L(s) = 1 | + (−8 + 13.8i)2-s + (−127. − 221. i)4-s + (−435 − 753. i)5-s + (476 − 824. i)7-s + 4.09e3·8-s + 1.39e4·10-s + (2.80e4 − 4.86e4i)11-s + (−8.90e4 − 1.54e5i)13-s + (7.61e3 + 1.31e4i)14-s + (−3.27e4 + 5.67e4i)16-s − 2.47e5·17-s + 3.15e5·19-s + (−1.11e5 + 1.92e5i)20-s + (4.49e5 + 7.78e5i)22-s + (−1.02e5 − 1.77e5i)23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.311 − 0.539i)5-s + (0.0749 − 0.129i)7-s + 0.353·8-s + 0.440·10-s + (0.578 − 1.00i)11-s + (−0.864 − 1.49i)13-s + (0.0529 + 0.0917i)14-s + (−0.125 + 0.216i)16-s − 0.719·17-s + 0.555·19-s + (−0.155 + 0.269i)20-s + (0.408 + 0.708i)22-s + (−0.0761 − 0.131i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(0.6678959148\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6678959148\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (8 - 13.8i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (435 + 753. i)T + (-9.76e5 + 1.69e6i)T^{2} \) |
| 7 | \( 1 + (-476 + 824. i)T + (-2.01e7 - 3.49e7i)T^{2} \) |
| 11 | \( 1 + (-2.80e4 + 4.86e4i)T + (-1.17e9 - 2.04e9i)T^{2} \) |
| 13 | \( 1 + (8.90e4 + 1.54e5i)T + (-5.30e9 + 9.18e9i)T^{2} \) |
| 17 | \( 1 + 2.47e5T + 1.18e11T^{2} \) |
| 19 | \( 1 - 3.15e5T + 3.22e11T^{2} \) |
| 23 | \( 1 + (1.02e5 + 1.77e5i)T + (-9.00e11 + 1.55e12i)T^{2} \) |
| 29 | \( 1 + (-1.92e6 + 3.32e6i)T + (-7.25e12 - 1.25e13i)T^{2} \) |
| 31 | \( 1 + (-6.54e5 - 1.13e6i)T + (-1.32e13 + 2.28e13i)T^{2} \) |
| 37 | \( 1 - 4.30e6T + 1.29e14T^{2} \) |
| 41 | \( 1 + (7.56e5 + 1.30e6i)T + (-1.63e14 + 2.83e14i)T^{2} \) |
| 43 | \( 1 + (1.68e7 - 2.91e7i)T + (-2.51e14 - 4.35e14i)T^{2} \) |
| 47 | \( 1 + (-5.29e6 + 9.16e6i)T + (-5.59e14 - 9.69e14i)T^{2} \) |
| 53 | \( 1 - 1.66e7T + 3.29e15T^{2} \) |
| 59 | \( 1 + (5.61e7 + 9.71e7i)T + (-4.33e15 + 7.50e15i)T^{2} \) |
| 61 | \( 1 + (-1.65e7 + 2.87e7i)T + (-5.84e15 - 1.01e16i)T^{2} \) |
| 67 | \( 1 + (-6.06e7 - 1.05e8i)T + (-1.36e16 + 2.35e16i)T^{2} \) |
| 71 | \( 1 + 3.87e8T + 4.58e16T^{2} \) |
| 73 | \( 1 - 2.55e8T + 5.88e16T^{2} \) |
| 79 | \( 1 + (2.46e8 - 4.26e8i)T + (-5.99e16 - 1.03e17i)T^{2} \) |
| 83 | \( 1 + (-2.28e8 + 3.96e8i)T + (-9.34e16 - 1.61e17i)T^{2} \) |
| 89 | \( 1 + 3.18e7T + 3.50e17T^{2} \) |
| 97 | \( 1 + (-3.36e8 + 5.83e8i)T + (-3.80e17 - 6.58e17i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57988663322676913665785370772, −9.552167270638106311525394859276, −8.457306209923211588869671144318, −7.81617423914516531894557493136, −6.52796391555725148667006725522, −5.44128610419513505449664148497, −4.36892134348968473739454488772, −2.86996092897739428115678814173, −1.01661319344092732578391792401, −0.20204467513050155024171218852,
1.51515986189496776702302930027, 2.50478634252530627421851677641, 3.88803369608805795454145471938, 4.87698346552909634861670500894, 6.76134582621943394800244861428, 7.35872476887102815344393405587, 8.867053828290336048503856375896, 9.583502587939571103210191951444, 10.63316754859130191429382468223, 11.72785004790774023299234776713