Properties

Label 2-162-9.7-c11-0-3
Degree $2$
Conductor $162$
Sign $-0.766 - 0.642i$
Analytic cond. $124.471$
Root an. cond. $11.1566$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−16 + 27.7i)2-s + (−511. − 886. i)4-s + (−1.88e3 − 3.27e3i)5-s + (2.65e4 − 4.59e4i)7-s + 3.27e4·8-s + 1.20e5·10-s + (−9.57e4 + 1.65e5i)11-s + (6.62e5 + 1.14e6i)13-s + (8.48e5 + 1.46e6i)14-s + (−5.24e5 + 9.08e5i)16-s − 7.39e6·17-s − 6.06e6·19-s + (−1.93e6 + 3.35e6i)20-s + (−3.06e6 − 5.30e6i)22-s + (−2.32e7 − 4.02e7i)23-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.270 − 0.468i)5-s + (0.596 − 1.03i)7-s + 0.353·8-s + 0.382·10-s + (−0.179 + 0.310i)11-s + (0.494 + 0.857i)13-s + (0.421 + 0.730i)14-s + (−0.125 + 0.216i)16-s − 1.26·17-s − 0.561·19-s + (−0.135 + 0.234i)20-s + (−0.126 − 0.219i)22-s + (−0.753 − 1.30i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-0.766 - 0.642i$
Analytic conductor: \(124.471\)
Root analytic conductor: \(11.1566\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (55, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :11/2),\ -0.766 - 0.642i)\)

Particular Values

\(L(6)\) \(\approx\) \(0.3758688692\)
\(L(\frac12)\) \(\approx\) \(0.3758688692\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (16 - 27.7i)T \)
3 \( 1 \)
good5 \( 1 + (1.88e3 + 3.27e3i)T + (-2.44e7 + 4.22e7i)T^{2} \)
7 \( 1 + (-2.65e4 + 4.59e4i)T + (-9.88e8 - 1.71e9i)T^{2} \)
11 \( 1 + (9.57e4 - 1.65e5i)T + (-1.42e11 - 2.47e11i)T^{2} \)
13 \( 1 + (-6.62e5 - 1.14e6i)T + (-8.96e11 + 1.55e12i)T^{2} \)
17 \( 1 + 7.39e6T + 3.42e13T^{2} \)
19 \( 1 + 6.06e6T + 1.16e14T^{2} \)
23 \( 1 + (2.32e7 + 4.02e7i)T + (-4.76e14 + 8.25e14i)T^{2} \)
29 \( 1 + (-3.25e7 + 5.62e7i)T + (-6.10e15 - 1.05e16i)T^{2} \)
31 \( 1 + (-2.79e7 - 4.84e7i)T + (-1.27e16 + 2.20e16i)T^{2} \)
37 \( 1 + 2.00e8T + 1.77e17T^{2} \)
41 \( 1 + (-2.86e8 - 4.95e8i)T + (-2.75e17 + 4.76e17i)T^{2} \)
43 \( 1 + (4.83e7 - 8.37e7i)T + (-4.64e17 - 8.04e17i)T^{2} \)
47 \( 1 + (-1.19e9 + 2.07e9i)T + (-1.23e18 - 2.14e18i)T^{2} \)
53 \( 1 + 3.14e9T + 9.26e18T^{2} \)
59 \( 1 + (-1.10e9 - 1.90e9i)T + (-1.50e19 + 2.61e19i)T^{2} \)
61 \( 1 + (5.47e9 - 9.49e9i)T + (-2.17e19 - 3.76e19i)T^{2} \)
67 \( 1 + (-5.31e9 - 9.20e9i)T + (-6.10e19 + 1.05e20i)T^{2} \)
71 \( 1 + 2.95e10T + 2.31e20T^{2} \)
73 \( 1 - 2.30e10T + 3.13e20T^{2} \)
79 \( 1 + (-1.66e10 + 2.87e10i)T + (-3.73e20 - 6.47e20i)T^{2} \)
83 \( 1 + (1.17e10 - 2.02e10i)T + (-6.43e20 - 1.11e21i)T^{2} \)
89 \( 1 - 4.47e10T + 2.77e21T^{2} \)
97 \( 1 + (1.23e10 - 2.13e10i)T + (-3.57e21 - 6.19e21i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96775024487976793334416407443, −10.22662017972188142079963888897, −8.861234980914428187413740334486, −8.234901850840736090201183188476, −7.09738072610312396561316756489, −6.26533347105858448151001173358, −4.57586762177349341614068999499, −4.25069295863364529835785170797, −2.13325691825235278993820643763, −0.926188390860335078831428093979, 0.10104404199681342101545891320, 1.58860271062869529102810544261, 2.60131407007476396645722028471, 3.64945680595075859717667713903, 5.04243096854400252008257670128, 6.18659251428699222186755560263, 7.63095548025826678826435517426, 8.505712629025015401535843616507, 9.339676847288641031262670699612, 10.74261735746310665569803097811

Graph of the $Z$-function along the critical line