Properties

Label 54.12.a.g.1.2
Level $54$
Weight $12$
Character 54.1
Self dual yes
Analytic conductor $41.491$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,12,Mod(1,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,64,0,2048,-3720] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.4905317502\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{109}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.72015\) of defining polynomial
Character \(\chi\) \(=\) 54.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32.0000 q^{2} +1024.00 q^{4} +3777.77 q^{5} -53009.3 q^{7} +32768.0 q^{8} +120888. q^{10} +191435. q^{11} -1.32530e6 q^{13} -1.69630e6 q^{14} +1.04858e6 q^{16} -7.39161e6 q^{17} -6.06542e6 q^{19} +3.86843e6 q^{20} +6.12592e6 q^{22} +4.65331e7 q^{23} -3.45566e7 q^{25} -4.24096e7 q^{26} -5.42816e7 q^{28} -6.50061e7 q^{29} -5.59140e7 q^{31} +3.35544e7 q^{32} -2.36531e8 q^{34} -2.00257e8 q^{35} -2.00878e8 q^{37} -1.94093e8 q^{38} +1.23790e8 q^{40} -5.72523e8 q^{41} +9.67573e7 q^{43} +1.96030e8 q^{44} +1.48906e9 q^{46} -2.39673e9 q^{47} +8.32663e8 q^{49} -1.10581e9 q^{50} -1.35711e9 q^{52} -3.14068e9 q^{53} +7.23197e8 q^{55} -1.73701e9 q^{56} -2.08020e9 q^{58} -2.20467e9 q^{59} +1.09589e10 q^{61} -1.78925e9 q^{62} +1.07374e9 q^{64} -5.00667e9 q^{65} -1.06335e10 q^{67} -7.56901e9 q^{68} -6.40822e9 q^{70} -2.95131e10 q^{71} +2.30487e10 q^{73} -6.42809e9 q^{74} -6.21099e9 q^{76} -1.01478e10 q^{77} -3.32219e10 q^{79} +3.96127e9 q^{80} -1.83207e10 q^{82} +2.34153e10 q^{83} -2.79238e10 q^{85} +3.09623e9 q^{86} +6.27295e9 q^{88} +4.47401e10 q^{89} +7.02532e10 q^{91} +4.76499e10 q^{92} -7.66954e10 q^{94} -2.29137e10 q^{95} +2.46368e10 q^{97} +2.66452e10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 64 q^{2} + 2048 q^{4} - 3720 q^{5} - 6794 q^{7} + 65536 q^{8} - 119040 q^{10} - 832632 q^{11} + 984634 q^{13} - 217408 q^{14} + 2097152 q^{16} - 5111064 q^{17} - 22919270 q^{19} - 3809280 q^{20} - 26644224 q^{22}+ \cdots + 31718195328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000 0.707107
\(3\) 0 0
\(4\) 1024.00 0.500000
\(5\) 3777.77 0.540630 0.270315 0.962772i \(-0.412872\pi\)
0.270315 + 0.962772i \(0.412872\pi\)
\(6\) 0 0
\(7\) −53009.3 −1.19210 −0.596051 0.802947i \(-0.703264\pi\)
−0.596051 + 0.802947i \(0.703264\pi\)
\(8\) 32768.0 0.353553
\(9\) 0 0
\(10\) 120888. 0.382283
\(11\) 191435. 0.358395 0.179197 0.983813i \(-0.442650\pi\)
0.179197 + 0.983813i \(0.442650\pi\)
\(12\) 0 0
\(13\) −1.32530e6 −0.989977 −0.494989 0.868899i \(-0.664828\pi\)
−0.494989 + 0.868899i \(0.664828\pi\)
\(14\) −1.69630e6 −0.842943
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) −7.39161e6 −1.26261 −0.631306 0.775534i \(-0.717481\pi\)
−0.631306 + 0.775534i \(0.717481\pi\)
\(18\) 0 0
\(19\) −6.06542e6 −0.561974 −0.280987 0.959712i \(-0.590662\pi\)
−0.280987 + 0.959712i \(0.590662\pi\)
\(20\) 3.86843e6 0.270315
\(21\) 0 0
\(22\) 6.12592e6 0.253423
\(23\) 4.65331e7 1.50751 0.753753 0.657158i \(-0.228242\pi\)
0.753753 + 0.657158i \(0.228242\pi\)
\(24\) 0 0
\(25\) −3.45566e7 −0.707719
\(26\) −4.24096e7 −0.700020
\(27\) 0 0
\(28\) −5.42816e7 −0.596051
\(29\) −6.50061e7 −0.588525 −0.294263 0.955725i \(-0.595074\pi\)
−0.294263 + 0.955725i \(0.595074\pi\)
\(30\) 0 0
\(31\) −5.59140e7 −0.350777 −0.175389 0.984499i \(-0.556118\pi\)
−0.175389 + 0.984499i \(0.556118\pi\)
\(32\) 3.35544e7 0.176777
\(33\) 0 0
\(34\) −2.36531e8 −0.892801
\(35\) −2.00257e8 −0.644485
\(36\) 0 0
\(37\) −2.00878e8 −0.476236 −0.238118 0.971236i \(-0.576531\pi\)
−0.238118 + 0.971236i \(0.576531\pi\)
\(38\) −1.94093e8 −0.397376
\(39\) 0 0
\(40\) 1.23790e8 0.191141
\(41\) −5.72523e8 −0.771759 −0.385880 0.922549i \(-0.626102\pi\)
−0.385880 + 0.922549i \(0.626102\pi\)
\(42\) 0 0
\(43\) 9.67573e7 0.100371 0.0501854 0.998740i \(-0.484019\pi\)
0.0501854 + 0.998740i \(0.484019\pi\)
\(44\) 1.96030e8 0.179197
\(45\) 0 0
\(46\) 1.48906e9 1.06597
\(47\) −2.39673e9 −1.52434 −0.762169 0.647379i \(-0.775865\pi\)
−0.762169 + 0.647379i \(0.775865\pi\)
\(48\) 0 0
\(49\) 8.32663e8 0.421105
\(50\) −1.10581e9 −0.500433
\(51\) 0 0
\(52\) −1.35711e9 −0.494989
\(53\) −3.14068e9 −1.03159 −0.515794 0.856713i \(-0.672503\pi\)
−0.515794 + 0.856713i \(0.672503\pi\)
\(54\) 0 0
\(55\) 7.23197e8 0.193759
\(56\) −1.73701e9 −0.421471
\(57\) 0 0
\(58\) −2.08020e9 −0.416150
\(59\) −2.20467e9 −0.401473 −0.200737 0.979645i \(-0.564334\pi\)
−0.200737 + 0.979645i \(0.564334\pi\)
\(60\) 0 0
\(61\) 1.09589e10 1.66131 0.830657 0.556785i \(-0.187965\pi\)
0.830657 + 0.556785i \(0.187965\pi\)
\(62\) −1.78925e9 −0.248037
\(63\) 0 0
\(64\) 1.07374e9 0.125000
\(65\) −5.00667e9 −0.535211
\(66\) 0 0
\(67\) −1.06335e10 −0.962196 −0.481098 0.876667i \(-0.659762\pi\)
−0.481098 + 0.876667i \(0.659762\pi\)
\(68\) −7.56901e9 −0.631306
\(69\) 0 0
\(70\) −6.40822e9 −0.455720
\(71\) −2.95131e10 −1.94131 −0.970653 0.240486i \(-0.922693\pi\)
−0.970653 + 0.240486i \(0.922693\pi\)
\(72\) 0 0
\(73\) 2.30487e10 1.30128 0.650641 0.759386i \(-0.274500\pi\)
0.650641 + 0.759386i \(0.274500\pi\)
\(74\) −6.42809e9 −0.336750
\(75\) 0 0
\(76\) −6.21099e9 −0.280987
\(77\) −1.01478e10 −0.427243
\(78\) 0 0
\(79\) −3.32219e10 −1.21472 −0.607358 0.794428i \(-0.707771\pi\)
−0.607358 + 0.794428i \(0.707771\pi\)
\(80\) 3.96127e9 0.135157
\(81\) 0 0
\(82\) −1.83207e10 −0.545716
\(83\) 2.34153e10 0.652484 0.326242 0.945286i \(-0.394218\pi\)
0.326242 + 0.945286i \(0.394218\pi\)
\(84\) 0 0
\(85\) −2.79238e10 −0.682606
\(86\) 3.09623e9 0.0709728
\(87\) 0 0
\(88\) 6.27295e9 0.126712
\(89\) 4.47401e10 0.849281 0.424641 0.905362i \(-0.360400\pi\)
0.424641 + 0.905362i \(0.360400\pi\)
\(90\) 0 0
\(91\) 7.02532e10 1.18015
\(92\) 4.76499e10 0.753753
\(93\) 0 0
\(94\) −7.66954e10 −1.07787
\(95\) −2.29137e10 −0.303820
\(96\) 0 0
\(97\) 2.46368e10 0.291300 0.145650 0.989336i \(-0.453473\pi\)
0.145650 + 0.989336i \(0.453473\pi\)
\(98\) 2.66452e10 0.297767
\(99\) 0 0
\(100\) −3.53860e10 −0.353860
\(101\) 8.35085e10 0.790611 0.395306 0.918550i \(-0.370639\pi\)
0.395306 + 0.918550i \(0.370639\pi\)
\(102\) 0 0
\(103\) 1.75475e11 1.49146 0.745728 0.666250i \(-0.232102\pi\)
0.745728 + 0.666250i \(0.232102\pi\)
\(104\) −4.34274e10 −0.350010
\(105\) 0 0
\(106\) −1.00502e11 −0.729443
\(107\) 2.96445e10 0.204330 0.102165 0.994767i \(-0.467423\pi\)
0.102165 + 0.994767i \(0.467423\pi\)
\(108\) 0 0
\(109\) 2.52394e11 1.57120 0.785602 0.618732i \(-0.212353\pi\)
0.785602 + 0.618732i \(0.212353\pi\)
\(110\) 2.31423e10 0.137008
\(111\) 0 0
\(112\) −5.55843e10 −0.298025
\(113\) 3.50530e11 1.78975 0.894877 0.446313i \(-0.147263\pi\)
0.894877 + 0.446313i \(0.147263\pi\)
\(114\) 0 0
\(115\) 1.75791e11 0.815002
\(116\) −6.65663e10 −0.294263
\(117\) 0 0
\(118\) −7.05493e10 −0.283885
\(119\) 3.91824e11 1.50516
\(120\) 0 0
\(121\) −2.48664e11 −0.871553
\(122\) 3.50684e11 1.17473
\(123\) 0 0
\(124\) −5.72560e10 −0.175389
\(125\) −3.15008e11 −0.923244
\(126\) 0 0
\(127\) 8.86417e9 0.0238077 0.0119039 0.999929i \(-0.496211\pi\)
0.0119039 + 0.999929i \(0.496211\pi\)
\(128\) 3.43597e10 0.0883883
\(129\) 0 0
\(130\) −1.60213e11 −0.378452
\(131\) −2.45331e11 −0.555598 −0.277799 0.960639i \(-0.589605\pi\)
−0.277799 + 0.960639i \(0.589605\pi\)
\(132\) 0 0
\(133\) 3.21524e11 0.669930
\(134\) −3.40271e11 −0.680375
\(135\) 0 0
\(136\) −2.42208e11 −0.446401
\(137\) 4.37981e11 0.775339 0.387670 0.921798i \(-0.373280\pi\)
0.387670 + 0.921798i \(0.373280\pi\)
\(138\) 0 0
\(139\) 4.16402e11 0.680661 0.340331 0.940306i \(-0.389461\pi\)
0.340331 + 0.940306i \(0.389461\pi\)
\(140\) −2.05063e11 −0.322243
\(141\) 0 0
\(142\) −9.44419e11 −1.37271
\(143\) −2.53709e11 −0.354803
\(144\) 0 0
\(145\) −2.45578e11 −0.318174
\(146\) 7.37560e11 0.920145
\(147\) 0 0
\(148\) −2.05699e11 −0.238118
\(149\) −1.31657e12 −1.46865 −0.734327 0.678796i \(-0.762502\pi\)
−0.734327 + 0.678796i \(0.762502\pi\)
\(150\) 0 0
\(151\) 6.20176e11 0.642898 0.321449 0.946927i \(-0.395830\pi\)
0.321449 + 0.946927i \(0.395830\pi\)
\(152\) −1.98752e11 −0.198688
\(153\) 0 0
\(154\) −3.24731e11 −0.302106
\(155\) −2.11230e11 −0.189641
\(156\) 0 0
\(157\) 5.97589e11 0.499982 0.249991 0.968248i \(-0.419572\pi\)
0.249991 + 0.968248i \(0.419572\pi\)
\(158\) −1.06310e12 −0.858934
\(159\) 0 0
\(160\) 1.26761e11 0.0955707
\(161\) −2.46669e12 −1.79710
\(162\) 0 0
\(163\) −1.93116e12 −1.31458 −0.657290 0.753638i \(-0.728297\pi\)
−0.657290 + 0.753638i \(0.728297\pi\)
\(164\) −5.86264e11 −0.385880
\(165\) 0 0
\(166\) 7.49289e11 0.461376
\(167\) −9.00420e11 −0.536419 −0.268210 0.963361i \(-0.586432\pi\)
−0.268210 + 0.963361i \(0.586432\pi\)
\(168\) 0 0
\(169\) −3.57440e10 −0.0199446
\(170\) −8.93560e11 −0.482675
\(171\) 0 0
\(172\) 9.90794e10 0.0501854
\(173\) 3.54309e12 1.73832 0.869158 0.494535i \(-0.164662\pi\)
0.869158 + 0.494535i \(0.164662\pi\)
\(174\) 0 0
\(175\) 1.83182e12 0.843673
\(176\) 2.00734e11 0.0895987
\(177\) 0 0
\(178\) 1.43168e12 0.600533
\(179\) −3.54131e12 −1.44036 −0.720182 0.693785i \(-0.755942\pi\)
−0.720182 + 0.693785i \(0.755942\pi\)
\(180\) 0 0
\(181\) 2.51189e12 0.961098 0.480549 0.876968i \(-0.340437\pi\)
0.480549 + 0.876968i \(0.340437\pi\)
\(182\) 2.24810e12 0.834494
\(183\) 0 0
\(184\) 1.52480e12 0.532984
\(185\) −7.58869e11 −0.257467
\(186\) 0 0
\(187\) −1.41501e12 −0.452514
\(188\) −2.45425e12 −0.762169
\(189\) 0 0
\(190\) −7.33240e11 −0.214833
\(191\) 6.31326e12 1.79709 0.898546 0.438879i \(-0.144624\pi\)
0.898546 + 0.438879i \(0.144624\pi\)
\(192\) 0 0
\(193\) −1.08992e12 −0.292975 −0.146488 0.989213i \(-0.546797\pi\)
−0.146488 + 0.989213i \(0.546797\pi\)
\(194\) 7.88378e11 0.205980
\(195\) 0 0
\(196\) 8.52647e11 0.210553
\(197\) −4.77834e12 −1.14740 −0.573698 0.819067i \(-0.694492\pi\)
−0.573698 + 0.819067i \(0.694492\pi\)
\(198\) 0 0
\(199\) −3.39102e12 −0.770261 −0.385130 0.922862i \(-0.625844\pi\)
−0.385130 + 0.922862i \(0.625844\pi\)
\(200\) −1.13235e12 −0.250217
\(201\) 0 0
\(202\) 2.67227e12 0.559047
\(203\) 3.44593e12 0.701582
\(204\) 0 0
\(205\) −2.16286e12 −0.417236
\(206\) 5.61520e12 1.05462
\(207\) 0 0
\(208\) −1.38968e12 −0.247494
\(209\) −1.16113e12 −0.201409
\(210\) 0 0
\(211\) −1.07177e13 −1.76420 −0.882102 0.471058i \(-0.843872\pi\)
−0.882102 + 0.471058i \(0.843872\pi\)
\(212\) −3.21606e12 −0.515794
\(213\) 0 0
\(214\) 9.48623e11 0.144483
\(215\) 3.65526e11 0.0542634
\(216\) 0 0
\(217\) 2.96397e12 0.418162
\(218\) 8.07660e12 1.11101
\(219\) 0 0
\(220\) 7.40554e11 0.0968795
\(221\) 9.79609e12 1.24996
\(222\) 0 0
\(223\) 1.97543e12 0.239875 0.119938 0.992781i \(-0.461731\pi\)
0.119938 + 0.992781i \(0.461731\pi\)
\(224\) −1.77870e12 −0.210736
\(225\) 0 0
\(226\) 1.12169e13 1.26555
\(227\) 1.64216e13 1.80831 0.904154 0.427207i \(-0.140502\pi\)
0.904154 + 0.427207i \(0.140502\pi\)
\(228\) 0 0
\(229\) −1.66067e13 −1.74257 −0.871283 0.490780i \(-0.836712\pi\)
−0.871283 + 0.490780i \(0.836712\pi\)
\(230\) 5.62532e12 0.576294
\(231\) 0 0
\(232\) −2.13012e12 −0.208075
\(233\) 1.39122e13 1.32721 0.663605 0.748083i \(-0.269026\pi\)
0.663605 + 0.748083i \(0.269026\pi\)
\(234\) 0 0
\(235\) −9.05429e12 −0.824102
\(236\) −2.25758e12 −0.200737
\(237\) 0 0
\(238\) 1.25384e13 1.06431
\(239\) −1.57281e13 −1.30463 −0.652314 0.757949i \(-0.726202\pi\)
−0.652314 + 0.757949i \(0.726202\pi\)
\(240\) 0 0
\(241\) 1.58009e12 0.125196 0.0625978 0.998039i \(-0.480061\pi\)
0.0625978 + 0.998039i \(0.480061\pi\)
\(242\) −7.95726e12 −0.616281
\(243\) 0 0
\(244\) 1.12219e13 0.830657
\(245\) 3.14561e12 0.227662
\(246\) 0 0
\(247\) 8.03849e12 0.556341
\(248\) −1.83219e12 −0.124019
\(249\) 0 0
\(250\) −1.00803e13 −0.652832
\(251\) −1.45264e13 −0.920351 −0.460176 0.887828i \(-0.652214\pi\)
−0.460176 + 0.887828i \(0.652214\pi\)
\(252\) 0 0
\(253\) 8.90807e12 0.540282
\(254\) 2.83653e11 0.0168346
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 4.87500e12 0.271233 0.135616 0.990761i \(-0.456699\pi\)
0.135616 + 0.990761i \(0.456699\pi\)
\(258\) 0 0
\(259\) 1.06484e13 0.567722
\(260\) −5.12683e12 −0.267606
\(261\) 0 0
\(262\) −7.85060e12 −0.392867
\(263\) −1.42657e13 −0.699095 −0.349547 0.936919i \(-0.613665\pi\)
−0.349547 + 0.936919i \(0.613665\pi\)
\(264\) 0 0
\(265\) −1.18648e13 −0.557707
\(266\) 1.02888e13 0.473712
\(267\) 0 0
\(268\) −1.08887e13 −0.481098
\(269\) −1.72215e13 −0.745475 −0.372737 0.927937i \(-0.621581\pi\)
−0.372737 + 0.927937i \(0.621581\pi\)
\(270\) 0 0
\(271\) 2.46849e13 1.02589 0.512944 0.858422i \(-0.328555\pi\)
0.512944 + 0.858422i \(0.328555\pi\)
\(272\) −7.75066e12 −0.315653
\(273\) 0 0
\(274\) 1.40154e13 0.548248
\(275\) −6.61535e12 −0.253643
\(276\) 0 0
\(277\) 9.61890e12 0.354394 0.177197 0.984175i \(-0.443297\pi\)
0.177197 + 0.984175i \(0.443297\pi\)
\(278\) 1.33249e13 0.481300
\(279\) 0 0
\(280\) −6.56202e12 −0.227860
\(281\) −3.32447e13 −1.13198 −0.565988 0.824413i \(-0.691505\pi\)
−0.565988 + 0.824413i \(0.691505\pi\)
\(282\) 0 0
\(283\) −2.93742e13 −0.961925 −0.480962 0.876741i \(-0.659713\pi\)
−0.480962 + 0.876741i \(0.659713\pi\)
\(284\) −3.02214e13 −0.970653
\(285\) 0 0
\(286\) −8.11868e12 −0.250884
\(287\) 3.03491e13 0.920015
\(288\) 0 0
\(289\) 2.03640e13 0.594188
\(290\) −7.85849e12 −0.224983
\(291\) 0 0
\(292\) 2.36019e13 0.650641
\(293\) −4.74926e13 −1.28486 −0.642428 0.766346i \(-0.722073\pi\)
−0.642428 + 0.766346i \(0.722073\pi\)
\(294\) 0 0
\(295\) −8.32871e12 −0.217049
\(296\) −6.58236e12 −0.168375
\(297\) 0 0
\(298\) −4.21302e13 −1.03850
\(299\) −6.16703e13 −1.49240
\(300\) 0 0
\(301\) −5.12904e12 −0.119652
\(302\) 1.98456e13 0.454597
\(303\) 0 0
\(304\) −6.36005e12 −0.140493
\(305\) 4.14000e13 0.898155
\(306\) 0 0
\(307\) −6.85550e13 −1.43476 −0.717378 0.696684i \(-0.754658\pi\)
−0.717378 + 0.696684i \(0.754658\pi\)
\(308\) −1.03914e13 −0.213622
\(309\) 0 0
\(310\) −6.75936e12 −0.134096
\(311\) 5.64700e12 0.110062 0.0550308 0.998485i \(-0.482474\pi\)
0.0550308 + 0.998485i \(0.482474\pi\)
\(312\) 0 0
\(313\) 9.59682e13 1.80565 0.902825 0.430008i \(-0.141489\pi\)
0.902825 + 0.430008i \(0.141489\pi\)
\(314\) 1.91228e13 0.353541
\(315\) 0 0
\(316\) −3.40192e13 −0.607358
\(317\) −2.74425e13 −0.481502 −0.240751 0.970587i \(-0.577394\pi\)
−0.240751 + 0.970587i \(0.577394\pi\)
\(318\) 0 0
\(319\) −1.24445e13 −0.210925
\(320\) 4.05634e12 0.0675787
\(321\) 0 0
\(322\) −7.89341e13 −1.27074
\(323\) 4.48332e13 0.709555
\(324\) 0 0
\(325\) 4.57978e13 0.700626
\(326\) −6.17972e13 −0.929549
\(327\) 0 0
\(328\) −1.87604e13 −0.272858
\(329\) 1.27049e14 1.81716
\(330\) 0 0
\(331\) −1.19196e13 −0.164895 −0.0824474 0.996595i \(-0.526274\pi\)
−0.0824474 + 0.996595i \(0.526274\pi\)
\(332\) 2.39772e13 0.326242
\(333\) 0 0
\(334\) −2.88134e13 −0.379306
\(335\) −4.01707e13 −0.520192
\(336\) 0 0
\(337\) 1.12070e14 1.40450 0.702252 0.711928i \(-0.252178\pi\)
0.702252 + 0.711928i \(0.252178\pi\)
\(338\) −1.14381e12 −0.0141030
\(339\) 0 0
\(340\) −2.85939e13 −0.341303
\(341\) −1.07039e13 −0.125717
\(342\) 0 0
\(343\) 6.06779e13 0.690101
\(344\) 3.17054e12 0.0354864
\(345\) 0 0
\(346\) 1.13379e14 1.22917
\(347\) 8.10239e13 0.864572 0.432286 0.901737i \(-0.357707\pi\)
0.432286 + 0.901737i \(0.357707\pi\)
\(348\) 0 0
\(349\) 1.79822e14 1.85910 0.929551 0.368693i \(-0.120195\pi\)
0.929551 + 0.368693i \(0.120195\pi\)
\(350\) 5.86183e13 0.596567
\(351\) 0 0
\(352\) 6.42350e12 0.0633559
\(353\) −7.83466e13 −0.760780 −0.380390 0.924826i \(-0.624210\pi\)
−0.380390 + 0.924826i \(0.624210\pi\)
\(354\) 0 0
\(355\) −1.11494e14 −1.04953
\(356\) 4.58138e13 0.424641
\(357\) 0 0
\(358\) −1.13322e14 −1.01849
\(359\) 1.87927e14 1.66329 0.831646 0.555306i \(-0.187399\pi\)
0.831646 + 0.555306i \(0.187399\pi\)
\(360\) 0 0
\(361\) −7.97009e13 −0.684185
\(362\) 8.03803e13 0.679599
\(363\) 0 0
\(364\) 7.19393e13 0.590077
\(365\) 8.70727e13 0.703512
\(366\) 0 0
\(367\) 5.93042e13 0.464967 0.232483 0.972600i \(-0.425315\pi\)
0.232483 + 0.972600i \(0.425315\pi\)
\(368\) 4.87935e13 0.376876
\(369\) 0 0
\(370\) −2.42838e13 −0.182057
\(371\) 1.66485e14 1.22976
\(372\) 0 0
\(373\) −1.23055e12 −0.00882474 −0.00441237 0.999990i \(-0.501405\pi\)
−0.00441237 + 0.999990i \(0.501405\pi\)
\(374\) −4.52804e13 −0.319975
\(375\) 0 0
\(376\) −7.85361e13 −0.538935
\(377\) 8.61525e13 0.582627
\(378\) 0 0
\(379\) 1.21423e13 0.0797600 0.0398800 0.999204i \(-0.487302\pi\)
0.0398800 + 0.999204i \(0.487302\pi\)
\(380\) −2.34637e13 −0.151910
\(381\) 0 0
\(382\) 2.02024e14 1.27074
\(383\) −2.12398e14 −1.31691 −0.658457 0.752619i \(-0.728790\pi\)
−0.658457 + 0.752619i \(0.728790\pi\)
\(384\) 0 0
\(385\) −3.83362e13 −0.230980
\(386\) −3.48776e13 −0.207165
\(387\) 0 0
\(388\) 2.52281e13 0.145650
\(389\) −1.68175e14 −0.957282 −0.478641 0.878011i \(-0.658870\pi\)
−0.478641 + 0.878011i \(0.658870\pi\)
\(390\) 0 0
\(391\) −3.43954e14 −1.90339
\(392\) 2.72847e13 0.148883
\(393\) 0 0
\(394\) −1.52907e14 −0.811331
\(395\) −1.25504e14 −0.656712
\(396\) 0 0
\(397\) −1.43772e13 −0.0731691 −0.0365845 0.999331i \(-0.511648\pi\)
−0.0365845 + 0.999331i \(0.511648\pi\)
\(398\) −1.08512e14 −0.544657
\(399\) 0 0
\(400\) −3.62352e13 −0.176930
\(401\) −1.26246e14 −0.608026 −0.304013 0.952668i \(-0.598327\pi\)
−0.304013 + 0.952668i \(0.598327\pi\)
\(402\) 0 0
\(403\) 7.41028e13 0.347262
\(404\) 8.55127e13 0.395306
\(405\) 0 0
\(406\) 1.10270e14 0.496093
\(407\) −3.84550e13 −0.170681
\(408\) 0 0
\(409\) −1.04201e14 −0.450189 −0.225095 0.974337i \(-0.572269\pi\)
−0.225095 + 0.974337i \(0.572269\pi\)
\(410\) −6.92115e13 −0.295030
\(411\) 0 0
\(412\) 1.79686e14 0.745728
\(413\) 1.16868e14 0.478597
\(414\) 0 0
\(415\) 8.84574e13 0.352752
\(416\) −4.44696e13 −0.175005
\(417\) 0 0
\(418\) −3.71563e13 −0.142417
\(419\) 4.49811e12 0.0170158 0.00850791 0.999964i \(-0.497292\pi\)
0.00850791 + 0.999964i \(0.497292\pi\)
\(420\) 0 0
\(421\) 1.38510e14 0.510423 0.255212 0.966885i \(-0.417855\pi\)
0.255212 + 0.966885i \(0.417855\pi\)
\(422\) −3.42967e14 −1.24748
\(423\) 0 0
\(424\) −1.02914e14 −0.364721
\(425\) 2.55429e14 0.893575
\(426\) 0 0
\(427\) −5.80922e14 −1.98045
\(428\) 3.03559e13 0.102165
\(429\) 0 0
\(430\) 1.16968e13 0.0383700
\(431\) −3.59012e14 −1.16275 −0.581373 0.813637i \(-0.697484\pi\)
−0.581373 + 0.813637i \(0.697484\pi\)
\(432\) 0 0
\(433\) 2.15274e14 0.679684 0.339842 0.940482i \(-0.389626\pi\)
0.339842 + 0.940482i \(0.389626\pi\)
\(434\) 9.48469e13 0.295685
\(435\) 0 0
\(436\) 2.58451e14 0.785602
\(437\) −2.82243e14 −0.847179
\(438\) 0 0
\(439\) −5.57910e14 −1.63309 −0.816543 0.577285i \(-0.804112\pi\)
−0.816543 + 0.577285i \(0.804112\pi\)
\(440\) 2.36977e13 0.0685041
\(441\) 0 0
\(442\) 3.13475e14 0.883853
\(443\) −2.77748e14 −0.773446 −0.386723 0.922196i \(-0.626393\pi\)
−0.386723 + 0.922196i \(0.626393\pi\)
\(444\) 0 0
\(445\) 1.69017e14 0.459147
\(446\) 6.32139e13 0.169617
\(447\) 0 0
\(448\) −5.69183e13 −0.149013
\(449\) −5.80134e14 −1.50028 −0.750142 0.661277i \(-0.770015\pi\)
−0.750142 + 0.661277i \(0.770015\pi\)
\(450\) 0 0
\(451\) −1.09601e14 −0.276595
\(452\) 3.58942e14 0.894877
\(453\) 0 0
\(454\) 5.25490e14 1.27867
\(455\) 2.65400e14 0.638026
\(456\) 0 0
\(457\) 1.62773e14 0.381982 0.190991 0.981592i \(-0.438830\pi\)
0.190991 + 0.981592i \(0.438830\pi\)
\(458\) −5.31416e14 −1.23218
\(459\) 0 0
\(460\) 1.80010e14 0.407501
\(461\) 1.13044e14 0.252867 0.126433 0.991975i \(-0.459647\pi\)
0.126433 + 0.991975i \(0.459647\pi\)
\(462\) 0 0
\(463\) −5.51011e14 −1.20355 −0.601776 0.798665i \(-0.705540\pi\)
−0.601776 + 0.798665i \(0.705540\pi\)
\(464\) −6.81639e13 −0.147131
\(465\) 0 0
\(466\) 4.45192e14 0.938479
\(467\) −4.19636e14 −0.874238 −0.437119 0.899404i \(-0.644001\pi\)
−0.437119 + 0.899404i \(0.644001\pi\)
\(468\) 0 0
\(469\) 5.63673e14 1.14703
\(470\) −2.89737e14 −0.582728
\(471\) 0 0
\(472\) −7.22425e13 −0.141942
\(473\) 1.85227e13 0.0359724
\(474\) 0 0
\(475\) 2.09600e14 0.397720
\(476\) 4.01228e14 0.752581
\(477\) 0 0
\(478\) −5.03298e14 −0.922511
\(479\) 4.77698e14 0.865582 0.432791 0.901494i \(-0.357529\pi\)
0.432791 + 0.901494i \(0.357529\pi\)
\(480\) 0 0
\(481\) 2.66223e14 0.471463
\(482\) 5.05630e13 0.0885267
\(483\) 0 0
\(484\) −2.54632e14 −0.435777
\(485\) 9.30721e13 0.157485
\(486\) 0 0
\(487\) −9.07190e14 −1.50068 −0.750342 0.661050i \(-0.770111\pi\)
−0.750342 + 0.661050i \(0.770111\pi\)
\(488\) 3.59100e14 0.587363
\(489\) 0 0
\(490\) 1.00659e14 0.160981
\(491\) −6.05713e13 −0.0957897 −0.0478948 0.998852i \(-0.515251\pi\)
−0.0478948 + 0.998852i \(0.515251\pi\)
\(492\) 0 0
\(493\) 4.80500e14 0.743079
\(494\) 2.57232e14 0.393393
\(495\) 0 0
\(496\) −5.86301e13 −0.0876943
\(497\) 1.56447e15 2.31423
\(498\) 0 0
\(499\) 7.99650e14 1.15704 0.578518 0.815670i \(-0.303631\pi\)
0.578518 + 0.815670i \(0.303631\pi\)
\(500\) −3.22568e14 −0.461622
\(501\) 0 0
\(502\) −4.64846e14 −0.650787
\(503\) 3.09482e14 0.428560 0.214280 0.976772i \(-0.431259\pi\)
0.214280 + 0.976772i \(0.431259\pi\)
\(504\) 0 0
\(505\) 3.15475e14 0.427428
\(506\) 2.85058e14 0.382037
\(507\) 0 0
\(508\) 9.07691e12 0.0119039
\(509\) −3.20476e14 −0.415765 −0.207882 0.978154i \(-0.566657\pi\)
−0.207882 + 0.978154i \(0.566657\pi\)
\(510\) 0 0
\(511\) −1.22180e15 −1.55126
\(512\) 3.51844e13 0.0441942
\(513\) 0 0
\(514\) 1.56000e14 0.191791
\(515\) 6.62904e14 0.806326
\(516\) 0 0
\(517\) −4.58818e14 −0.546315
\(518\) 3.40749e14 0.401440
\(519\) 0 0
\(520\) −1.64058e14 −0.189226
\(521\) −1.59747e14 −0.182317 −0.0911583 0.995836i \(-0.529057\pi\)
−0.0911583 + 0.995836i \(0.529057\pi\)
\(522\) 0 0
\(523\) −1.60413e15 −1.79259 −0.896293 0.443462i \(-0.853750\pi\)
−0.896293 + 0.443462i \(0.853750\pi\)
\(524\) −2.51219e14 −0.277799
\(525\) 0 0
\(526\) −4.56502e14 −0.494335
\(527\) 4.13295e14 0.442896
\(528\) 0 0
\(529\) 1.21252e15 1.27257
\(530\) −3.79672e14 −0.394359
\(531\) 0 0
\(532\) 3.29241e14 0.334965
\(533\) 7.58764e14 0.764024
\(534\) 0 0
\(535\) 1.11990e14 0.110467
\(536\) −3.48437e14 −0.340188
\(537\) 0 0
\(538\) −5.51087e14 −0.527130
\(539\) 1.59401e14 0.150922
\(540\) 0 0
\(541\) 1.42984e14 0.132649 0.0663243 0.997798i \(-0.478873\pi\)
0.0663243 + 0.997798i \(0.478873\pi\)
\(542\) 7.89916e14 0.725413
\(543\) 0 0
\(544\) −2.48021e14 −0.223200
\(545\) 9.53484e14 0.849440
\(546\) 0 0
\(547\) 2.16822e14 0.189310 0.0946550 0.995510i \(-0.469825\pi\)
0.0946550 + 0.995510i \(0.469825\pi\)
\(548\) 4.48492e14 0.387670
\(549\) 0 0
\(550\) −2.11691e14 −0.179353
\(551\) 3.94289e14 0.330736
\(552\) 0 0
\(553\) 1.76107e15 1.44807
\(554\) 3.07805e14 0.250595
\(555\) 0 0
\(556\) 4.26395e14 0.340331
\(557\) −1.11565e15 −0.881707 −0.440853 0.897579i \(-0.645324\pi\)
−0.440853 + 0.897579i \(0.645324\pi\)
\(558\) 0 0
\(559\) −1.28232e14 −0.0993648
\(560\) −2.09985e14 −0.161121
\(561\) 0 0
\(562\) −1.06383e15 −0.800428
\(563\) 1.46937e14 0.109480 0.0547402 0.998501i \(-0.482567\pi\)
0.0547402 + 0.998501i \(0.482567\pi\)
\(564\) 0 0
\(565\) 1.32422e15 0.967594
\(566\) −9.39975e14 −0.680184
\(567\) 0 0
\(568\) −9.67085e14 −0.686355
\(569\) −2.15324e15 −1.51348 −0.756738 0.653718i \(-0.773208\pi\)
−0.756738 + 0.653718i \(0.773208\pi\)
\(570\) 0 0
\(571\) 1.11728e15 0.770309 0.385155 0.922852i \(-0.374148\pi\)
0.385155 + 0.922852i \(0.374148\pi\)
\(572\) −2.59798e14 −0.177401
\(573\) 0 0
\(574\) 9.71170e14 0.650549
\(575\) −1.60803e15 −1.06689
\(576\) 0 0
\(577\) 1.96428e15 1.27860 0.639301 0.768956i \(-0.279224\pi\)
0.639301 + 0.768956i \(0.279224\pi\)
\(578\) 6.51647e14 0.420155
\(579\) 0 0
\(580\) −2.51472e14 −0.159087
\(581\) −1.24123e15 −0.777827
\(582\) 0 0
\(583\) −6.01236e14 −0.369716
\(584\) 7.55261e14 0.460073
\(585\) 0 0
\(586\) −1.51976e15 −0.908530
\(587\) −1.25268e15 −0.741877 −0.370939 0.928657i \(-0.620964\pi\)
−0.370939 + 0.928657i \(0.620964\pi\)
\(588\) 0 0
\(589\) 3.39142e14 0.197128
\(590\) −2.66519e14 −0.153476
\(591\) 0 0
\(592\) −2.10636e14 −0.119059
\(593\) 1.44789e15 0.810837 0.405418 0.914131i \(-0.367126\pi\)
0.405418 + 0.914131i \(0.367126\pi\)
\(594\) 0 0
\(595\) 1.48022e15 0.813735
\(596\) −1.34817e15 −0.734327
\(597\) 0 0
\(598\) −1.97345e15 −1.05528
\(599\) −3.42579e14 −0.181516 −0.0907578 0.995873i \(-0.528929\pi\)
−0.0907578 + 0.995873i \(0.528929\pi\)
\(600\) 0 0
\(601\) −2.45834e15 −1.27889 −0.639443 0.768839i \(-0.720835\pi\)
−0.639443 + 0.768839i \(0.720835\pi\)
\(602\) −1.64129e14 −0.0846068
\(603\) 0 0
\(604\) 6.35061e14 0.321449
\(605\) −9.39395e14 −0.471188
\(606\) 0 0
\(607\) 2.00862e15 0.989372 0.494686 0.869072i \(-0.335283\pi\)
0.494686 + 0.869072i \(0.335283\pi\)
\(608\) −2.03522e14 −0.0993439
\(609\) 0 0
\(610\) 1.32480e15 0.635092
\(611\) 3.17638e15 1.50906
\(612\) 0 0
\(613\) 1.54595e14 0.0721379 0.0360689 0.999349i \(-0.488516\pi\)
0.0360689 + 0.999349i \(0.488516\pi\)
\(614\) −2.19376e15 −1.01453
\(615\) 0 0
\(616\) −3.32525e14 −0.151053
\(617\) −2.63672e15 −1.18712 −0.593562 0.804789i \(-0.702279\pi\)
−0.593562 + 0.804789i \(0.702279\pi\)
\(618\) 0 0
\(619\) −1.54864e15 −0.684941 −0.342470 0.939529i \(-0.611264\pi\)
−0.342470 + 0.939529i \(0.611264\pi\)
\(620\) −2.16300e14 −0.0948203
\(621\) 0 0
\(622\) 1.80704e14 0.0778253
\(623\) −2.37164e15 −1.01243
\(624\) 0 0
\(625\) 4.97308e14 0.208586
\(626\) 3.07098e15 1.27679
\(627\) 0 0
\(628\) 6.11931e14 0.249991
\(629\) 1.48481e15 0.601301
\(630\) 0 0
\(631\) 9.61087e12 0.00382473 0.00191237 0.999998i \(-0.499391\pi\)
0.00191237 + 0.999998i \(0.499391\pi\)
\(632\) −1.08861e15 −0.429467
\(633\) 0 0
\(634\) −8.78161e14 −0.340473
\(635\) 3.34867e13 0.0128712
\(636\) 0 0
\(637\) −1.10353e15 −0.416885
\(638\) −3.98223e14 −0.149146
\(639\) 0 0
\(640\) 1.29803e14 0.0477854
\(641\) −3.95925e15 −1.44509 −0.722544 0.691325i \(-0.757027\pi\)
−0.722544 + 0.691325i \(0.757027\pi\)
\(642\) 0 0
\(643\) −3.23339e15 −1.16011 −0.580054 0.814578i \(-0.696968\pi\)
−0.580054 + 0.814578i \(0.696968\pi\)
\(644\) −2.52589e15 −0.898550
\(645\) 0 0
\(646\) 1.43466e15 0.501731
\(647\) −1.30706e15 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(648\) 0 0
\(649\) −4.22051e14 −0.143886
\(650\) 1.46553e15 0.495418
\(651\) 0 0
\(652\) −1.97751e15 −0.657290
\(653\) 2.98261e15 0.983045 0.491523 0.870865i \(-0.336441\pi\)
0.491523 + 0.870865i \(0.336441\pi\)
\(654\) 0 0
\(655\) −9.26804e14 −0.300373
\(656\) −6.00334e14 −0.192940
\(657\) 0 0
\(658\) 4.06557e15 1.28493
\(659\) −2.71150e15 −0.849846 −0.424923 0.905230i \(-0.639699\pi\)
−0.424923 + 0.905230i \(0.639699\pi\)
\(660\) 0 0
\(661\) 1.59365e15 0.491229 0.245615 0.969368i \(-0.421010\pi\)
0.245615 + 0.969368i \(0.421010\pi\)
\(662\) −3.81427e14 −0.116598
\(663\) 0 0
\(664\) 7.67272e14 0.230688
\(665\) 1.21464e15 0.362184
\(666\) 0 0
\(667\) −3.02494e15 −0.887206
\(668\) −9.22030e14 −0.268210
\(669\) 0 0
\(670\) −1.28546e15 −0.367831
\(671\) 2.09791e15 0.595406
\(672\) 0 0
\(673\) −4.10494e15 −1.14610 −0.573052 0.819519i \(-0.694241\pi\)
−0.573052 + 0.819519i \(0.694241\pi\)
\(674\) 3.58623e15 0.993135
\(675\) 0 0
\(676\) −3.66019e13 −0.00997232
\(677\) 4.62400e15 1.24963 0.624814 0.780774i \(-0.285175\pi\)
0.624814 + 0.780774i \(0.285175\pi\)
\(678\) 0 0
\(679\) −1.30598e15 −0.347259
\(680\) −9.15006e14 −0.241337
\(681\) 0 0
\(682\) −3.42525e14 −0.0888952
\(683\) 2.30592e15 0.593651 0.296825 0.954932i \(-0.404072\pi\)
0.296825 + 0.954932i \(0.404072\pi\)
\(684\) 0 0
\(685\) 1.65459e15 0.419171
\(686\) 1.94169e15 0.487975
\(687\) 0 0
\(688\) 1.01457e14 0.0250927
\(689\) 4.16234e15 1.02125
\(690\) 0 0
\(691\) −1.21214e15 −0.292700 −0.146350 0.989233i \(-0.546753\pi\)
−0.146350 + 0.989233i \(0.546753\pi\)
\(692\) 3.62812e15 0.869158
\(693\) 0 0
\(694\) 2.59277e15 0.611345
\(695\) 1.57307e15 0.367986
\(696\) 0 0
\(697\) 4.23187e15 0.974432
\(698\) 5.75431e15 1.31458
\(699\) 0 0
\(700\) 1.87579e15 0.421837
\(701\) 4.25099e15 0.948507 0.474254 0.880388i \(-0.342718\pi\)
0.474254 + 0.880388i \(0.342718\pi\)
\(702\) 0 0
\(703\) 1.21841e15 0.267632
\(704\) 2.05552e14 0.0447994
\(705\) 0 0
\(706\) −2.50709e15 −0.537953
\(707\) −4.42673e15 −0.942489
\(708\) 0 0
\(709\) 8.15467e15 1.70943 0.854717 0.519095i \(-0.173731\pi\)
0.854717 + 0.519095i \(0.173731\pi\)
\(710\) −3.56779e15 −0.742128
\(711\) 0 0
\(712\) 1.46604e15 0.300266
\(713\) −2.60185e15 −0.528799
\(714\) 0 0
\(715\) −9.58452e14 −0.191817
\(716\) −3.62630e15 −0.720182
\(717\) 0 0
\(718\) 6.01365e15 1.17613
\(719\) 6.49021e15 1.25965 0.629825 0.776737i \(-0.283127\pi\)
0.629825 + 0.776737i \(0.283127\pi\)
\(720\) 0 0
\(721\) −9.30182e15 −1.77797
\(722\) −2.55043e15 −0.483792
\(723\) 0 0
\(724\) 2.57217e15 0.480549
\(725\) 2.24639e15 0.416511
\(726\) 0 0
\(727\) −2.22828e15 −0.406939 −0.203470 0.979081i \(-0.565222\pi\)
−0.203470 + 0.979081i \(0.565222\pi\)
\(728\) 2.30206e15 0.417247
\(729\) 0 0
\(730\) 2.78633e15 0.497458
\(731\) −7.15192e14 −0.126729
\(732\) 0 0
\(733\) −5.80037e15 −1.01247 −0.506237 0.862394i \(-0.668964\pi\)
−0.506237 + 0.862394i \(0.668964\pi\)
\(734\) 1.89773e15 0.328781
\(735\) 0 0
\(736\) 1.56139e15 0.266492
\(737\) −2.03562e15 −0.344846
\(738\) 0 0
\(739\) 5.26802e15 0.879231 0.439615 0.898186i \(-0.355115\pi\)
0.439615 + 0.898186i \(0.355115\pi\)
\(740\) −7.77082e14 −0.128734
\(741\) 0 0
\(742\) 5.32753e15 0.869570
\(743\) 1.35946e15 0.220256 0.110128 0.993917i \(-0.464874\pi\)
0.110128 + 0.993917i \(0.464874\pi\)
\(744\) 0 0
\(745\) −4.97369e15 −0.793998
\(746\) −3.93777e13 −0.00624003
\(747\) 0 0
\(748\) −1.44897e15 −0.226257
\(749\) −1.57143e15 −0.243582
\(750\) 0 0
\(751\) 6.48313e15 0.990296 0.495148 0.868809i \(-0.335114\pi\)
0.495148 + 0.868809i \(0.335114\pi\)
\(752\) −2.51315e15 −0.381084
\(753\) 0 0
\(754\) 2.75688e15 0.411979
\(755\) 2.34288e15 0.347570
\(756\) 0 0
\(757\) −7.16904e15 −1.04817 −0.524087 0.851664i \(-0.675594\pi\)
−0.524087 + 0.851664i \(0.675594\pi\)
\(758\) 3.88553e14 0.0563988
\(759\) 0 0
\(760\) −7.50837e14 −0.107417
\(761\) −2.20591e15 −0.313309 −0.156655 0.987653i \(-0.550071\pi\)
−0.156655 + 0.987653i \(0.550071\pi\)
\(762\) 0 0
\(763\) −1.33792e16 −1.87303
\(764\) 6.46478e15 0.898546
\(765\) 0 0
\(766\) −6.79674e15 −0.931198
\(767\) 2.92184e15 0.397450
\(768\) 0 0
\(769\) 1.02342e16 1.37233 0.686166 0.727445i \(-0.259292\pi\)
0.686166 + 0.727445i \(0.259292\pi\)
\(770\) −1.22676e15 −0.163328
\(771\) 0 0
\(772\) −1.11608e15 −0.146488
\(773\) −9.26990e15 −1.20806 −0.604029 0.796962i \(-0.706439\pi\)
−0.604029 + 0.796962i \(0.706439\pi\)
\(774\) 0 0
\(775\) 1.93220e15 0.248252
\(776\) 8.07299e14 0.102990
\(777\) 0 0
\(778\) −5.38161e15 −0.676900
\(779\) 3.47259e15 0.433709
\(780\) 0 0
\(781\) −5.64984e15 −0.695754
\(782\) −1.10065e16 −1.34590
\(783\) 0 0
\(784\) 8.73110e14 0.105276
\(785\) 2.25755e15 0.270305
\(786\) 0 0
\(787\) 7.27178e15 0.858578 0.429289 0.903167i \(-0.358764\pi\)
0.429289 + 0.903167i \(0.358764\pi\)
\(788\) −4.89302e15 −0.573698
\(789\) 0 0
\(790\) −4.01614e15 −0.464365
\(791\) −1.85813e16 −2.13357
\(792\) 0 0
\(793\) −1.45238e16 −1.64466
\(794\) −4.60072e14 −0.0517384
\(795\) 0 0
\(796\) −3.47240e15 −0.385130
\(797\) −2.05946e15 −0.226847 −0.113424 0.993547i \(-0.536182\pi\)
−0.113424 + 0.993547i \(0.536182\pi\)
\(798\) 0 0
\(799\) 1.77157e16 1.92465
\(800\) −1.15953e15 −0.125108
\(801\) 0 0
\(802\) −4.03986e15 −0.429939
\(803\) 4.41234e15 0.466373
\(804\) 0 0
\(805\) −9.31857e15 −0.971566
\(806\) 2.37129e15 0.245551
\(807\) 0 0
\(808\) 2.73641e15 0.279523
\(809\) −4.11963e14 −0.0417966 −0.0208983 0.999782i \(-0.506653\pi\)
−0.0208983 + 0.999782i \(0.506653\pi\)
\(810\) 0 0
\(811\) 1.59926e16 1.60068 0.800341 0.599545i \(-0.204652\pi\)
0.800341 + 0.599545i \(0.204652\pi\)
\(812\) 3.52863e15 0.350791
\(813\) 0 0
\(814\) −1.23056e15 −0.120689
\(815\) −7.29548e15 −0.710701
\(816\) 0 0
\(817\) −5.86874e14 −0.0564057
\(818\) −3.33444e15 −0.318332
\(819\) 0 0
\(820\) −2.21477e15 −0.208618
\(821\) −9.16232e15 −0.857271 −0.428635 0.903478i \(-0.641006\pi\)
−0.428635 + 0.903478i \(0.641006\pi\)
\(822\) 0 0
\(823\) 5.35862e15 0.494714 0.247357 0.968924i \(-0.420438\pi\)
0.247357 + 0.968924i \(0.420438\pi\)
\(824\) 5.74997e15 0.527310
\(825\) 0 0
\(826\) 3.73977e15 0.338419
\(827\) −1.52149e16 −1.36770 −0.683849 0.729624i \(-0.739695\pi\)
−0.683849 + 0.729624i \(0.739695\pi\)
\(828\) 0 0
\(829\) −7.51363e15 −0.666500 −0.333250 0.942839i \(-0.608145\pi\)
−0.333250 + 0.942839i \(0.608145\pi\)
\(830\) 2.83064e15 0.249433
\(831\) 0 0
\(832\) −1.42303e15 −0.123747
\(833\) −6.15472e15 −0.531693
\(834\) 0 0
\(835\) −3.40157e15 −0.290004
\(836\) −1.18900e15 −0.100704
\(837\) 0 0
\(838\) 1.43939e14 0.0120320
\(839\) 6.23751e15 0.517989 0.258994 0.965879i \(-0.416609\pi\)
0.258994 + 0.965879i \(0.416609\pi\)
\(840\) 0 0
\(841\) −7.97471e15 −0.653638
\(842\) 4.43233e15 0.360924
\(843\) 0 0
\(844\) −1.09749e16 −0.882102
\(845\) −1.35032e14 −0.0107827
\(846\) 0 0
\(847\) 1.31815e16 1.03898
\(848\) −3.29324e15 −0.257897
\(849\) 0 0
\(850\) 8.17373e15 0.631853
\(851\) −9.34746e15 −0.717929
\(852\) 0 0
\(853\) 1.85638e16 1.40750 0.703749 0.710448i \(-0.251508\pi\)
0.703749 + 0.710448i \(0.251508\pi\)
\(854\) −1.85895e16 −1.40039
\(855\) 0 0
\(856\) 9.71390e14 0.0722417
\(857\) 1.73724e16 1.28370 0.641851 0.766829i \(-0.278167\pi\)
0.641851 + 0.766829i \(0.278167\pi\)
\(858\) 0 0
\(859\) 1.16681e16 0.851214 0.425607 0.904908i \(-0.360061\pi\)
0.425607 + 0.904908i \(0.360061\pi\)
\(860\) 3.74299e14 0.0271317
\(861\) 0 0
\(862\) −1.14884e16 −0.822185
\(863\) 1.75417e16 1.24742 0.623709 0.781657i \(-0.285625\pi\)
0.623709 + 0.781657i \(0.285625\pi\)
\(864\) 0 0
\(865\) 1.33850e16 0.939785
\(866\) 6.88875e15 0.480609
\(867\) 0 0
\(868\) 3.03510e15 0.209081
\(869\) −6.35983e15 −0.435348
\(870\) 0 0
\(871\) 1.40925e16 0.952552
\(872\) 8.27043e15 0.555505
\(873\) 0 0
\(874\) −9.03177e15 −0.599046
\(875\) 1.66984e16 1.10060
\(876\) 0 0
\(877\) −2.13988e16 −1.39281 −0.696403 0.717651i \(-0.745217\pi\)
−0.696403 + 0.717651i \(0.745217\pi\)
\(878\) −1.78531e16 −1.15477
\(879\) 0 0
\(880\) 7.58327e14 0.0484397
\(881\) −1.47188e16 −0.934338 −0.467169 0.884168i \(-0.654726\pi\)
−0.467169 + 0.884168i \(0.654726\pi\)
\(882\) 0 0
\(883\) −4.13136e15 −0.259006 −0.129503 0.991579i \(-0.541338\pi\)
−0.129503 + 0.991579i \(0.541338\pi\)
\(884\) 1.00312e16 0.624979
\(885\) 0 0
\(886\) −8.88793e15 −0.546909
\(887\) −5.95457e15 −0.364142 −0.182071 0.983285i \(-0.558280\pi\)
−0.182071 + 0.983285i \(0.558280\pi\)
\(888\) 0 0
\(889\) −4.69884e14 −0.0283812
\(890\) 5.40856e15 0.324666
\(891\) 0 0
\(892\) 2.02284e15 0.119938
\(893\) 1.45372e16 0.856638
\(894\) 0 0
\(895\) −1.33782e16 −0.778704
\(896\) −1.82139e15 −0.105368
\(897\) 0 0
\(898\) −1.85643e16 −1.06086
\(899\) 3.63475e15 0.206441
\(900\) 0 0
\(901\) 2.32147e16 1.30250
\(902\) −3.50723e15 −0.195582
\(903\) 0 0
\(904\) 1.14862e16 0.632774
\(905\) 9.48931e15 0.519598
\(906\) 0 0
\(907\) 2.21430e16 1.19784 0.598918 0.800810i \(-0.295598\pi\)
0.598918 + 0.800810i \(0.295598\pi\)
\(908\) 1.68157e16 0.904154
\(909\) 0 0
\(910\) 8.49280e15 0.451153
\(911\) 2.06900e16 1.09247 0.546235 0.837632i \(-0.316061\pi\)
0.546235 + 0.837632i \(0.316061\pi\)
\(912\) 0 0
\(913\) 4.48250e15 0.233847
\(914\) 5.20873e15 0.270102
\(915\) 0 0
\(916\) −1.70053e16 −0.871283
\(917\) 1.30048e16 0.662329
\(918\) 0 0
\(919\) 9.82530e15 0.494436 0.247218 0.968960i \(-0.420484\pi\)
0.247218 + 0.968960i \(0.420484\pi\)
\(920\) 5.76033e15 0.288147
\(921\) 0 0
\(922\) 3.61740e15 0.178804
\(923\) 3.91137e16 1.92185
\(924\) 0 0
\(925\) 6.94165e15 0.337042
\(926\) −1.76324e16 −0.851040
\(927\) 0 0
\(928\) −2.18124e15 −0.104038
\(929\) 1.69779e14 0.00805003 0.00402502 0.999992i \(-0.498719\pi\)
0.00402502 + 0.999992i \(0.498719\pi\)
\(930\) 0 0
\(931\) −5.05045e15 −0.236650
\(932\) 1.42461e16 0.663605
\(933\) 0 0
\(934\) −1.34283e16 −0.618180
\(935\) −5.34559e15 −0.244642
\(936\) 0 0
\(937\) −3.07118e16 −1.38911 −0.694556 0.719439i \(-0.744399\pi\)
−0.694556 + 0.719439i \(0.744399\pi\)
\(938\) 1.80375e16 0.811076
\(939\) 0 0
\(940\) −9.27159e15 −0.412051
\(941\) 2.05209e16 0.906679 0.453340 0.891338i \(-0.350232\pi\)
0.453340 + 0.891338i \(0.350232\pi\)
\(942\) 0 0
\(943\) −2.66413e16 −1.16343
\(944\) −2.31176e15 −0.100368
\(945\) 0 0
\(946\) 5.92728e14 0.0254363
\(947\) −2.61902e16 −1.11741 −0.558707 0.829365i \(-0.688702\pi\)
−0.558707 + 0.829365i \(0.688702\pi\)
\(948\) 0 0
\(949\) −3.05465e16 −1.28824
\(950\) 6.70721e15 0.281230
\(951\) 0 0
\(952\) 1.28393e16 0.532155
\(953\) −5.86183e15 −0.241558 −0.120779 0.992679i \(-0.538539\pi\)
−0.120779 + 0.992679i \(0.538539\pi\)
\(954\) 0 0
\(955\) 2.38500e16 0.971562
\(956\) −1.61055e16 −0.652314
\(957\) 0 0
\(958\) 1.52863e16 0.612059
\(959\) −2.32171e16 −0.924283
\(960\) 0 0
\(961\) −2.22821e16 −0.876955
\(962\) 8.51913e15 0.333375
\(963\) 0 0
\(964\) 1.61802e15 0.0625978
\(965\) −4.11748e15 −0.158391
\(966\) 0 0
\(967\) −3.14672e15 −0.119677 −0.0598387 0.998208i \(-0.519059\pi\)
−0.0598387 + 0.998208i \(0.519059\pi\)
\(968\) −8.14823e15 −0.308141
\(969\) 0 0
\(970\) 2.97831e15 0.111359
\(971\) −2.12016e16 −0.788249 −0.394124 0.919057i \(-0.628952\pi\)
−0.394124 + 0.919057i \(0.628952\pi\)
\(972\) 0 0
\(973\) −2.20732e16 −0.811417
\(974\) −2.90301e16 −1.06114
\(975\) 0 0
\(976\) 1.14912e16 0.415328
\(977\) 9.83306e15 0.353402 0.176701 0.984265i \(-0.443457\pi\)
0.176701 + 0.984265i \(0.443457\pi\)
\(978\) 0 0
\(979\) 8.56482e15 0.304378
\(980\) 3.22110e15 0.113831
\(981\) 0 0
\(982\) −1.93828e15 −0.0677335
\(983\) −9.42009e15 −0.327349 −0.163674 0.986514i \(-0.552335\pi\)
−0.163674 + 0.986514i \(0.552335\pi\)
\(984\) 0 0
\(985\) −1.80515e16 −0.620316
\(986\) 1.53760e16 0.525436
\(987\) 0 0
\(988\) 8.23142e15 0.278171
\(989\) 4.50242e15 0.151309
\(990\) 0 0
\(991\) −1.54334e16 −0.512928 −0.256464 0.966554i \(-0.582557\pi\)
−0.256464 + 0.966554i \(0.582557\pi\)
\(992\) −1.87616e15 −0.0620093
\(993\) 0 0
\(994\) 5.00630e16 1.63641
\(995\) −1.28105e16 −0.416426
\(996\) 0 0
\(997\) 2.73270e16 0.878553 0.439277 0.898352i \(-0.355235\pi\)
0.439277 + 0.898352i \(0.355235\pi\)
\(998\) 2.55888e16 0.818148
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.12.a.g.1.2 yes 2
3.2 odd 2 54.12.a.d.1.1 2
9.2 odd 6 162.12.c.q.109.2 4
9.4 even 3 162.12.c.l.55.1 4
9.5 odd 6 162.12.c.q.55.2 4
9.7 even 3 162.12.c.l.109.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.12.a.d.1.1 2 3.2 odd 2
54.12.a.g.1.2 yes 2 1.1 even 1 trivial
162.12.c.l.55.1 4 9.4 even 3
162.12.c.l.109.1 4 9.7 even 3
162.12.c.q.55.2 4 9.5 odd 6
162.12.c.q.109.2 4 9.2 odd 6