Properties

Label 162.12.c.l
Level $162$
Weight $12$
Character orbit 162.c
Analytic conductor $124.472$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,12,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-64,0,-2048,3720] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.471595251\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{109})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 28x^{2} + 27x + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (32 \beta_1 - 32) q^{2} - 1024 \beta_1 q^{4} + (5 \beta_{2} + 1860 \beta_1) q^{5} + (44 \beta_{3} + 44 \beta_{2} + \cdots + 3397) q^{7} + 32768 q^{8} + (160 \beta_{3} - 59520) q^{10} + ( - 539 \beta_{3} - 539 \beta_{2} + \cdots + 416316) q^{11}+ \cdots + (9565952 \beta_{3} + 15859097664) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{2} - 2048 q^{4} + 3720 q^{5} + 6794 q^{7} + 131072 q^{8} - 238080 q^{10} + 832632 q^{11} - 984634 q^{13} + 217408 q^{14} - 2097152 q^{16} - 10222128 q^{17} - 45838540 q^{19} + 3809280 q^{20}+ \cdots + 63436390656 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 28x^{2} + 27x + 729 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 28\nu^{2} - 28\nu + 729 ) / 756 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 28\nu^{2} + 1540\nu - 729 ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 54\nu^{3} + 2214 ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 108\beta_1 ) / 216 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 5940\beta _1 - 5940 ) / 216 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7\beta_{3} - 2214 ) / 54 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
−2.36008 4.08777i
2.86008 + 4.95380i
−2.36008 + 4.08777i
2.86008 4.95380i
−16.0000 + 27.7128i 0 −512.000 886.810i −1888.88 3271.64i 0 26504.7 45907.4i 32768.0 0 120888.
55.2 −16.0000 + 27.7128i 0 −512.000 886.810i 3748.88 + 6493.26i 0 −23107.7 + 40023.7i 32768.0 0 −239928.
109.1 −16.0000 27.7128i 0 −512.000 + 886.810i −1888.88 + 3271.64i 0 26504.7 + 45907.4i 32768.0 0 120888.
109.2 −16.0000 27.7128i 0 −512.000 + 886.810i 3748.88 6493.26i 0 −23107.7 40023.7i 32768.0 0 −239928.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.12.c.l 4
3.b odd 2 1 162.12.c.q 4
9.c even 3 1 54.12.a.g yes 2
9.c even 3 1 inner 162.12.c.l 4
9.d odd 6 1 54.12.a.d 2
9.d odd 6 1 162.12.c.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.12.a.d 2 9.d odd 6 1
54.12.a.g yes 2 9.c even 3 1
162.12.c.l 4 1.a even 1 1 trivial
162.12.c.l 4 9.c even 3 1 inner
162.12.c.q 4 3.b odd 2 1
162.12.c.q 4 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 3720T_{5}^{3} + 42163200T_{5}^{2} + 105368256000T_{5} + 802294295040000 \) acting on \(S_{12}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 32 T + 1024)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 802294295040000 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 60\!\cdots\!29 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 93\!\cdots\!25 \) Copy content Toggle raw display
$17$ \( (T^{2} + \cdots - 16856880103872)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots + 102225689174569)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 36\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 31\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots - 20\!\cdots\!75)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 12\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 23\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( (T^{2} + \cdots + 50\!\cdots\!00)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 29\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 28\!\cdots\!81 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 16\!\cdots\!61 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots - 11\!\cdots\!92)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 16\!\cdots\!95)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 28\!\cdots\!89 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 15\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots - 28\!\cdots\!92)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 43\!\cdots\!25 \) Copy content Toggle raw display
show more
show less