716e16i −0.453340 + 0.785207i −0.998591 0.0530652i \(-0.983101\pi\)
0.545251 + 0.838273i \(0.316434\pi\)
\(942\) 0 0
\(943\) 1.33206e16 + 2.30720e16i 0.581716 + 1.00756i
\(944\) −2.31176e15 −0.100368
\(945\) 0 0
\(946\) 5.92728e14 0.0254363
\(947\) 1.30951e16 + 2.26814e16i 0.558707 + 0.967708i 0.997605 + 0.0691714i \(0.0220355\pi\)
−0.438898 + 0.898537i \(0.644631\pi\)
\(948\) 0 0
\(949\) 1.52732e16 2.64540e16i 0.644120 1.11565i
\(950\) −3.35361e15 + 5.80862e15i −0.140615 + 0.243553i
\(951\) 0 0
\(952\) −6.41965e15 1.11192e16i −0.266077 0.460860i
\(953\) −5.86183e15 −0.241558 −0.120779 0.992679i \(-0.538539\pi\)
−0.120779 + 0.992679i \(0.538539\pi\)
\(954\) 0 0
\(955\) 2.38500e16 0.971562
\(956\) 8.05276e15 + 1.39478e16i 0.326157 + 0.564920i
\(957\) 0 0
\(958\) −7.64317e15 + 1.32384e16i −0.306029 + 0.530058i
\(959\) 1.16085e16 2.01066e16i 0.462141 0.800452i
\(960\) 0 0
\(961\) 1.11410e16 + 1.92969e16i 0.438478 + 0.759466i
\(962\) 8.51913e15 0.333375
\(963\) 0 0
\(964\) 1.61802e15 0.0625978
\(965\) 2.05874e15 + 3.56584e15i 0.0791956 + 0.137171i
\(966\) 0 0
\(967\) 1.57336e15 2.72514e15i 0.0598387 0.103644i −0.834554 0.550926i \(-0.814275\pi\)
0.894393 + 0.447282i \(0.147608\pi\)
\(968\) 4.07412e15 7.05657e15i 0.154070 0.266858i
\(969\) 0 0
\(970\) −1.48915e15 2.57929e15i −0.0556795 0.0964397i
\(971\) −2.12016e16 −0.788249 −0.394124 0.919057i \(-0.628952\pi\)
−0.394124 + 0.919057i \(0.628952\pi\)
\(972\) 0 0
\(973\) −2.20732e16 −0.811417
\(974\) 1.45150e16 + 2.51408e16i 0.530572 + 0.918977i
\(975\) 0 0
\(976\) −5.74560e15 + 9.95167e15i −0.207664 + 0.359685i
\(977\) −4.91653e15 + 8.51568e15i −0.176701 + 0.306055i −0.940749 0.339105i \(-0.889876\pi\)
0.764048 + 0.645160i \(0.223209\pi\)
\(978\) 0 0
\(979\) −4.28241e15 7.41735e15i −0.152189 0.263599i
\(980\) 3.22110e15 0.113831
\(981\) 0 0
\(982\) −1.93828e15 −0.0677335
\(983\) 4.71005e15 + 8.15804e15i 0.163674 + 0.283492i 0.936184 0.351511i \(-0.114332\pi\)
−0.772509 + 0.635003i \(0.780999\pi\)
\(984\) 0 0
\(985\) 9.02573e15 1.56330e16i 0.310158 0.537210i
\(986\) −7.68800e15 + 1.33160e16i −0.262718 + 0.455041i
\(987\) 0 0
\(988\) −4.11571e15 7.12862e15i −0.139085 0.240903i
\(989\) 4.50242e15 0.151309
\(990\) 0 0
\(991\) −1.54334e16 −0.512928 −0.256464 0.966554i \(-0.582557\pi\)
−0.256464 + 0.966554i \(0.582557\pi\)
\(992\) 9.38082e14 + 1.62481e15i 0.0310046 + 0.0537016i
\(993\) 0 0
\(994\) −2.50315e16 + 4.33558e16i −0.818205 + 1.41717i
\(995\) 6.40523e15 1.10942e16i 0.208213 0.360635i
\(996\) 0 0
\(997\) −1.36635e16 2.36659e16i −0.439277 0.760850i 0.558357 0.829601i \(-0.311432\pi\)
−0.997634 + 0.0687511i \(0.978099\pi\)
\(998\) 2.55888e16 0.818148
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.12.c.l.109.1 4
3.2 odd 2 162.12.c.q.109.2 4
9.2 odd 6 162.12.c.q.55.2 4
9.4 even 3 54.12.a.g.1.2 yes 2
9.5 odd 6 54.12.a.d.1.1 2
9.7 even 3 inner 162.12.c.l.55.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.12.a.d.1.1 2 9.5 odd 6
54.12.a.g.1.2 yes 2 9.4 even 3
162.12.c.l.55.1 4 9.7 even 3 inner
162.12.c.l.109.1 4 1.1 even 1 trivial
162.12.c.q.55.2 4 9.2 odd 6
162.12.c.q.109.2 4 3.2 odd 2