Properties

Label 162.10.c.b.55.1
Level $162$
Weight $10$
Character 162.55
Analytic conductor $83.436$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,10,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-16,0,-256,-870] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.4358054585\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.10.c.b.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.00000 + 13.8564i) q^{2} +(-128.000 - 221.703i) q^{4} +(-435.000 - 753.442i) q^{5} +(476.000 - 824.456i) q^{7} +4096.00 q^{8} +13920.0 q^{10} +(28074.0 - 48625.6i) q^{11} +(-89047.0 - 154234. i) q^{13} +(7616.00 + 13191.3i) q^{14} +(-32768.0 + 56755.8i) q^{16} -247662. q^{17} +315380. q^{19} +(-111360. + 192881. i) q^{20} +(449184. + 778010. i) q^{22} +(-102252. - 177106. i) q^{23} +(598112. - 1.03596e6i) q^{25} +2.84950e6 q^{26} -243712. q^{28} +(1.92023e6 - 3.32593e6i) q^{29} +(654704. + 1.13398e6i) q^{31} +(-524288. - 908093. i) q^{32} +(1.98130e6 - 3.43171e6i) q^{34} -828240. q^{35} +4.30708e6 q^{37} +(-2.52304e6 + 4.37003e6i) q^{38} +(-1.78176e6 - 3.08610e6i) q^{40} +(-756021. - 1.30947e6i) q^{41} +(-1.68353e7 + 2.91596e7i) q^{43} -1.43739e7 q^{44} +3.27206e6 q^{46} +(5.29054e6 - 9.16348e6i) q^{47} +(1.97237e7 + 3.41624e7i) q^{49} +(9.56980e6 + 1.65754e7i) q^{50} +(-2.27960e7 + 3.94839e7i) q^{52} +1.66162e7 q^{53} -4.88488e7 q^{55} +(1.94970e6 - 3.37697e6i) q^{56} +(3.07236e7 + 5.32148e7i) q^{58} +(-5.61175e7 - 9.71984e7i) q^{59} +(1.65986e7 - 2.87496e7i) q^{61} -2.09505e7 q^{62} +1.67772e7 q^{64} +(-7.74709e7 + 1.34184e8i) q^{65} +(6.06861e7 + 1.05111e8i) q^{67} +(3.17007e7 + 5.49073e7i) q^{68} +(6.62592e6 - 1.14764e7i) q^{70} -3.87173e8 q^{71} +2.55240e8 q^{73} +(-3.44566e7 + 5.96806e7i) q^{74} +(-4.03686e7 - 6.99205e7i) q^{76} +(-2.67264e7 - 4.62916e7i) q^{77} +(-2.46051e8 + 4.26173e8i) q^{79} +5.70163e7 q^{80} +2.41927e7 q^{82} +(2.28710e8 - 3.96138e8i) q^{83} +(1.07733e8 + 1.86599e8i) q^{85} +(-2.69365e8 - 4.66554e8i) q^{86} +(1.14991e8 - 1.99170e8i) q^{88} -3.18095e7 q^{89} -1.69545e8 q^{91} +(-2.61765e7 + 4.53390e7i) q^{92} +(8.46486e7 + 1.46616e8i) q^{94} +(-1.37190e8 - 2.37621e8i) q^{95} +(3.36766e8 - 5.83296e8i) q^{97} -6.31157e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} - 256 q^{4} - 870 q^{5} + 952 q^{7} + 8192 q^{8} + 27840 q^{10} + 56148 q^{11} - 178094 q^{13} + 15232 q^{14} - 65536 q^{16} - 495324 q^{17} + 630760 q^{19} - 222720 q^{20} + 898368 q^{22}+ \cdots - 1262313696 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 + 13.8564i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −128.000 221.703i −0.250000 0.433013i
\(5\) −435.000 753.442i −0.311261 0.539119i 0.667375 0.744722i \(-0.267418\pi\)
−0.978636 + 0.205603i \(0.934085\pi\)
\(6\) 0 0
\(7\) 476.000 824.456i 0.0749317 0.129786i −0.826125 0.563487i \(-0.809459\pi\)
0.901057 + 0.433702i \(0.142793\pi\)
\(8\) 4096.00 0.353553
\(9\) 0 0
\(10\) 13920.0 0.440189
\(11\) 28074.0 48625.6i 0.578146 1.00138i −0.417546 0.908656i \(-0.637110\pi\)
0.995692 0.0927219i \(-0.0295568\pi\)
\(12\) 0 0
\(13\) −89047.0 154234.i −0.864717 1.49773i −0.867327 0.497738i \(-0.834164\pi\)
0.00261007 0.999997i \(-0.499169\pi\)
\(14\) 7616.00 + 13191.3i 0.0529847 + 0.0917723i
\(15\) 0 0
\(16\) −32768.0 + 56755.8i −0.125000 + 0.216506i
\(17\) −247662. −0.719183 −0.359591 0.933110i \(-0.617084\pi\)
−0.359591 + 0.933110i \(0.617084\pi\)
\(18\) 0 0
\(19\) 315380. 0.555192 0.277596 0.960698i \(-0.410462\pi\)
0.277596 + 0.960698i \(0.410462\pi\)
\(20\) −111360. + 192881.i −0.155630 + 0.269560i
\(21\) 0 0
\(22\) 449184. + 778010.i 0.408811 + 0.708081i
\(23\) −102252. 177106.i −0.0761898 0.131965i 0.825413 0.564529i \(-0.190942\pi\)
−0.901603 + 0.432564i \(0.857609\pi\)
\(24\) 0 0
\(25\) 598112. 1.03596e6i 0.306234 0.530412i
\(26\) 2.84950e6 1.22290
\(27\) 0 0
\(28\) −243712. −0.0749317
\(29\) 1.92023e6 3.32593e6i 0.504152 0.873216i −0.495837 0.868416i \(-0.665139\pi\)
0.999988 0.00480048i \(-0.00152805\pi\)
\(30\) 0 0
\(31\) 654704. + 1.13398e6i 0.127326 + 0.220535i 0.922640 0.385663i \(-0.126027\pi\)
−0.795314 + 0.606198i \(0.792694\pi\)
\(32\) −524288. 908093.i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 1.98130e6 3.43171e6i 0.254269 0.440408i
\(35\) −828240. −0.0932932
\(36\) 0 0
\(37\) 4.30708e6 0.377811 0.188906 0.981995i \(-0.439506\pi\)
0.188906 + 0.981995i \(0.439506\pi\)
\(38\) −2.52304e6 + 4.37003e6i −0.196290 + 0.339984i
\(39\) 0 0
\(40\) −1.78176e6 3.08610e6i −0.110047 0.190607i
\(41\) −756021. 1.30947e6i −0.0417837 0.0723714i 0.844377 0.535749i \(-0.179971\pi\)
−0.886161 + 0.463378i \(0.846637\pi\)
\(42\) 0 0
\(43\) −1.68353e7 + 2.91596e7i −0.750953 + 1.30069i 0.196408 + 0.980522i \(0.437072\pi\)
−0.947361 + 0.320167i \(0.896261\pi\)
\(44\) −1.43739e7 −0.578146
\(45\) 0 0
\(46\) 3.27206e6 0.107749
\(47\) 5.29054e6 9.16348e6i 0.158146 0.273918i −0.776054 0.630667i \(-0.782782\pi\)
0.934200 + 0.356749i \(0.116115\pi\)
\(48\) 0 0
\(49\) 1.97237e7 + 3.41624e7i 0.488770 + 0.846575i
\(50\) 9.56980e6 + 1.65754e7i 0.216540 + 0.375058i
\(51\) 0 0
\(52\) −2.27960e7 + 3.94839e7i −0.432359 + 0.748867i
\(53\) 1.66162e7 0.289262 0.144631 0.989486i \(-0.453801\pi\)
0.144631 + 0.989486i \(0.453801\pi\)
\(54\) 0 0
\(55\) −4.88488e7 −0.719816
\(56\) 1.94970e6 3.37697e6i 0.0264924 0.0458861i
\(57\) 0 0
\(58\) 3.07236e7 + 5.32148e7i 0.356489 + 0.617457i
\(59\) −5.61175e7 9.71984e7i −0.602927 1.04430i −0.992375 0.123252i \(-0.960668\pi\)
0.389449 0.921048i \(-0.372666\pi\)
\(60\) 0 0
\(61\) 1.65986e7 2.87496e7i 0.153493 0.265857i −0.779017 0.627003i \(-0.784281\pi\)
0.932509 + 0.361146i \(0.117615\pi\)
\(62\) −2.09505e7 −0.180066
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −7.74709e7 + 1.34184e8i −0.538305 + 0.932372i
\(66\) 0 0
\(67\) 6.06861e7 + 1.05111e8i 0.367919 + 0.637255i 0.989240 0.146301i \(-0.0467369\pi\)
−0.621321 + 0.783556i \(0.713404\pi\)
\(68\) 3.17007e7 + 5.49073e7i 0.179796 + 0.311415i
\(69\) 0 0
\(70\) 6.62592e6 1.14764e7i 0.0329841 0.0571302i
\(71\) −3.87173e8 −1.80818 −0.904091 0.427340i \(-0.859451\pi\)
−0.904091 + 0.427340i \(0.859451\pi\)
\(72\) 0 0
\(73\) 2.55240e8 1.05195 0.525976 0.850499i \(-0.323700\pi\)
0.525976 + 0.850499i \(0.323700\pi\)
\(74\) −3.44566e7 + 5.96806e7i −0.133576 + 0.231361i
\(75\) 0 0
\(76\) −4.03686e7 6.99205e7i −0.138798 0.240405i
\(77\) −2.67264e7 4.62916e7i −0.0866429 0.150070i
\(78\) 0 0
\(79\) −2.46051e8 + 4.26173e8i −0.710727 + 1.23102i 0.253857 + 0.967242i \(0.418301\pi\)
−0.964584 + 0.263774i \(0.915033\pi\)
\(80\) 5.70163e7 0.155630
\(81\) 0 0
\(82\) 2.41927e7 0.0590910
\(83\) 2.28710e8 3.96138e8i 0.528974 0.916209i −0.470456 0.882424i \(-0.655910\pi\)
0.999429 0.0337854i \(-0.0107563\pi\)
\(84\) 0 0
\(85\) 1.07733e8 + 1.86599e8i 0.223853 + 0.387725i
\(86\) −2.69365e8 4.66554e8i −0.531004 0.919726i
\(87\) 0 0
\(88\) 1.14991e8 1.99170e8i 0.204405 0.354040i
\(89\) −3.18095e7 −0.0537405 −0.0268703 0.999639i \(-0.508554\pi\)
−0.0268703 + 0.999639i \(0.508554\pi\)
\(90\) 0 0
\(91\) −1.69545e8 −0.259179
\(92\) −2.61765e7 + 4.53390e7i −0.0380949 + 0.0659823i
\(93\) 0 0
\(94\) 8.46486e7 + 1.46616e8i 0.111826 + 0.193689i
\(95\) −1.37190e8 2.37621e8i −0.172809 0.299315i
\(96\) 0 0
\(97\) 3.36766e8 5.83296e8i 0.386238 0.668985i −0.605702 0.795692i \(-0.707108\pi\)
0.991940 + 0.126707i \(0.0404409\pi\)
\(98\) −6.31157e8 −0.691226
\(99\) 0 0
\(100\) −3.06234e8 −0.306234
\(101\) −5.28859e8 + 9.16012e8i −0.505701 + 0.875900i 0.494277 + 0.869305i \(0.335433\pi\)
−0.999978 + 0.00659592i \(0.997900\pi\)
\(102\) 0 0
\(103\) −3.97933e8 6.89240e8i −0.348371 0.603397i 0.637589 0.770377i \(-0.279932\pi\)
−0.985960 + 0.166980i \(0.946599\pi\)
\(104\) −3.64737e8 6.31742e8i −0.305724 0.529529i
\(105\) 0 0
\(106\) −1.32930e8 + 2.30241e8i −0.102269 + 0.177136i
\(107\) −1.97413e9 −1.45596 −0.727981 0.685598i \(-0.759541\pi\)
−0.727981 + 0.685598i \(0.759541\pi\)
\(108\) 0 0
\(109\) −1.34465e9 −0.912408 −0.456204 0.889875i \(-0.650791\pi\)
−0.456204 + 0.889875i \(0.650791\pi\)
\(110\) 3.90790e8 6.76868e8i 0.254493 0.440795i
\(111\) 0 0
\(112\) 3.11951e7 + 5.40316e7i 0.0187329 + 0.0324464i
\(113\) −1.35340e9 2.34416e9i −0.780861 1.35249i −0.931441 0.363893i \(-0.881447\pi\)
0.150580 0.988598i \(-0.451886\pi\)
\(114\) 0 0
\(115\) −8.89592e7 + 1.54082e8i −0.0474297 + 0.0821507i
\(116\) −9.83155e8 −0.504152
\(117\) 0 0
\(118\) 1.79576e9 0.852667
\(119\) −1.17887e8 + 2.04186e8i −0.0538896 + 0.0933395i
\(120\) 0 0
\(121\) −3.97325e8 6.88187e8i −0.168505 0.291859i
\(122\) 2.65578e8 + 4.59994e8i 0.108536 + 0.187989i
\(123\) 0 0
\(124\) 1.67604e8 2.90299e8i 0.0636630 0.110268i
\(125\) −2.73993e9 −1.00380
\(126\) 0 0
\(127\) 1.19960e9 0.409185 0.204593 0.978847i \(-0.434413\pi\)
0.204593 + 0.978847i \(0.434413\pi\)
\(128\) −1.34218e8 + 2.32472e8i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.23953e9 2.14694e9i −0.380639 0.659286i
\(131\) −1.39307e9 2.41287e9i −0.413288 0.715836i 0.581959 0.813218i \(-0.302286\pi\)
−0.995247 + 0.0973821i \(0.968953\pi\)
\(132\) 0 0
\(133\) 1.50121e8 2.60017e8i 0.0416015 0.0720559i
\(134\) −1.94196e9 −0.520317
\(135\) 0 0
\(136\) −1.01442e9 −0.254269
\(137\) −1.44117e9 + 2.49617e9i −0.349519 + 0.605385i −0.986164 0.165772i \(-0.946988\pi\)
0.636645 + 0.771157i \(0.280322\pi\)
\(138\) 0 0
\(139\) −1.07821e9 1.86751e9i −0.244982 0.424322i 0.717144 0.696925i \(-0.245449\pi\)
−0.962127 + 0.272603i \(0.912116\pi\)
\(140\) 1.06015e8 + 1.83623e8i 0.0233233 + 0.0403971i
\(141\) 0 0
\(142\) 3.09738e9 5.36482e9i 0.639289 1.10728i
\(143\) −9.99962e9 −1.99973
\(144\) 0 0
\(145\) −3.34119e9 −0.627690
\(146\) −2.04192e9 + 3.53671e9i −0.371921 + 0.644187i
\(147\) 0 0
\(148\) −5.51306e8 9.54890e8i −0.0944528 0.163597i
\(149\) −3.77274e9 6.53458e9i −0.627074 1.08612i −0.988136 0.153582i \(-0.950919\pi\)
0.361062 0.932542i \(-0.382414\pi\)
\(150\) 0 0
\(151\) 2.15654e9 3.73524e9i 0.337568 0.584685i −0.646407 0.762993i \(-0.723729\pi\)
0.983975 + 0.178308i \(0.0570623\pi\)
\(152\) 1.29180e9 0.196290
\(153\) 0 0
\(154\) 8.55246e8 0.122532
\(155\) 5.69592e8 9.86563e8i 0.0792632 0.137288i
\(156\) 0 0
\(157\) 2.11579e9 + 3.66465e9i 0.277922 + 0.481376i 0.970868 0.239614i \(-0.0770209\pi\)
−0.692946 + 0.720990i \(0.743688\pi\)
\(158\) −3.93681e9 6.81876e9i −0.502560 0.870460i
\(159\) 0 0
\(160\) −4.56131e8 + 7.90041e8i −0.0550236 + 0.0953037i
\(161\) −1.94688e8 −0.0228361
\(162\) 0 0
\(163\) 8.28448e8 0.0919223 0.0459612 0.998943i \(-0.485365\pi\)
0.0459612 + 0.998943i \(0.485365\pi\)
\(164\) −1.93541e8 + 3.35223e8i −0.0208918 + 0.0361857i
\(165\) 0 0
\(166\) 3.65936e9 + 6.33820e9i 0.374041 + 0.647858i
\(167\) 1.42750e9 + 2.47250e9i 0.142021 + 0.245987i 0.928257 0.371938i \(-0.121307\pi\)
−0.786237 + 0.617925i \(0.787973\pi\)
\(168\) 0 0
\(169\) −1.05565e10 + 1.82844e10i −0.995472 + 1.72421i
\(170\) −3.44746e9 −0.316576
\(171\) 0 0
\(172\) 8.61967e9 0.750953
\(173\) 8.83451e9 1.53018e10i 0.749851 1.29878i −0.198043 0.980193i \(-0.563459\pi\)
0.947894 0.318587i \(-0.103208\pi\)
\(174\) 0 0
\(175\) −5.69403e8 9.86235e8i −0.0458932 0.0794894i
\(176\) 1.83986e9 + 3.18673e9i 0.144536 + 0.250344i
\(177\) 0 0
\(178\) 2.54476e8 4.40765e8i 0.0190001 0.0329092i
\(179\) −5.86732e8 −0.0427170 −0.0213585 0.999772i \(-0.506799\pi\)
−0.0213585 + 0.999772i \(0.506799\pi\)
\(180\) 0 0
\(181\) −5.43396e9 −0.376325 −0.188162 0.982138i \(-0.560253\pi\)
−0.188162 + 0.982138i \(0.560253\pi\)
\(182\) 1.35636e9 2.34929e9i 0.0916336 0.158714i
\(183\) 0 0
\(184\) −4.18824e8 7.25425e8i −0.0269371 0.0466565i
\(185\) −1.87358e9 3.24513e9i −0.117598 0.203685i
\(186\) 0 0
\(187\) −6.95286e9 + 1.20427e10i −0.415792 + 0.720173i
\(188\) −2.70875e9 −0.158146
\(189\) 0 0
\(190\) 4.39009e9 0.244389
\(191\) −1.61646e10 + 2.79979e10i −0.878851 + 1.52222i −0.0262486 + 0.999655i \(0.508356\pi\)
−0.852603 + 0.522560i \(0.824977\pi\)
\(192\) 0 0
\(193\) 6.46996e9 + 1.12063e10i 0.335655 + 0.581372i 0.983611 0.180306i \(-0.0577089\pi\)
−0.647955 + 0.761679i \(0.724376\pi\)
\(194\) 5.38826e9 + 9.33273e9i 0.273112 + 0.473044i
\(195\) 0 0
\(196\) 5.04925e9 8.74557e9i 0.244385 0.423288i
\(197\) 8.81090e9 0.416795 0.208397 0.978044i \(-0.433175\pi\)
0.208397 + 0.978044i \(0.433175\pi\)
\(198\) 0 0
\(199\) −2.48534e10 −1.12343 −0.561716 0.827330i \(-0.689859\pi\)
−0.561716 + 0.827330i \(0.689859\pi\)
\(200\) 2.44987e9 4.24330e9i 0.108270 0.187529i
\(201\) 0 0
\(202\) −8.46175e9 1.46562e10i −0.357585 0.619355i
\(203\) −1.82805e9 3.16628e9i −0.0755539 0.130863i
\(204\) 0 0
\(205\) −6.57738e8 + 1.13924e9i −0.0260112 + 0.0450528i
\(206\) 1.27339e10 0.492672
\(207\) 0 0
\(208\) 1.16716e10 0.432359
\(209\) 8.85398e9 1.53355e10i 0.320982 0.555956i
\(210\) 0 0
\(211\) 2.32582e10 + 4.02843e10i 0.807801 + 1.39915i 0.914384 + 0.404848i \(0.132675\pi\)
−0.106584 + 0.994304i \(0.533991\pi\)
\(212\) −2.12688e9 3.68386e9i −0.0723154 0.125254i
\(213\) 0 0
\(214\) 1.57931e10 2.73544e10i 0.514760 0.891591i
\(215\) 2.92934e10 0.934969
\(216\) 0 0
\(217\) 1.24656e9 0.0381631
\(218\) 1.07572e10 1.86320e10i 0.322585 0.558734i
\(219\) 0 0
\(220\) 6.25264e9 + 1.08299e10i 0.179954 + 0.311689i
\(221\) 2.20536e10 + 3.81979e10i 0.621890 + 1.07714i
\(222\) 0 0
\(223\) −2.33174e10 + 4.03869e10i −0.631404 + 1.09362i 0.355860 + 0.934539i \(0.384188\pi\)
−0.987265 + 0.159085i \(0.949145\pi\)
\(224\) −9.98244e8 −0.0264924
\(225\) 0 0
\(226\) 4.33088e10 1.10430
\(227\) −1.32934e10 + 2.30248e10i −0.332291 + 0.575545i −0.982961 0.183816i \(-0.941155\pi\)
0.650670 + 0.759361i \(0.274488\pi\)
\(228\) 0 0
\(229\) −1.99954e10 3.46330e10i −0.480474 0.832205i 0.519275 0.854607i \(-0.326202\pi\)
−0.999749 + 0.0224021i \(0.992869\pi\)
\(230\) −1.42335e9 2.46531e9i −0.0335379 0.0580893i
\(231\) 0 0
\(232\) 7.86524e9 1.36230e10i 0.178244 0.308729i
\(233\) 6.53338e9 0.145223 0.0726116 0.997360i \(-0.476867\pi\)
0.0726116 + 0.997360i \(0.476867\pi\)
\(234\) 0 0
\(235\) −9.20553e9 −0.196899
\(236\) −1.43661e10 + 2.48828e10i −0.301463 + 0.522150i
\(237\) 0 0
\(238\) −1.88619e9 3.26698e9i −0.0381057 0.0660010i
\(239\) 2.83386e10 + 4.90840e10i 0.561809 + 0.973082i 0.997339 + 0.0729072i \(0.0232277\pi\)
−0.435530 + 0.900174i \(0.643439\pi\)
\(240\) 0 0
\(241\) −2.30746e9 + 3.99663e9i −0.0440613 + 0.0763163i −0.887215 0.461356i \(-0.847363\pi\)
0.843154 + 0.537673i \(0.180696\pi\)
\(242\) 1.27144e10 0.238302
\(243\) 0 0
\(244\) −8.49849e9 −0.153493
\(245\) 1.71596e10 2.97213e10i 0.304270 0.527011i
\(246\) 0 0
\(247\) −2.80836e10 4.86423e10i −0.480084 0.831530i
\(248\) 2.68167e9 + 4.64478e9i 0.0450166 + 0.0779710i
\(249\) 0 0
\(250\) 2.19195e10 3.79656e10i 0.354895 0.614697i
\(251\) 6.80194e10 1.08169 0.540843 0.841124i \(-0.318105\pi\)
0.540843 + 0.841124i \(0.318105\pi\)
\(252\) 0 0
\(253\) −1.14825e10 −0.176195
\(254\) −9.59681e9 + 1.66222e10i −0.144669 + 0.250574i
\(255\) 0 0
\(256\) −2.14748e9 3.71955e9i −0.0312500 0.0541266i
\(257\) 4.67979e10 + 8.10563e10i 0.669156 + 1.15901i 0.978141 + 0.207945i \(0.0666774\pi\)
−0.308985 + 0.951067i \(0.599989\pi\)
\(258\) 0 0
\(259\) 2.05017e9 3.55100e9i 0.0283101 0.0490345i
\(260\) 3.96651e10 0.538305
\(261\) 0 0
\(262\) 4.45783e10 0.584478
\(263\) 4.70200e10 8.14411e10i 0.606013 1.04965i −0.385877 0.922550i \(-0.626101\pi\)
0.991890 0.127096i \(-0.0405655\pi\)
\(264\) 0 0
\(265\) −7.22805e9 1.25194e10i −0.0900357 0.155946i
\(266\) 2.40193e9 + 4.16027e9i 0.0294167 + 0.0509512i
\(267\) 0 0
\(268\) 1.55356e10 2.69085e10i 0.183960 0.318628i
\(269\) 1.22724e11 1.42904 0.714522 0.699613i \(-0.246644\pi\)
0.714522 + 0.699613i \(0.246644\pi\)
\(270\) 0 0
\(271\) −1.64257e11 −1.84996 −0.924982 0.380012i \(-0.875920\pi\)
−0.924982 + 0.380012i \(0.875920\pi\)
\(272\) 8.11539e9 1.40563e10i 0.0898978 0.155708i
\(273\) 0 0
\(274\) −2.30586e10 3.99387e10i −0.247147 0.428072i
\(275\) −3.35828e10 5.81672e10i −0.354095 0.613311i
\(276\) 0 0
\(277\) −3.25067e10 + 5.63033e10i −0.331752 + 0.574612i −0.982856 0.184377i \(-0.940973\pi\)
0.651103 + 0.758989i \(0.274306\pi\)
\(278\) 3.45026e10 0.346458
\(279\) 0 0
\(280\) −3.39247e9 −0.0329841
\(281\) −2.60482e10 + 4.51168e10i −0.249230 + 0.431678i −0.963312 0.268383i \(-0.913511\pi\)
0.714083 + 0.700061i \(0.246844\pi\)
\(282\) 0 0
\(283\) 4.53496e10 + 7.85478e10i 0.420276 + 0.727939i 0.995966 0.0897286i \(-0.0286000\pi\)
−0.575690 + 0.817668i \(0.695267\pi\)
\(284\) 4.95581e10 + 8.58372e10i 0.452046 + 0.782966i
\(285\) 0 0
\(286\) 7.99970e10 1.38559e11i 0.707011 1.22458i
\(287\) −1.43946e9 −0.0125237
\(288\) 0 0
\(289\) −5.72514e10 −0.482776
\(290\) 2.67295e10 4.62969e10i 0.221922 0.384380i
\(291\) 0 0
\(292\) −3.26707e10 5.65874e10i −0.262988 0.455509i
\(293\) −3.62784e10 6.28361e10i −0.287571 0.498087i 0.685659 0.727923i \(-0.259514\pi\)
−0.973229 + 0.229836i \(0.926181\pi\)
\(294\) 0 0
\(295\) −4.88223e10 + 8.45626e10i −0.375335 + 0.650099i
\(296\) 1.76418e10 0.133576
\(297\) 0 0
\(298\) 1.20728e11 0.886816
\(299\) −1.82105e10 + 3.15415e10i −0.131765 + 0.228224i
\(300\) 0 0
\(301\) 1.60272e10 + 2.77599e10i 0.112540 + 0.194926i
\(302\) 3.45047e10 + 5.97638e10i 0.238697 + 0.413435i
\(303\) 0 0
\(304\) −1.03344e10 + 1.78997e10i −0.0693990 + 0.120203i
\(305\) −2.88816e10 −0.191105
\(306\) 0 0
\(307\) 1.81977e11 1.16921 0.584607 0.811317i \(-0.301249\pi\)
0.584607 + 0.811317i \(0.301249\pi\)
\(308\) −6.84197e9 + 1.18506e10i −0.0433215 + 0.0750350i
\(309\) 0 0
\(310\) 9.11348e9 + 1.57850e10i 0.0560475 + 0.0970772i
\(311\) 4.49148e10 + 7.77946e10i 0.272250 + 0.471550i 0.969438 0.245338i \(-0.0788990\pi\)
−0.697188 + 0.716888i \(0.745566\pi\)
\(312\) 0 0
\(313\) −2.75697e9 + 4.77521e9i −0.0162361 + 0.0281218i −0.874029 0.485873i \(-0.838502\pi\)
0.857793 + 0.513995i \(0.171835\pi\)
\(314\) −6.77052e10 −0.393041
\(315\) 0 0
\(316\) 1.25978e11 0.710727
\(317\) 9.74028e9 1.68707e10i 0.0541757 0.0938351i −0.837666 0.546183i \(-0.816080\pi\)
0.891841 + 0.452348i \(0.149414\pi\)
\(318\) 0 0
\(319\) −1.07817e11 1.86744e11i −0.582946 1.00969i
\(320\) −7.29809e9 1.26407e10i −0.0389076 0.0673899i
\(321\) 0 0
\(322\) 1.55750e9 2.69767e9i 0.00807379 0.0139842i
\(323\) −7.81076e10 −0.399284
\(324\) 0 0
\(325\) −2.13040e11 −1.05922
\(326\) −6.62758e9 + 1.14793e10i −0.0324995 + 0.0562907i
\(327\) 0 0
\(328\) −3.09666e9 5.36358e9i −0.0147728 0.0255872i
\(329\) −5.03659e9 8.72363e9i −0.0237004 0.0410502i
\(330\) 0 0
\(331\) 5.34005e10 9.24924e10i 0.244523 0.423526i −0.717475 0.696585i \(-0.754702\pi\)
0.961997 + 0.273059i \(0.0880354\pi\)
\(332\) −1.17100e11 −0.528974
\(333\) 0 0
\(334\) −4.56800e10 −0.200848
\(335\) 5.27969e10 9.14470e10i 0.229038 0.396705i
\(336\) 0 0
\(337\) 8.78882e10 + 1.52227e11i 0.371190 + 0.642920i 0.989749 0.142819i \(-0.0456166\pi\)
−0.618559 + 0.785738i \(0.712283\pi\)
\(338\) −1.68904e11 2.92550e11i −0.703905 1.21920i
\(339\) 0 0
\(340\) 2.75796e10 4.77693e10i 0.111927 0.193863i
\(341\) 7.35206e10 0.294452
\(342\) 0 0
\(343\) 7.59705e10 0.296361
\(344\) −6.89574e10 + 1.19438e11i −0.265502 + 0.459863i
\(345\) 0 0
\(346\) 1.41352e11 + 2.44829e11i 0.530225 + 0.918376i
\(347\) −4.16513e10 7.21422e10i −0.154222 0.267120i 0.778554 0.627578i \(-0.215954\pi\)
−0.932775 + 0.360458i \(0.882620\pi\)
\(348\) 0 0
\(349\) −1.60684e11 + 2.78313e11i −0.579773 + 1.00420i 0.415732 + 0.909487i \(0.363525\pi\)
−0.995505 + 0.0947093i \(0.969808\pi\)
\(350\) 1.82209e10 0.0649028
\(351\) 0 0
\(352\) −5.88754e10 −0.204405
\(353\) −2.03844e11 + 3.53069e11i −0.698735 + 1.21024i 0.270171 + 0.962812i \(0.412920\pi\)
−0.968905 + 0.247431i \(0.920414\pi\)
\(354\) 0 0
\(355\) 1.68420e11 + 2.91712e11i 0.562816 + 0.974826i
\(356\) 4.07162e9 + 7.05225e9i 0.0134351 + 0.0232703i
\(357\) 0 0
\(358\) 4.69386e9 8.13000e9i 0.0151028 0.0261587i
\(359\) −5.60079e11 −1.77961 −0.889804 0.456343i \(-0.849159\pi\)
−0.889804 + 0.456343i \(0.849159\pi\)
\(360\) 0 0
\(361\) −2.23223e11 −0.691762
\(362\) 4.34717e10 7.52951e10i 0.133051 0.230451i
\(363\) 0 0
\(364\) 2.17018e10 + 3.75887e10i 0.0647948 + 0.112228i
\(365\) −1.11029e11 1.92309e11i −0.327431 0.567128i
\(366\) 0 0
\(367\) −1.88028e11 + 3.25674e11i −0.541036 + 0.937101i 0.457809 + 0.889050i \(0.348634\pi\)
−0.998845 + 0.0480506i \(0.984699\pi\)
\(368\) 1.34024e10 0.0380949
\(369\) 0 0
\(370\) 5.99545e10 0.166308
\(371\) 7.90932e9 1.36993e10i 0.0216749 0.0375420i
\(372\) 0 0
\(373\) 4.06122e10 + 7.03424e10i 0.108634 + 0.188160i 0.915217 0.402961i \(-0.132019\pi\)
−0.806583 + 0.591121i \(0.798686\pi\)
\(374\) −1.11246e11 1.92683e11i −0.294010 0.509239i
\(375\) 0 0
\(376\) 2.16700e10 3.75336e10i 0.0559132 0.0968445i
\(377\) −6.83961e11 −1.74379
\(378\) 0 0
\(379\) 2.02729e11 0.504708 0.252354 0.967635i \(-0.418795\pi\)
0.252354 + 0.967635i \(0.418795\pi\)
\(380\) −3.51207e10 + 6.08309e10i −0.0864047 + 0.149657i
\(381\) 0 0
\(382\) −2.58634e11 4.47967e11i −0.621442 1.07637i
\(383\) 2.38408e10 + 4.12935e10i 0.0566143 + 0.0980589i 0.892944 0.450169i \(-0.148636\pi\)
−0.836329 + 0.548228i \(0.815303\pi\)
\(384\) 0 0
\(385\) −2.32520e10 + 4.02737e10i −0.0539371 + 0.0934217i
\(386\) −2.07039e11 −0.474688
\(387\) 0 0
\(388\) −1.72424e11 −0.386238
\(389\) 9.48973e10 1.64367e11i 0.210126 0.363950i −0.741627 0.670812i \(-0.765946\pi\)
0.951754 + 0.306862i \(0.0992791\pi\)
\(390\) 0 0
\(391\) 2.53239e10 + 4.38623e10i 0.0547943 + 0.0949066i
\(392\) 8.07881e10 + 1.39929e11i 0.172806 + 0.299310i
\(393\) 0 0
\(394\) −7.04872e10 + 1.22087e11i −0.147359 + 0.255234i
\(395\) 4.28129e11 0.884886
\(396\) 0 0
\(397\) 4.00237e11 0.808649 0.404325 0.914616i \(-0.367507\pi\)
0.404325 + 0.914616i \(0.367507\pi\)
\(398\) 1.98827e11 3.44379e11i 0.397193 0.687959i
\(399\) 0 0
\(400\) 3.91979e10 + 6.78928e10i 0.0765584 + 0.132603i
\(401\) −4.38093e11 7.58799e11i −0.846090 1.46547i −0.884671 0.466215i \(-0.845617\pi\)
0.0385813 0.999255i \(-0.487716\pi\)
\(402\) 0 0
\(403\) 1.16599e11 2.01955e11i 0.220202 0.381401i
\(404\) 2.70776e11 0.505701
\(405\) 0 0
\(406\) 5.84977e10 0.106849
\(407\) 1.20917e11 2.09434e11i 0.218430 0.378332i
\(408\) 0 0
\(409\) −2.86150e11 4.95626e11i −0.505637 0.875789i −0.999979 0.00652133i \(-0.997924\pi\)
0.494342 0.869268i \(-0.335409\pi\)
\(410\) −1.05238e10 1.82278e10i −0.0183927 0.0318571i
\(411\) 0 0
\(412\) −1.01871e11 + 1.76445e11i −0.174186 + 0.301698i
\(413\) −1.06848e11 −0.180713
\(414\) 0 0
\(415\) −3.97956e11 −0.658595
\(416\) −9.33725e10 + 1.61726e11i −0.152862 + 0.264765i
\(417\) 0 0
\(418\) 1.41664e11 + 2.45369e11i 0.226968 + 0.393121i
\(419\) −2.08346e11 3.60866e11i −0.330235 0.571983i 0.652323 0.757941i \(-0.273795\pi\)
−0.982558 + 0.185958i \(0.940461\pi\)
\(420\) 0 0
\(421\) 5.95217e11 1.03095e12i 0.923434 1.59943i 0.129374 0.991596i \(-0.458703\pi\)
0.794060 0.607839i \(-0.207963\pi\)
\(422\) −7.44261e11 −1.14240
\(423\) 0 0
\(424\) 6.80600e10 0.102269
\(425\) −1.48130e11 + 2.56568e11i −0.220238 + 0.381463i
\(426\) 0 0
\(427\) −1.58019e10 2.73697e10i −0.0230029 0.0398422i
\(428\) 2.52689e11 + 4.37671e11i 0.363990 + 0.630450i
\(429\) 0 0
\(430\) −2.34347e11 + 4.05902e11i −0.330561 + 0.572549i
\(431\) −4.36455e11 −0.609245 −0.304622 0.952473i \(-0.598530\pi\)
−0.304622 + 0.952473i \(0.598530\pi\)
\(432\) 0 0
\(433\) 4.48430e11 0.613055 0.306527 0.951862i \(-0.400833\pi\)
0.306527 + 0.951862i \(0.400833\pi\)
\(434\) −9.97245e9 + 1.72728e10i −0.0134927 + 0.0233700i
\(435\) 0 0
\(436\) 1.72115e11 + 2.98112e11i 0.228102 + 0.395084i
\(437\) −3.22482e10 5.58556e10i −0.0422999 0.0732656i
\(438\) 0 0
\(439\) 3.29851e11 5.71319e11i 0.423866 0.734157i −0.572448 0.819941i \(-0.694006\pi\)
0.996314 + 0.0857843i \(0.0273396\pi\)
\(440\) −2.00085e11 −0.254493
\(441\) 0 0
\(442\) −7.05714e11 −0.879485
\(443\) −4.74253e11 + 8.21431e11i −0.585051 + 1.01334i 0.409818 + 0.912167i \(0.365592\pi\)
−0.994869 + 0.101171i \(0.967741\pi\)
\(444\) 0 0
\(445\) 1.38371e10 + 2.39666e10i 0.0167273 + 0.0289726i
\(446\) −3.73078e11 6.46190e11i −0.446470 0.773309i
\(447\) 0 0
\(448\) 7.98595e9 1.38321e10i 0.00936647 0.0162232i
\(449\) −6.11763e11 −0.710354 −0.355177 0.934799i \(-0.615579\pi\)
−0.355177 + 0.934799i \(0.615579\pi\)
\(450\) 0 0
\(451\) −8.48981e10 −0.0966282
\(452\) −3.46471e11 + 6.00105e11i −0.390430 + 0.676245i
\(453\) 0 0
\(454\) −2.12694e11 3.68397e11i −0.234965 0.406972i
\(455\) 7.37523e10 + 1.27743e11i 0.0806723 + 0.139728i
\(456\) 0 0
\(457\) 1.89516e11 3.28252e11i 0.203247 0.352034i −0.746326 0.665581i \(-0.768184\pi\)
0.949573 + 0.313547i \(0.101517\pi\)
\(458\) 6.39852e11 0.679492
\(459\) 0 0
\(460\) 4.55471e10 0.0474297
\(461\) 4.45031e11 7.70817e11i 0.458919 0.794872i −0.539985 0.841675i \(-0.681570\pi\)
0.998904 + 0.0468032i \(0.0149034\pi\)
\(462\) 0 0
\(463\) −6.64261e11 1.15053e12i −0.671776 1.16355i −0.977400 0.211397i \(-0.932199\pi\)
0.305625 0.952152i \(-0.401135\pi\)
\(464\) 1.25844e11 + 2.17968e11i 0.126038 + 0.218304i
\(465\) 0 0
\(466\) −5.22670e10 + 9.05291e10i −0.0513441 + 0.0889307i
\(467\) 1.65638e12 1.61151 0.805755 0.592249i \(-0.201760\pi\)
0.805755 + 0.592249i \(0.201760\pi\)
\(468\) 0 0
\(469\) 1.15546e11 0.110275
\(470\) 7.36443e10 1.27556e11i 0.0696143 0.120576i
\(471\) 0 0
\(472\) −2.29857e11 3.98125e11i −0.213167 0.369216i
\(473\) 9.45269e11 + 1.63725e12i 0.868321 + 1.50398i
\(474\) 0 0
\(475\) 1.88633e11 3.26721e11i 0.170018 0.294480i
\(476\) 6.03582e10 0.0538896
\(477\) 0 0
\(478\) −9.06837e11 −0.794518
\(479\) 5.39866e11 9.35075e11i 0.468571 0.811590i −0.530783 0.847508i \(-0.678102\pi\)
0.999355 + 0.0359180i \(0.0114355\pi\)
\(480\) 0 0
\(481\) −3.83532e11 6.64298e11i −0.326700 0.565861i
\(482\) −3.69193e10 6.39461e10i −0.0311560 0.0539638i
\(483\) 0 0
\(484\) −1.01715e11 + 1.76176e11i −0.0842523 + 0.145929i
\(485\) −5.85973e11 −0.480883
\(486\) 0 0
\(487\) 1.60549e12 1.29338 0.646690 0.762753i \(-0.276153\pi\)
0.646690 + 0.762753i \(0.276153\pi\)
\(488\) 6.79879e10 1.17759e11i 0.0542678 0.0939946i
\(489\) 0 0
\(490\) 2.74553e11 + 4.75540e11i 0.215151 + 0.372653i
\(491\) −3.96815e11 6.87303e11i −0.308121 0.533681i 0.669831 0.742514i \(-0.266367\pi\)
−0.977951 + 0.208833i \(0.933033\pi\)
\(492\) 0 0
\(493\) −4.75567e11 + 8.23706e11i −0.362577 + 0.628002i
\(494\) 8.98677e11 0.678941
\(495\) 0 0
\(496\) −8.58134e10 −0.0636630
\(497\) −1.84294e11 + 3.19207e11i −0.135490 + 0.234676i
\(498\) 0 0
\(499\) 9.84754e11 + 1.70564e12i 0.711010 + 1.23150i 0.964479 + 0.264161i \(0.0850951\pi\)
−0.253469 + 0.967344i \(0.581572\pi\)
\(500\) 3.50712e11 + 6.07450e11i 0.250949 + 0.434656i
\(501\) 0 0
\(502\) −5.44155e11 + 9.42504e11i −0.382434 + 0.662394i
\(503\) −5.42230e11 −0.377683 −0.188842 0.982008i \(-0.560473\pi\)
−0.188842 + 0.982008i \(0.560473\pi\)
\(504\) 0 0
\(505\) 9.20216e11 0.629620
\(506\) 9.18599e10 1.59106e11i 0.0622944 0.107897i
\(507\) 0 0
\(508\) −1.53549e11 2.65954e11i −0.102296 0.177182i
\(509\) 8.46074e11 + 1.46544e12i 0.558699 + 0.967696i 0.997605 + 0.0691628i \(0.0220328\pi\)
−0.438906 + 0.898533i \(0.644634\pi\)
\(510\) 0 0
\(511\) 1.21494e11 2.10434e11i 0.0788246 0.136528i
\(512\) 6.87195e10 0.0441942
\(513\) 0 0
\(514\) −1.49753e12 −0.946329
\(515\) −3.46202e11 + 5.99639e11i −0.216869 + 0.375627i
\(516\) 0 0
\(517\) −2.97053e11 5.14511e11i −0.182863 0.316729i
\(518\) 3.28027e10 + 5.68160e10i 0.0200182 + 0.0346726i
\(519\) 0 0
\(520\) −3.17321e11 + 5.49616e11i −0.190320 + 0.329643i
\(521\) 2.97596e12 1.76953 0.884764 0.466040i \(-0.154320\pi\)
0.884764 + 0.466040i \(0.154320\pi\)
\(522\) 0 0
\(523\) −1.07989e12 −0.631137 −0.315568 0.948903i \(-0.602195\pi\)
−0.315568 + 0.948903i \(0.602195\pi\)
\(524\) −3.56627e11 + 6.17695e11i −0.206644 + 0.357918i
\(525\) 0 0
\(526\) 7.52321e11 + 1.30306e12i 0.428516 + 0.742212i
\(527\) −1.62145e11 2.80844e11i −0.0915707 0.158605i
\(528\) 0 0
\(529\) 8.79665e11 1.52363e12i 0.488390 0.845917i
\(530\) 2.31298e11 0.127330
\(531\) 0 0
\(532\) −7.68619e10 −0.0416015
\(533\) −1.34643e11 + 2.33208e11i −0.0722621 + 0.125162i
\(534\) 0 0
\(535\) 8.58749e11 + 1.48740e12i 0.453183 + 0.784937i
\(536\) 2.48570e11 + 4.30537e11i 0.130079 + 0.225304i
\(537\) 0 0
\(538\) −9.81795e11 + 1.70052e12i −0.505244 + 0.875107i
\(539\) 2.21489e12 1.13032
\(540\) 0 0
\(541\) −2.02167e12 −1.01467 −0.507333 0.861750i \(-0.669369\pi\)
−0.507333 + 0.861750i \(0.669369\pi\)
\(542\) 1.31406e12 2.27602e12i 0.654061 1.13287i
\(543\) 0 0
\(544\) 1.29846e11 + 2.24900e11i 0.0635674 + 0.110102i
\(545\) 5.84922e11 + 1.01311e12i 0.283997 + 0.491897i
\(546\) 0 0
\(547\) 1.31306e12 2.27429e12i 0.627107 1.08618i −0.361022 0.932557i \(-0.617572\pi\)
0.988129 0.153624i \(-0.0490944\pi\)
\(548\) 7.37876e11 0.349519
\(549\) 0 0
\(550\) 1.07465e12 0.500766
\(551\) 6.05601e11 1.04893e12i 0.279901 0.484802i
\(552\) 0 0
\(553\) 2.34240e11 + 4.05716e11i 0.106512 + 0.184484i
\(554\) −5.20107e11 9.00852e11i −0.234584 0.406312i
\(555\) 0 0
\(556\) −2.76021e11 + 4.78082e11i −0.122491 + 0.212161i
\(557\) 3.48482e12 1.53402 0.767012 0.641633i \(-0.221743\pi\)
0.767012 + 0.641633i \(0.221743\pi\)
\(558\) 0 0
\(559\) 5.99653e12 2.59745
\(560\) 2.71398e10 4.70075e10i 0.0116617 0.0201986i
\(561\) 0 0
\(562\) −4.16772e11 7.21870e11i −0.176232 0.305243i
\(563\) 1.38546e12 + 2.39968e12i 0.581173 + 1.00662i 0.995341 + 0.0964202i \(0.0307393\pi\)
−0.414168 + 0.910200i \(0.635927\pi\)
\(564\) 0 0
\(565\) −1.17746e12 + 2.03942e12i −0.486102 + 0.841954i
\(566\) −1.45119e12 −0.594360
\(567\) 0 0
\(568\) −1.58586e12 −0.639289
\(569\) 3.35191e11 5.80568e11i 0.134056 0.232192i −0.791180 0.611583i \(-0.790533\pi\)
0.925237 + 0.379391i \(0.123866\pi\)
\(570\) 0 0
\(571\) −1.33562e12 2.31336e12i −0.525798 0.910710i −0.999548 0.0300503i \(-0.990433\pi\)
0.473750 0.880659i \(-0.342900\pi\)
\(572\) 1.27995e12 + 2.21694e12i 0.499933 + 0.865909i
\(573\) 0 0
\(574\) 1.15157e10 1.99458e10i 0.00442779 0.00766916i
\(575\) −2.44633e11 −0.0933274
\(576\) 0 0
\(577\) −6.59284e11 −0.247618 −0.123809 0.992306i \(-0.539511\pi\)
−0.123809 + 0.992306i \(0.539511\pi\)
\(578\) 4.58011e11 7.93299e11i 0.170687 0.295639i
\(579\) 0 0
\(580\) 4.27673e11 + 7.40751e11i 0.156923 + 0.271798i
\(581\) −2.17732e11 3.77123e11i −0.0792738 0.137306i
\(582\) 0 0
\(583\) 4.66484e11 8.07973e11i 0.167235 0.289660i
\(584\) 1.04546e12 0.371921
\(585\) 0 0
\(586\) 1.16091e12 0.406686
\(587\) −5.24733e11 + 9.08864e11i −0.182418 + 0.315956i −0.942703 0.333632i \(-0.891726\pi\)
0.760286 + 0.649589i \(0.225059\pi\)
\(588\) 0 0
\(589\) 2.06481e11 + 3.57635e11i 0.0706904 + 0.122439i
\(590\) −7.81156e11 1.35300e12i −0.265402 0.459689i
\(591\) 0 0
\(592\) −1.41134e11 + 2.44452e11i −0.0472264 + 0.0817986i
\(593\) −1.31188e12 −0.435662 −0.217831 0.975987i \(-0.569898\pi\)
−0.217831 + 0.975987i \(0.569898\pi\)
\(594\) 0 0
\(595\) 2.05124e11 0.0670949
\(596\) −9.65821e11 + 1.67285e12i −0.313537 + 0.543062i
\(597\) 0 0
\(598\) −2.91367e11 5.04663e11i −0.0931721 0.161379i
\(599\) 1.68801e12 + 2.92373e12i 0.535742 + 0.927932i 0.999127 + 0.0417749i \(0.0133012\pi\)
−0.463385 + 0.886157i \(0.653365\pi\)
\(600\) 0 0
\(601\) −1.31940e12 + 2.28527e12i −0.412517 + 0.714501i −0.995164 0.0982246i \(-0.968684\pi\)
0.582647 + 0.812725i \(0.302017\pi\)
\(602\) −5.12871e11 −0.159156
\(603\) 0 0
\(604\) −1.10415e12 −0.337568
\(605\) −3.45673e11 + 5.98723e11i −0.104898 + 0.181688i
\(606\) 0 0
\(607\) 2.57969e12 + 4.46816e12i 0.771293 + 1.33592i 0.936855 + 0.349719i \(0.113723\pi\)
−0.165562 + 0.986199i \(0.552944\pi\)
\(608\) −1.65350e11 2.86395e11i −0.0490725 0.0849960i
\(609\) 0 0
\(610\) 2.31053e11 4.00195e11i 0.0675658 0.117027i
\(611\) −1.88443e12 −0.547008
\(612\) 0 0
\(613\) −5.37354e11 −0.153705 −0.0768525 0.997042i \(-0.524487\pi\)
−0.0768525 + 0.997042i \(0.524487\pi\)
\(614\) −1.45582e12 + 2.52155e12i −0.413380 + 0.715995i
\(615\) 0 0
\(616\) −1.09472e11 1.89610e11i −0.0306329 0.0530577i
\(617\) −2.31679e12 4.01280e12i −0.643582 1.11472i −0.984627 0.174669i \(-0.944114\pi\)
0.341046 0.940047i \(-0.389219\pi\)
\(618\) 0 0
\(619\) −1.53134e12 + 2.65235e12i −0.419240 + 0.726145i −0.995863 0.0908655i \(-0.971037\pi\)
0.576623 + 0.817010i \(0.304370\pi\)
\(620\) −2.91631e11 −0.0792632
\(621\) 0 0
\(622\) −1.43727e12 −0.385019
\(623\) −1.51413e10 + 2.62255e10i −0.00402687 + 0.00697475i
\(624\) 0 0
\(625\) 2.36830e10 + 4.10202e10i 0.00620836 + 0.0107532i
\(626\) −4.41115e10 7.64034e10i −0.0114807 0.0198851i
\(627\) 0 0
\(628\) 5.41641e11 9.38150e11i 0.138961 0.240688i
\(629\) −1.06670e12 −0.271715
\(630\) 0 0
\(631\) −5.46928e10 −0.0137340 −0.00686702 0.999976i \(-0.502186\pi\)
−0.00686702 + 0.999976i \(0.502186\pi\)
\(632\) −1.00782e12 + 1.74560e12i −0.251280 + 0.435230i
\(633\) 0 0
\(634\) 1.55844e11 + 2.69930e11i 0.0383080 + 0.0663514i
\(635\) −5.21826e11 9.03830e11i −0.127363 0.220600i
\(636\) 0 0
\(637\) 3.51266e12 6.08411e12i 0.845297 1.46410i
\(638\) 3.45014e12 0.824410
\(639\) 0 0
\(640\) 2.33539e11 0.0550236
\(641\) 2.39034e12 4.14019e12i 0.559240 0.968633i −0.438320 0.898819i \(-0.644426\pi\)
0.997560 0.0698136i \(-0.0222404\pi\)
\(642\) 0 0
\(643\) −2.05242e12 3.55490e12i −0.473497 0.820121i 0.526043 0.850458i \(-0.323675\pi\)
−0.999540 + 0.0303374i \(0.990342\pi\)
\(644\) 2.49200e10 + 4.31628e10i 0.00570903 + 0.00988833i
\(645\) 0 0
\(646\) 6.24861e11 1.08229e12i 0.141168 0.244511i
\(647\) −5.49263e12 −1.23228 −0.616142 0.787635i \(-0.711305\pi\)
−0.616142 + 0.787635i \(0.711305\pi\)
\(648\) 0 0
\(649\) −6.30178e12 −1.39432
\(650\) 1.70432e12 2.95198e12i 0.374492 0.648638i
\(651\) 0 0
\(652\) −1.06041e11 1.83669e11i −0.0229806 0.0398035i
\(653\) −2.07997e12 3.60262e12i −0.447660 0.775369i 0.550573 0.834787i \(-0.314409\pi\)
−0.998233 + 0.0594172i \(0.981076\pi\)
\(654\) 0 0
\(655\) −1.21197e12 + 2.09920e12i −0.257281 + 0.445623i
\(656\) 9.90932e10 0.0208918
\(657\) 0 0
\(658\) 1.61171e11 0.0335174
\(659\) −1.07647e12 + 1.86451e12i −0.222341 + 0.385105i −0.955518 0.294932i \(-0.904703\pi\)
0.733178 + 0.680037i \(0.238036\pi\)
\(660\) 0 0
\(661\) −4.31989e12 7.48227e12i −0.880169 1.52450i −0.851152 0.524919i \(-0.824096\pi\)
−0.0290173 0.999579i \(-0.509238\pi\)
\(662\) 8.54408e11 + 1.47988e12i 0.172904 + 0.299478i
\(663\) 0 0
\(664\) 9.36797e11 1.62258e12i 0.187020 0.323929i
\(665\) −2.61210e11 −0.0517956
\(666\) 0 0
\(667\) −7.85387e11 −0.153645
\(668\) 3.65440e11 6.32960e11i 0.0710104 0.122994i
\(669\) 0 0
\(670\) 8.44751e11 + 1.46315e12i 0.161954 + 0.280513i
\(671\) −9.31979e11 1.61423e12i −0.177482 0.307408i
\(672\) 0 0
\(673\) 1.45394e12 2.51830e12i 0.273199 0.473195i −0.696480 0.717576i \(-0.745252\pi\)
0.969679 + 0.244381i \(0.0785849\pi\)
\(674\) −2.81242e12 −0.524942
\(675\) 0 0
\(676\) 5.40492e12 0.995472
\(677\) −2.13411e12 + 3.69639e12i −0.390452 + 0.676283i −0.992509 0.122170i \(-0.961015\pi\)
0.602057 + 0.798453i \(0.294348\pi\)
\(678\) 0 0
\(679\) −3.20601e11 5.55298e11i −0.0578830 0.100256i
\(680\) 4.41274e11 + 7.64309e11i 0.0791441 + 0.137082i
\(681\) 0 0
\(682\) −5.88165e11 + 1.01873e12i −0.104105 + 0.180314i
\(683\) −7.69165e11 −0.135247 −0.0676233 0.997711i \(-0.521542\pi\)
−0.0676233 + 0.997711i \(0.521542\pi\)
\(684\) 0 0
\(685\) 2.50763e12 0.435166
\(686\) −6.07764e11 + 1.05268e12i −0.104779 + 0.181483i
\(687\) 0 0
\(688\) −1.10332e12 1.91100e12i −0.187738 0.325172i
\(689\) −1.47962e12 2.56278e12i −0.250129 0.433237i
\(690\) 0 0
\(691\) −6.93242e11 + 1.20073e12i −0.115673 + 0.200352i −0.918049 0.396467i \(-0.870236\pi\)
0.802375 + 0.596820i \(0.203569\pi\)
\(692\) −4.52327e12 −0.749851
\(693\) 0 0
\(694\) 1.33284e12 0.218103
\(695\) −9.38039e11 + 1.62473e12i −0.152507 + 0.264150i
\(696\) 0 0
\(697\) 1.87238e11 + 3.24305e11i 0.0300501 + 0.0520483i
\(698\) −2.57094e12 4.45300e12i −0.409962 0.710074i
\(699\) 0 0
\(700\) −1.45767e11 + 2.52476e11i −0.0229466 + 0.0397447i
\(701\) −5.51186e12 −0.862119 −0.431059 0.902324i \(-0.641860\pi\)
−0.431059 + 0.902324i \(0.641860\pi\)
\(702\) 0 0
\(703\) 1.35837e12 0.209758
\(704\) 4.71004e11 8.15802e11i 0.0722682 0.125172i
\(705\) 0 0
\(706\) −3.26151e12 5.64910e12i −0.494080 0.855772i
\(707\) 5.03474e11 + 8.72043e11i 0.0757862 + 0.131265i
\(708\) 0 0
\(709\) −1.21576e12 + 2.10576e12i −0.180693 + 0.312969i −0.942117 0.335286i \(-0.891167\pi\)
0.761424 + 0.648254i \(0.224501\pi\)
\(710\) −5.38944e12 −0.795942
\(711\) 0 0
\(712\) −1.30292e11 −0.0190001
\(713\) 1.33890e11 2.31904e11i 0.0194019 0.0336050i
\(714\) 0 0
\(715\) 4.34984e12 + 7.53414e12i 0.622437 + 1.07809i
\(716\) 7.51017e10 + 1.30080e11i 0.0106793 + 0.0184970i
\(717\) 0 0
\(718\) 4.48063e12 7.76068e12i 0.629186 1.08978i
\(719\) −2.70890e12 −0.378018 −0.189009 0.981975i \(-0.560528\pi\)
−0.189009 + 0.981975i \(0.560528\pi\)
\(720\) 0 0
\(721\) −7.57664e11 −0.104416
\(722\) 1.78579e12 3.09307e12i 0.244575 0.423616i
\(723\) 0 0
\(724\) 6.95546e11 + 1.20472e12i 0.0940811 + 0.162953i
\(725\) −2.29702e12 3.97856e12i −0.308776 0.534816i
\(726\) 0 0
\(727\) −2.63323e11 + 4.56089e11i −0.0349611 + 0.0605543i −0.882977 0.469417i \(-0.844464\pi\)
0.848015 + 0.529971i \(0.177797\pi\)
\(728\) −6.94458e11 −0.0916336
\(729\) 0 0
\(730\) 3.55294e12 0.463058
\(731\) 4.16946e12 7.22172e12i 0.540073 0.935433i
\(732\) 0 0
\(733\) 1.39005e12 + 2.40763e12i 0.177853 + 0.308051i 0.941145 0.338003i \(-0.109751\pi\)
−0.763292 + 0.646054i \(0.776418\pi\)
\(734\) −3.00845e12 5.21079e12i −0.382570 0.662630i
\(735\) 0 0
\(736\) −1.07219e11 + 1.85709e11i −0.0134686 + 0.0233283i
\(737\) 6.81481e12 0.850844
\(738\) 0 0
\(739\) −2.36558e12 −0.291768 −0.145884 0.989302i \(-0.546603\pi\)
−0.145884 + 0.989302i \(0.546603\pi\)
\(740\) −4.79636e11 + 8.30754e11i −0.0587989 + 0.101843i
\(741\) 0 0
\(742\) 1.26549e11 + 2.19189e11i 0.0153264 + 0.0265462i
\(743\) −6.56989e12 1.13794e13i −0.790876 1.36984i −0.925425 0.378930i \(-0.876292\pi\)
0.134550 0.990907i \(-0.457041\pi\)
\(744\) 0 0
\(745\) −3.28228e12 + 5.68508e12i −0.390367 + 0.676135i
\(746\) −1.29959e12 −0.153632
\(747\) 0 0
\(748\) 3.55987e12 0.415792
\(749\) −9.39688e11 + 1.62759e12i −0.109098 + 0.188963i
\(750\) 0 0
\(751\) 3.64718e12 + 6.31710e12i 0.418387 + 0.724667i 0.995777 0.0918011i \(-0.0292624\pi\)
−0.577391 + 0.816468i \(0.695929\pi\)
\(752\) 3.46721e11 + 6.00538e11i 0.0395366 + 0.0684794i
\(753\) 0 0
\(754\) 5.47169e12 9.47724e12i 0.616524 1.06785i
\(755\) −3.75238e12 −0.420287
\(756\) 0 0
\(757\) −1.63020e13 −1.80430 −0.902150 0.431423i \(-0.858012\pi\)
−0.902150 + 0.431423i \(0.858012\pi\)
\(758\) −1.62183e12 + 2.80910e12i −0.178441 + 0.309069i
\(759\) 0 0
\(760\) −5.61931e11 9.73294e11i −0.0610973 0.105824i
\(761\) 4.84472e12 + 8.39131e12i 0.523646 + 0.906982i 0.999621 + 0.0275231i \(0.00876197\pi\)
−0.475975 + 0.879459i \(0.657905\pi\)
\(762\) 0 0
\(763\) −6.40052e11 + 1.10860e12i −0.0683683 + 0.118417i
\(764\) 8.27629e12 0.878851
\(765\) 0 0
\(766\) −7.62906e11 −0.0800648
\(767\) −9.99420e12 + 1.73105e13i −1.04272 + 1.80605i
\(768\) 0 0
\(769\) −6.06644e12 1.05074e13i −0.625554 1.08349i −0.988433 0.151656i \(-0.951539\pi\)
0.362879 0.931836i \(-0.381794\pi\)
\(770\) −3.72032e11 6.44379e11i −0.0381393 0.0660591i
\(771\) 0 0
\(772\) 1.65631e12 2.86881e12i 0.167828 0.290686i
\(773\) −1.68647e13 −1.69891 −0.849454 0.527663i \(-0.823068\pi\)
−0.849454 + 0.527663i \(0.823068\pi\)
\(774\) 0 0
\(775\) 1.56635e12 0.155966
\(776\) 1.37939e12 2.38918e12i 0.136556 0.236522i
\(777\) 0 0
\(778\) 1.51836e12 + 2.62987e12i 0.148582 + 0.257351i
\(779\) −2.38434e11 4.12980e11i −0.0231979 0.0401800i
\(780\) 0 0
\(781\) −1.08695e13 + 1.88265e13i −1.04539 + 1.81067i
\(782\) −8.10366e11 −0.0774909
\(783\) 0 0
\(784\) −2.58522e12 −0.244385
\(785\) 1.84073e12 3.18825e12i 0.173013 0.299667i
\(786\) 0 0
\(787\) 3.00058e12 + 5.19716e12i 0.278817 + 0.482925i 0.971091 0.238710i \(-0.0767245\pi\)
−0.692274 + 0.721635i \(0.743391\pi\)
\(788\) −1.12779e12 1.95340e12i −0.104199 0.180477i
\(789\) 0 0
\(790\) −3.42503e12 + 5.93232e12i −0.312854 + 0.541880i
\(791\) −2.57688e12 −0.234045
\(792\) 0 0
\(793\) −5.91223e12 −0.530911
\(794\) −3.20190e12 + 5.54585e12i −0.285901 + 0.495195i
\(795\) 0 0
\(796\) 3.18123e12 + 5.51006e12i 0.280858 + 0.486460i
\(797\) 7.15775e12 + 1.23976e13i 0.628368 + 1.08837i 0.987879 + 0.155225i \(0.0496102\pi\)
−0.359511 + 0.933141i \(0.617056\pi\)
\(798\) 0 0
\(799\) −1.31026e12 + 2.26945e12i −0.113736 + 0.196997i
\(800\) −1.25433e12 −0.108270
\(801\) 0 0
\(802\) 1.40190e13 1.19655
\(803\) 7.16561e12 1.24112e13i 0.608181 1.05340i
\(804\) 0 0
\(805\) 8.46892e10 + 1.46686e11i 0.00710799 + 0.0123114i
\(806\) 1.86558e12 + 3.23128e12i 0.155706 + 0.269691i
\(807\) 0 0
\(808\) −2.16621e12 + 3.75198e12i −0.178792 + 0.309678i
\(809\) −1.09893e13 −0.901992 −0.450996 0.892526i \(-0.648931\pi\)
−0.450996 + 0.892526i \(0.648931\pi\)
\(810\) 0 0
\(811\) 2.15444e13 1.74880 0.874399 0.485207i \(-0.161256\pi\)
0.874399 + 0.485207i \(0.161256\pi\)
\(812\) −4.67982e11 + 8.10568e11i −0.0377770 + 0.0654316i
\(813\) 0 0
\(814\) 1.93467e12 + 3.35095e12i 0.154453 + 0.267521i
\(815\) −3.60375e11 6.24188e11i −0.0286118 0.0495571i
\(816\) 0 0
\(817\) −5.30952e12 + 9.19635e12i −0.416923 + 0.722132i
\(818\) 9.15680e12 0.715079
\(819\) 0 0
\(820\) 3.36762e11 0.0260112
\(821\) −2.85874e12 + 4.95148e12i −0.219599 + 0.380357i −0.954685 0.297617i \(-0.903808\pi\)
0.735086 + 0.677973i \(0.237142\pi\)
\(822\) 0 0
\(823\) 5.02622e12 + 8.70567e12i 0.381893 + 0.661459i 0.991333 0.131374i \(-0.0419388\pi\)
−0.609440 + 0.792833i \(0.708605\pi\)
\(824\) −1.62993e12 2.82313e12i −0.123168 0.213333i
\(825\) 0 0
\(826\) 8.54783e11 1.48053e12i 0.0638918 0.110664i
\(827\) 2.29581e13 1.70672 0.853359 0.521324i \(-0.174562\pi\)
0.853359 + 0.521324i \(0.174562\pi\)
\(828\) 0 0
\(829\) −1.57277e13 −1.15657 −0.578283 0.815836i \(-0.696277\pi\)
−0.578283 + 0.815836i \(0.696277\pi\)
\(830\) 3.18364e12 5.51423e12i 0.232848 0.403305i
\(831\) 0 0
\(832\) −1.49396e12 2.58762e12i −0.108090 0.187217i
\(833\) −4.88480e12 8.46072e12i −0.351515 0.608842i
\(834\) 0 0
\(835\) 1.24192e12 2.15108e12i 0.0884109 0.153132i
\(836\) −4.53324e12 −0.320982
\(837\) 0 0
\(838\) 6.66708e12 0.467022
\(839\) 4.26084e12 7.37999e12i 0.296870 0.514194i −0.678548 0.734556i \(-0.737391\pi\)
0.975418 + 0.220362i \(0.0707239\pi\)
\(840\) 0 0
\(841\) −1.20955e11 2.09500e11i −0.00833762 0.0144412i
\(842\) 9.52347e12 + 1.64951e13i 0.652966 + 1.13097i
\(843\) 0 0
\(844\) 5.95409e12 1.03128e13i 0.403900 0.699576i
\(845\) 1.83683e13 1.23941
\(846\) 0 0
\(847\) −7.56507e11 −0.0505054
\(848\) −5.44480e11 + 9.43067e11i −0.0361577 + 0.0626270i
\(849\) 0 0
\(850\) −2.37008e12 4.10509e12i −0.155732 0.269735i
\(851\) −4.40407e11 7.62808e11i −0.0287854 0.0498577i
\(852\) 0 0
\(853\) 9.15802e11 1.58621e12i 0.0592285 0.102587i −0.834891 0.550416i \(-0.814469\pi\)
0.894119 + 0.447829i \(0.147803\pi\)
\(854\) 5.05660e11 0.0325311
\(855\) 0 0
\(856\) −8.08606e12 −0.514760
\(857\) 3.10036e11 5.36998e11i 0.0196335 0.0340063i −0.856042 0.516907i \(-0.827083\pi\)
0.875675 + 0.482900i \(0.160417\pi\)
\(858\) 0 0
\(859\) 2.85791e12 + 4.95004e12i 0.179093 + 0.310198i 0.941570 0.336817i \(-0.109350\pi\)
−0.762477 + 0.647015i \(0.776017\pi\)
\(860\) −3.74956e12 6.49443e12i −0.233742 0.404853i
\(861\) 0 0
\(862\) 3.49164e12 6.04770e12i 0.215401 0.373085i
\(863\) 2.02596e13 1.24332 0.621658 0.783289i \(-0.286460\pi\)
0.621658 + 0.783289i \(0.286460\pi\)
\(864\) 0 0
\(865\) −1.53720e13 −0.933596
\(866\) −3.58744e12 + 6.21363e12i −0.216748 + 0.375418i
\(867\) 0 0
\(868\) −1.59559e11 2.76365e11i −0.00954076 0.0165251i
\(869\) 1.38153e13 + 2.39287e13i 0.821808 + 1.42341i
\(870\) 0 0
\(871\) 1.08078e13 1.87197e13i 0.636293 1.10209i
\(872\) −5.50768e12 −0.322585
\(873\) 0 0
\(874\) 1.03194e12 0.0598211
\(875\) −1.30421e12 + 2.25896e12i −0.0752161 + 0.130278i
\(876\) 0 0
\(877\) 4.57286e10 + 7.92043e10i 0.00261030 + 0.00452117i 0.867328 0.497738i \(-0.165836\pi\)
−0.864717 + 0.502259i \(0.832502\pi\)
\(878\) 5.27762e12 + 9.14111e12i 0.299718 + 0.519127i
\(879\) 0 0
\(880\) 1.60068e12 2.77245e12i 0.0899770 0.155845i
\(881\) 1.73150e13 0.968347 0.484174 0.874972i \(-0.339120\pi\)
0.484174 + 0.874972i \(0.339120\pi\)
\(882\) 0 0
\(883\) 1.38781e13 0.768259 0.384130 0.923279i \(-0.374502\pi\)
0.384130 + 0.923279i \(0.374502\pi\)
\(884\) 5.64571e12 9.77866e12i 0.310945 0.538572i
\(885\) 0 0
\(886\) −7.58805e12 1.31429e13i −0.413693 0.716538i
\(887\) −8.82928e12 1.52928e13i −0.478926 0.829525i 0.520782 0.853690i \(-0.325641\pi\)
−0.999708 + 0.0241651i \(0.992307\pi\)
\(888\) 0 0
\(889\) 5.71010e11 9.89018e11i 0.0306610 0.0531063i
\(890\) −4.42788e11 −0.0236560
\(891\) 0 0
\(892\) 1.19385e13 0.631404
\(893\) 1.66853e12 2.88998e12i 0.0878016 0.152077i
\(894\) 0 0
\(895\) 2.55228e11 + 4.42069e11i 0.0132961 + 0.0230296i
\(896\) 1.27775e11 + 2.21313e11i 0.00662309 + 0.0114715i
\(897\) 0 0
\(898\) 4.89410e12 8.47684e12i 0.251148 0.435001i
\(899\) 5.02872e12 0.256767
\(900\) 0 0
\(901\) −4.11520e12 −0.208032
\(902\) 6.79185e11 1.17638e12i 0.0341632 0.0591724i
\(903\) 0 0
\(904\) −5.54353e12 9.60168e12i −0.276076 0.478178i
\(905\) 2.36377e12 + 4.09417e12i 0.117135 + 0.202884i
\(906\) 0 0
\(907\) −6.19619e12 + 1.07321e13i −0.304013 + 0.526565i −0.977041 0.213051i \(-0.931660\pi\)
0.673028 + 0.739617i \(0.264993\pi\)
\(908\) 6.80620e12 0.332291
\(909\) 0 0
\(910\) −2.36007e12 −0.114088
\(911\) 6.90519e12 1.19601e13i 0.332157 0.575312i −0.650778 0.759268i \(-0.725557\pi\)
0.982934 + 0.183956i \(0.0588904\pi\)
\(912\) 0 0
\(913\) −1.28416e13 2.22423e13i −0.611647 1.05940i
\(914\) 3.03226e12 + 5.25203e12i 0.143717 + 0.248925i
\(915\) 0 0
\(916\) −5.11881e12 + 8.86604e12i −0.240237 + 0.416102i
\(917\) −2.65241e12 −0.123874
\(918\) 0 0
\(919\) 8.56606e11 0.0396152 0.0198076 0.999804i \(-0.493695\pi\)
0.0198076 + 0.999804i \(0.493695\pi\)
\(920\) −3.64377e11 + 6.31120e11i −0.0167689 + 0.0290447i
\(921\) 0 0
\(922\) 7.12050e12 + 1.23331e13i 0.324505 + 0.562059i
\(923\) 3.44766e13 + 5.97152e13i 1.56357 + 2.70818i
\(924\) 0 0
\(925\) 2.57612e12 4.46197e12i 0.115699 0.200396i
\(926\) 2.12563e13 0.950034
\(927\) 0 0
\(928\) −4.02700e12 −0.178244
\(929\) −6.45846e12 + 1.11864e13i −0.284484 + 0.492741i −0.972484 0.232970i \(-0.925156\pi\)
0.688000 + 0.725711i \(0.258489\pi\)
\(930\) 0 0
\(931\) 6.22045e12 + 1.07741e13i 0.271361 + 0.470012i
\(932\) −8.36272e11 1.44847e12i −0.0363058 0.0628835i
\(933\) 0 0
\(934\) −1.32510e13 + 2.29514e13i −0.569755 + 0.986844i
\(935\) 1.20980e13 0.517679
\(936\) 0 0
\(937\) −3.67867e12 −0.155906 −0.0779530 0.996957i \(-0.524838\pi\)
−0.0779530 + 0.996957i \(0.524838\pi\)
\(938\) −9.24371e11 + 1.60106e12i −0.0389882 + 0.0675296i
\(939\) 0 0
\(940\) 1.17831e12 + 2.04089e12i 0.0492248 + 0.0852598i
\(941\) −2.22573e13 3.85507e13i −0.925376 1.60280i −0.790955 0.611874i \(-0.790416\pi\)
−0.134421 0.990924i \(-0.542917\pi\)
\(942\) 0 0
\(943\) −1.54609e11 + 2.67791e11i −0.00636697 + 0.0110279i
\(944\) 7.35544e12 0.301463
\(945\) 0 0
\(946\) −3.02486e13 −1.22799
\(947\) 9.97716e12 1.72810e13i 0.403118 0.698221i −0.590982 0.806684i \(-0.701260\pi\)
0.994100 + 0.108464i \(0.0345931\pi\)
\(948\) 0 0
\(949\) −2.27284e13 3.93667e13i −0.909641 1.57555i
\(950\) 3.01812e12 + 5.22754e12i 0.120221 + 0.208229i
\(951\) 0 0
\(952\) −4.82866e11 + 8.36348e11i −0.0190529 + 0.0330005i
\(953\) 7.13202e12 0.280088 0.140044 0.990145i \(-0.455276\pi\)
0.140044 + 0.990145i \(0.455276\pi\)
\(954\) 0 0
\(955\) 2.81264e13 1.09421
\(956\) 7.25469e12 1.25655e13i 0.280904 0.486541i
\(957\) 0 0
\(958\) 8.63785e12 + 1.49612e13i 0.331330 + 0.573880i
\(959\) 1.37199e12 + 2.37635e12i 0.0523802 + 0.0907251i
\(960\) 0 0
\(961\) 1.23625e13 2.14125e13i 0.467576 0.809866i
\(962\) 1.22730e13 0.462024
\(963\) 0 0
\(964\) 1.18142e12 0.0440613
\(965\) 5.62886e12 9.74948e12i 0.208953 0.361917i
\(966\) 0 0
\(967\) −1.42088e12 2.46103e12i −0.0522562 0.0905104i 0.838714 0.544572i \(-0.183308\pi\)
−0.890970 + 0.454062i \(0.849975\pi\)
\(968\) −1.62744e12 2.81882e12i −0.0595754 0.103188i
\(969\) 0 0
\(970\) 4.68778e12 8.11948e12i 0.170018 0.294480i
\(971\) −3.90309e13 −1.40903 −0.704517 0.709687i \(-0.748836\pi\)
−0.704517 + 0.709687i \(0.748836\pi\)
\(972\) 0 0
\(973\) −2.05290e12 −0.0734278
\(974\) −1.28439e13 + 2.22463e13i −0.457279 + 0.792030i
\(975\) 0 0
\(976\) 1.08781e12 + 1.88414e12i 0.0383731 + 0.0664642i
\(977\) 1.08778e13 + 1.88409e13i 0.381958 + 0.661570i 0.991342 0.131305i \(-0.0419167\pi\)
−0.609384 + 0.792875i \(0.708583\pi\)
\(978\) 0 0
\(979\) −8.93020e11 + 1.54676e12i −0.0310699 + 0.0538146i
\(980\) −8.78570e12 −0.304270
\(981\) 0 0
\(982\) 1.26981e13 0.435749
\(983\) −2.32499e13 + 4.02700e13i −0.794201 + 1.37560i 0.129144 + 0.991626i \(0.458777\pi\)
−0.923345 + 0.383971i \(0.874556\pi\)
\(984\) 0 0
\(985\) −3.83274e12 6.63850e12i −0.129732 0.224702i
\(986\) −7.60907e12 1.31793e13i −0.256381 0.444064i
\(987\) 0 0
\(988\) −7.18941e12 + 1.24524e13i −0.240042 + 0.415765i
\(989\) 6.88577e12 0.228860
\(990\) 0 0
\(991\) −1.55209e13 −0.511194 −0.255597 0.966783i \(-0.582272\pi\)
−0.255597 + 0.966783i \(0.582272\pi\)
\(992\) 6.86507e11 1.18906e12i 0.0225083 0.0389855i
\(993\) 0 0
\(994\) −2.94871e12 5.10731e12i −0.0958061 0.165941i
\(995\) 1.08112e13 + 1.87256e13i 0.349680 + 0.605664i
\(996\) 0 0
\(997\) 2.13167e13 3.69216e13i 0.683268 1.18346i −0.290709 0.956811i \(-0.593891\pi\)
0.973978 0.226644i \(-0.0727754\pi\)
\(998\) −3.15121e13 −1.00552
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.10.c.b.55.1 2
3.2 odd 2 162.10.c.i.55.1 2
9.2 odd 6 18.10.a.a.1.1 1
9.4 even 3 inner 162.10.c.b.109.1 2
9.5 odd 6 162.10.c.i.109.1 2
9.7 even 3 2.10.a.a.1.1 1
36.7 odd 6 16.10.a.d.1.1 1
36.11 even 6 144.10.a.d.1.1 1
45.7 odd 12 50.10.b.a.49.2 2
45.34 even 6 50.10.a.c.1.1 1
45.43 odd 12 50.10.b.a.49.1 2
63.16 even 3 98.10.c.c.67.1 2
63.25 even 3 98.10.c.c.79.1 2
63.34 odd 6 98.10.a.c.1.1 1
63.52 odd 6 98.10.c.b.79.1 2
63.61 odd 6 98.10.c.b.67.1 2
72.43 odd 6 64.10.a.b.1.1 1
72.61 even 6 64.10.a.h.1.1 1
99.43 odd 6 242.10.a.a.1.1 1
117.25 even 6 338.10.a.a.1.1 1
144.43 odd 12 256.10.b.e.129.1 2
144.61 even 12 256.10.b.g.129.1 2
144.115 odd 12 256.10.b.e.129.2 2
144.133 even 12 256.10.b.g.129.2 2
180.7 even 12 400.10.c.d.49.1 2
180.43 even 12 400.10.c.d.49.2 2
180.79 odd 6 400.10.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.10.a.a.1.1 1 9.7 even 3
16.10.a.d.1.1 1 36.7 odd 6
18.10.a.a.1.1 1 9.2 odd 6
50.10.a.c.1.1 1 45.34 even 6
50.10.b.a.49.1 2 45.43 odd 12
50.10.b.a.49.2 2 45.7 odd 12
64.10.a.b.1.1 1 72.43 odd 6
64.10.a.h.1.1 1 72.61 even 6
98.10.a.c.1.1 1 63.34 odd 6
98.10.c.b.67.1 2 63.61 odd 6
98.10.c.b.79.1 2 63.52 odd 6
98.10.c.c.67.1 2 63.16 even 3
98.10.c.c.79.1 2 63.25 even 3
144.10.a.d.1.1 1 36.11 even 6
162.10.c.b.55.1 2 1.1 even 1 trivial
162.10.c.b.109.1 2 9.4 even 3 inner
162.10.c.i.55.1 2 3.2 odd 2
162.10.c.i.109.1 2 9.5 odd 6
242.10.a.a.1.1 1 99.43 odd 6
256.10.b.e.129.1 2 144.43 odd 12
256.10.b.e.129.2 2 144.115 odd 12
256.10.b.g.129.1 2 144.61 even 12
256.10.b.g.129.2 2 144.133 even 12
338.10.a.a.1.1 1 117.25 even 6
400.10.a.b.1.1 1 180.79 odd 6
400.10.c.d.49.1 2 180.7 even 12
400.10.c.d.49.2 2 180.43 even 12