Properties

Label 161.4.a.b.1.3
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [161,4,Mod(1,161)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("161.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(161, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} - 23x^{5} + 587x^{4} + 594x^{3} - 2430x^{2} - 3403x + 110 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.91250\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.91250 q^{2} +3.10924 q^{3} +0.482647 q^{4} +2.69280 q^{5} -9.05565 q^{6} -7.00000 q^{7} +21.8943 q^{8} -17.3326 q^{9} -7.84277 q^{10} -6.61362 q^{11} +1.50066 q^{12} +21.3608 q^{13} +20.3875 q^{14} +8.37256 q^{15} -67.6282 q^{16} -117.295 q^{17} +50.4813 q^{18} +92.4022 q^{19} +1.29967 q^{20} -21.7647 q^{21} +19.2621 q^{22} +23.0000 q^{23} +68.0746 q^{24} -117.749 q^{25} -62.2133 q^{26} -137.841 q^{27} -3.37853 q^{28} -137.861 q^{29} -24.3851 q^{30} -245.826 q^{31} +21.8129 q^{32} -20.5633 q^{33} +341.621 q^{34} -18.8496 q^{35} -8.36554 q^{36} -78.4997 q^{37} -269.121 q^{38} +66.4158 q^{39} +58.9569 q^{40} -226.452 q^{41} +63.3896 q^{42} -557.321 q^{43} -3.19204 q^{44} -46.6733 q^{45} -66.9875 q^{46} +278.354 q^{47} -210.272 q^{48} +49.0000 q^{49} +342.943 q^{50} -364.698 q^{51} +10.3097 q^{52} +114.979 q^{53} +401.461 q^{54} -17.8091 q^{55} -153.260 q^{56} +287.301 q^{57} +401.521 q^{58} +311.388 q^{59} +4.04099 q^{60} +449.956 q^{61} +715.967 q^{62} +121.328 q^{63} +477.496 q^{64} +57.5203 q^{65} +59.8906 q^{66} -881.349 q^{67} -56.6120 q^{68} +71.5125 q^{69} +54.8994 q^{70} +1040.80 q^{71} -379.485 q^{72} +83.8276 q^{73} +228.630 q^{74} -366.109 q^{75} +44.5976 q^{76} +46.2953 q^{77} -193.436 q^{78} -622.942 q^{79} -182.109 q^{80} +39.4012 q^{81} +659.540 q^{82} +1410.12 q^{83} -10.5046 q^{84} -315.852 q^{85} +1623.20 q^{86} -428.644 q^{87} -144.800 q^{88} +1240.47 q^{89} +135.936 q^{90} -149.526 q^{91} +11.1009 q^{92} -764.331 q^{93} -810.705 q^{94} +248.821 q^{95} +67.8214 q^{96} +727.667 q^{97} -142.712 q^{98} +114.631 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{3} + 24 q^{4} - 24 q^{5} - 41 q^{6} - 56 q^{7} - 69 q^{8} + 95 q^{9} - 30 q^{10} - 98 q^{11} - 131 q^{12} - 145 q^{13} - 232 q^{15} - 76 q^{16} - 96 q^{17} - 69 q^{18} - 226 q^{19} - 22 q^{20}+ \cdots - 1676 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.91250 −1.02972 −0.514862 0.857273i \(-0.672157\pi\)
−0.514862 + 0.857273i \(0.672157\pi\)
\(3\) 3.10924 0.598373 0.299187 0.954195i \(-0.403285\pi\)
0.299187 + 0.954195i \(0.403285\pi\)
\(4\) 0.482647 0.0603308
\(5\) 2.69280 0.240851 0.120426 0.992722i \(-0.461574\pi\)
0.120426 + 0.992722i \(0.461574\pi\)
\(6\) −9.05565 −0.616159
\(7\) −7.00000 −0.377964
\(8\) 21.8943 0.967600
\(9\) −17.3326 −0.641949
\(10\) −7.84277 −0.248010
\(11\) −6.61362 −0.181280 −0.0906400 0.995884i \(-0.528891\pi\)
−0.0906400 + 0.995884i \(0.528891\pi\)
\(12\) 1.50066 0.0361004
\(13\) 21.3608 0.455724 0.227862 0.973693i \(-0.426826\pi\)
0.227862 + 0.973693i \(0.426826\pi\)
\(14\) 20.3875 0.389199
\(15\) 8.37256 0.144119
\(16\) −67.6282 −1.05669
\(17\) −117.295 −1.67342 −0.836712 0.547643i \(-0.815525\pi\)
−0.836712 + 0.547643i \(0.815525\pi\)
\(18\) 50.4813 0.661030
\(19\) 92.4022 1.11571 0.557856 0.829938i \(-0.311624\pi\)
0.557856 + 0.829938i \(0.311624\pi\)
\(20\) 1.29967 0.0145308
\(21\) −21.7647 −0.226164
\(22\) 19.2621 0.186668
\(23\) 23.0000 0.208514
\(24\) 68.0746 0.578986
\(25\) −117.749 −0.941991
\(26\) −62.2133 −0.469270
\(27\) −137.841 −0.982499
\(28\) −3.37853 −0.0228029
\(29\) −137.861 −0.882766 −0.441383 0.897319i \(-0.645512\pi\)
−0.441383 + 0.897319i \(0.645512\pi\)
\(30\) −24.3851 −0.148403
\(31\) −245.826 −1.42425 −0.712123 0.702055i \(-0.752266\pi\)
−0.712123 + 0.702055i \(0.752266\pi\)
\(32\) 21.8129 0.120500
\(33\) −20.5633 −0.108473
\(34\) 341.621 1.72316
\(35\) −18.8496 −0.0910332
\(36\) −8.36554 −0.0387293
\(37\) −78.4997 −0.348791 −0.174396 0.984676i \(-0.555797\pi\)
−0.174396 + 0.984676i \(0.555797\pi\)
\(38\) −269.121 −1.14887
\(39\) 66.4158 0.272693
\(40\) 58.9569 0.233048
\(41\) −226.452 −0.862581 −0.431290 0.902213i \(-0.641942\pi\)
−0.431290 + 0.902213i \(0.641942\pi\)
\(42\) 63.3896 0.232886
\(43\) −557.321 −1.97653 −0.988263 0.152762i \(-0.951183\pi\)
−0.988263 + 0.152762i \(0.951183\pi\)
\(44\) −3.19204 −0.0109368
\(45\) −46.6733 −0.154614
\(46\) −66.9875 −0.214712
\(47\) 278.354 0.863874 0.431937 0.901904i \(-0.357830\pi\)
0.431937 + 0.901904i \(0.357830\pi\)
\(48\) −210.272 −0.632296
\(49\) 49.0000 0.142857
\(50\) 342.943 0.969990
\(51\) −364.698 −1.00133
\(52\) 10.3097 0.0274942
\(53\) 114.979 0.297993 0.148997 0.988838i \(-0.452396\pi\)
0.148997 + 0.988838i \(0.452396\pi\)
\(54\) 401.461 1.01170
\(55\) −17.8091 −0.0436615
\(56\) −153.260 −0.365718
\(57\) 287.301 0.667612
\(58\) 401.521 0.909005
\(59\) 311.388 0.687106 0.343553 0.939133i \(-0.388370\pi\)
0.343553 + 0.939133i \(0.388370\pi\)
\(60\) 4.04099 0.00869482
\(61\) 449.956 0.944442 0.472221 0.881480i \(-0.343452\pi\)
0.472221 + 0.881480i \(0.343452\pi\)
\(62\) 715.967 1.46658
\(63\) 121.328 0.242634
\(64\) 477.496 0.932609
\(65\) 57.5203 0.109762
\(66\) 59.8906 0.111697
\(67\) −881.349 −1.60707 −0.803537 0.595255i \(-0.797051\pi\)
−0.803537 + 0.595255i \(0.797051\pi\)
\(68\) −56.6120 −0.100959
\(69\) 71.5125 0.124769
\(70\) 54.8994 0.0937391
\(71\) 1040.80 1.73971 0.869857 0.493303i \(-0.164211\pi\)
0.869857 + 0.493303i \(0.164211\pi\)
\(72\) −379.485 −0.621150
\(73\) 83.8276 0.134401 0.0672006 0.997739i \(-0.478593\pi\)
0.0672006 + 0.997739i \(0.478593\pi\)
\(74\) 228.630 0.359159
\(75\) −366.109 −0.563662
\(76\) 44.5976 0.0673118
\(77\) 46.2953 0.0685174
\(78\) −193.436 −0.280799
\(79\) −622.942 −0.887170 −0.443585 0.896232i \(-0.646294\pi\)
−0.443585 + 0.896232i \(0.646294\pi\)
\(80\) −182.109 −0.254505
\(81\) 39.4012 0.0540483
\(82\) 659.540 0.888220
\(83\) 1410.12 1.86483 0.932417 0.361385i \(-0.117696\pi\)
0.932417 + 0.361385i \(0.117696\pi\)
\(84\) −10.5046 −0.0136447
\(85\) −315.852 −0.403046
\(86\) 1623.20 2.03528
\(87\) −428.644 −0.528224
\(88\) −144.800 −0.175406
\(89\) 1240.47 1.47742 0.738708 0.674025i \(-0.235436\pi\)
0.738708 + 0.674025i \(0.235436\pi\)
\(90\) 135.936 0.159210
\(91\) −149.526 −0.172248
\(92\) 11.1009 0.0125798
\(93\) −764.331 −0.852231
\(94\) −810.705 −0.889551
\(95\) 248.821 0.268721
\(96\) 67.8214 0.0721041
\(97\) 727.667 0.761684 0.380842 0.924640i \(-0.375634\pi\)
0.380842 + 0.924640i \(0.375634\pi\)
\(98\) −142.712 −0.147103
\(99\) 114.631 0.116373
\(100\) −56.8311 −0.0568311
\(101\) −1658.97 −1.63440 −0.817198 0.576357i \(-0.804474\pi\)
−0.817198 + 0.576357i \(0.804474\pi\)
\(102\) 1062.18 1.03110
\(103\) −1045.68 −1.00033 −0.500163 0.865931i \(-0.666727\pi\)
−0.500163 + 0.865931i \(0.666727\pi\)
\(104\) 467.679 0.440959
\(105\) −58.6079 −0.0544719
\(106\) −334.877 −0.306851
\(107\) −1074.22 −0.970552 −0.485276 0.874361i \(-0.661281\pi\)
−0.485276 + 0.874361i \(0.661281\pi\)
\(108\) −66.5284 −0.0592750
\(109\) −1081.53 −0.950382 −0.475191 0.879883i \(-0.657621\pi\)
−0.475191 + 0.879883i \(0.657621\pi\)
\(110\) 51.8691 0.0449593
\(111\) −244.074 −0.208707
\(112\) 473.398 0.399392
\(113\) 237.825 0.197989 0.0989944 0.995088i \(-0.468437\pi\)
0.0989944 + 0.995088i \(0.468437\pi\)
\(114\) −836.763 −0.687456
\(115\) 61.9344 0.0502210
\(116\) −66.5383 −0.0532580
\(117\) −370.239 −0.292552
\(118\) −906.917 −0.707529
\(119\) 821.065 0.632495
\(120\) 183.311 0.139449
\(121\) −1287.26 −0.967138
\(122\) −1310.50 −0.972515
\(123\) −704.093 −0.516145
\(124\) −118.647 −0.0859260
\(125\) −653.674 −0.467731
\(126\) −353.369 −0.249846
\(127\) 2634.80 1.84095 0.920476 0.390798i \(-0.127801\pi\)
0.920476 + 0.390798i \(0.127801\pi\)
\(128\) −1565.21 −1.08083
\(129\) −1732.84 −1.18270
\(130\) −167.528 −0.113024
\(131\) −607.236 −0.404996 −0.202498 0.979283i \(-0.564906\pi\)
−0.202498 + 0.979283i \(0.564906\pi\)
\(132\) −9.92481 −0.00654427
\(133\) −646.816 −0.421699
\(134\) 2566.93 1.65484
\(135\) −371.178 −0.236636
\(136\) −2568.09 −1.61920
\(137\) −353.025 −0.220153 −0.110076 0.993923i \(-0.535110\pi\)
−0.110076 + 0.993923i \(0.535110\pi\)
\(138\) −208.280 −0.128478
\(139\) −1536.42 −0.937537 −0.468768 0.883321i \(-0.655302\pi\)
−0.468768 + 0.883321i \(0.655302\pi\)
\(140\) −9.09770 −0.00549211
\(141\) 865.469 0.516919
\(142\) −3031.32 −1.79143
\(143\) −141.272 −0.0826137
\(144\) 1172.18 0.678342
\(145\) −371.233 −0.212615
\(146\) −244.148 −0.138396
\(147\) 152.353 0.0854819
\(148\) −37.8876 −0.0210429
\(149\) 2973.83 1.63507 0.817537 0.575877i \(-0.195339\pi\)
0.817537 + 0.575877i \(0.195339\pi\)
\(150\) 1066.29 0.580416
\(151\) 2846.85 1.53426 0.767130 0.641491i \(-0.221684\pi\)
0.767130 + 0.641491i \(0.221684\pi\)
\(152\) 2023.08 1.07956
\(153\) 2033.03 1.07425
\(154\) −134.835 −0.0705540
\(155\) −661.960 −0.343032
\(156\) 32.0554 0.0164518
\(157\) 1548.18 0.786994 0.393497 0.919326i \(-0.371265\pi\)
0.393497 + 0.919326i \(0.371265\pi\)
\(158\) 1814.32 0.913540
\(159\) 357.499 0.178311
\(160\) 58.7377 0.0290226
\(161\) −161.000 −0.0788110
\(162\) −114.756 −0.0556548
\(163\) 310.390 0.149151 0.0745755 0.997215i \(-0.476240\pi\)
0.0745755 + 0.997215i \(0.476240\pi\)
\(164\) −109.296 −0.0520402
\(165\) −55.3729 −0.0261259
\(166\) −4106.98 −1.92026
\(167\) −1510.10 −0.699733 −0.349866 0.936800i \(-0.613773\pi\)
−0.349866 + 0.936800i \(0.613773\pi\)
\(168\) −476.522 −0.218836
\(169\) −1740.72 −0.792315
\(170\) 919.918 0.415026
\(171\) −1601.57 −0.716230
\(172\) −268.989 −0.119245
\(173\) 482.353 0.211981 0.105990 0.994367i \(-0.466199\pi\)
0.105990 + 0.994367i \(0.466199\pi\)
\(174\) 1248.43 0.543924
\(175\) 824.242 0.356039
\(176\) 447.267 0.191557
\(177\) 968.179 0.411146
\(178\) −3612.88 −1.52133
\(179\) −511.329 −0.213511 −0.106756 0.994285i \(-0.534046\pi\)
−0.106756 + 0.994285i \(0.534046\pi\)
\(180\) −22.5267 −0.00932801
\(181\) 1042.16 0.427975 0.213987 0.976836i \(-0.431355\pi\)
0.213987 + 0.976836i \(0.431355\pi\)
\(182\) 435.493 0.177367
\(183\) 1399.02 0.565129
\(184\) 503.568 0.201758
\(185\) −211.384 −0.0840068
\(186\) 2226.11 0.877562
\(187\) 775.744 0.303358
\(188\) 134.347 0.0521182
\(189\) 964.885 0.371350
\(190\) −724.690 −0.276708
\(191\) −2127.59 −0.806006 −0.403003 0.915199i \(-0.632034\pi\)
−0.403003 + 0.915199i \(0.632034\pi\)
\(192\) 1484.65 0.558048
\(193\) 4077.76 1.52085 0.760424 0.649427i \(-0.224991\pi\)
0.760424 + 0.649427i \(0.224991\pi\)
\(194\) −2119.33 −0.784324
\(195\) 178.844 0.0656786
\(196\) 23.6497 0.00861869
\(197\) 369.376 0.133589 0.0667943 0.997767i \(-0.478723\pi\)
0.0667943 + 0.997767i \(0.478723\pi\)
\(198\) −333.864 −0.119832
\(199\) −2522.81 −0.898680 −0.449340 0.893361i \(-0.648341\pi\)
−0.449340 + 0.893361i \(0.648341\pi\)
\(200\) −2578.03 −0.911470
\(201\) −2740.33 −0.961630
\(202\) 4831.76 1.68298
\(203\) 965.030 0.333654
\(204\) −176.020 −0.0604112
\(205\) −609.789 −0.207754
\(206\) 3045.53 1.03006
\(207\) −398.651 −0.133856
\(208\) −1444.59 −0.481560
\(209\) −611.113 −0.202256
\(210\) 170.695 0.0560910
\(211\) −2591.27 −0.845454 −0.422727 0.906257i \(-0.638927\pi\)
−0.422727 + 0.906257i \(0.638927\pi\)
\(212\) 55.4944 0.0179782
\(213\) 3236.08 1.04100
\(214\) 3128.67 0.999401
\(215\) −1500.75 −0.476049
\(216\) −3017.92 −0.950665
\(217\) 1720.78 0.538314
\(218\) 3149.95 0.978631
\(219\) 260.640 0.0804221
\(220\) −8.59552 −0.00263414
\(221\) −2505.51 −0.762620
\(222\) 710.866 0.214911
\(223\) −4704.56 −1.41274 −0.706369 0.707844i \(-0.749668\pi\)
−0.706369 + 0.707844i \(0.749668\pi\)
\(224\) −152.690 −0.0455448
\(225\) 2040.90 0.604710
\(226\) −692.666 −0.203874
\(227\) 4721.94 1.38065 0.690323 0.723502i \(-0.257469\pi\)
0.690323 + 0.723502i \(0.257469\pi\)
\(228\) 138.665 0.0402776
\(229\) −1926.09 −0.555806 −0.277903 0.960609i \(-0.589639\pi\)
−0.277903 + 0.960609i \(0.589639\pi\)
\(230\) −180.384 −0.0517137
\(231\) 143.943 0.0409990
\(232\) −3018.38 −0.854164
\(233\) 4781.29 1.34435 0.672173 0.740394i \(-0.265361\pi\)
0.672173 + 0.740394i \(0.265361\pi\)
\(234\) 1078.32 0.301248
\(235\) 749.551 0.208065
\(236\) 150.290 0.0414537
\(237\) −1936.87 −0.530859
\(238\) −2391.35 −0.651295
\(239\) 1729.86 0.468182 0.234091 0.972215i \(-0.424789\pi\)
0.234091 + 0.972215i \(0.424789\pi\)
\(240\) −566.221 −0.152289
\(241\) −3219.05 −0.860404 −0.430202 0.902733i \(-0.641558\pi\)
−0.430202 + 0.902733i \(0.641558\pi\)
\(242\) 3749.14 0.995884
\(243\) 3844.21 1.01484
\(244\) 217.170 0.0569790
\(245\) 131.947 0.0344073
\(246\) 2050.67 0.531487
\(247\) 1973.78 0.508457
\(248\) −5382.18 −1.37810
\(249\) 4384.41 1.11587
\(250\) 1903.82 0.481634
\(251\) −5176.51 −1.30175 −0.650873 0.759187i \(-0.725597\pi\)
−0.650873 + 0.759187i \(0.725597\pi\)
\(252\) 58.5588 0.0146383
\(253\) −152.113 −0.0377995
\(254\) −7673.86 −1.89567
\(255\) −982.059 −0.241172
\(256\) 738.701 0.180347
\(257\) −4945.64 −1.20039 −0.600196 0.799853i \(-0.704911\pi\)
−0.600196 + 0.799853i \(0.704911\pi\)
\(258\) 5046.90 1.21785
\(259\) 549.498 0.131831
\(260\) 27.7620 0.00662202
\(261\) 2389.50 0.566691
\(262\) 1768.57 0.417034
\(263\) −891.240 −0.208959 −0.104479 0.994527i \(-0.533318\pi\)
−0.104479 + 0.994527i \(0.533318\pi\)
\(264\) −450.219 −0.104959
\(265\) 309.617 0.0717720
\(266\) 1883.85 0.434234
\(267\) 3856.93 0.884047
\(268\) −425.380 −0.0969561
\(269\) −1444.07 −0.327311 −0.163656 0.986518i \(-0.552329\pi\)
−0.163656 + 0.986518i \(0.552329\pi\)
\(270\) 1081.05 0.243670
\(271\) −6168.63 −1.38272 −0.691361 0.722510i \(-0.742989\pi\)
−0.691361 + 0.722510i \(0.742989\pi\)
\(272\) 7932.45 1.76829
\(273\) −464.911 −0.103068
\(274\) 1028.18 0.226697
\(275\) 778.746 0.170764
\(276\) 34.5153 0.00752745
\(277\) −3884.61 −0.842612 −0.421306 0.906918i \(-0.638428\pi\)
−0.421306 + 0.906918i \(0.638428\pi\)
\(278\) 4474.83 0.965404
\(279\) 4260.81 0.914294
\(280\) −412.698 −0.0880837
\(281\) 2170.19 0.460722 0.230361 0.973105i \(-0.426009\pi\)
0.230361 + 0.973105i \(0.426009\pi\)
\(282\) −2520.68 −0.532284
\(283\) −5305.24 −1.11436 −0.557180 0.830392i \(-0.688117\pi\)
−0.557180 + 0.830392i \(0.688117\pi\)
\(284\) 502.337 0.104958
\(285\) 773.643 0.160795
\(286\) 411.455 0.0850693
\(287\) 1585.16 0.326025
\(288\) −378.074 −0.0773550
\(289\) 8845.11 1.80035
\(290\) 1081.22 0.218935
\(291\) 2262.49 0.455772
\(292\) 40.4591 0.00810853
\(293\) 1724.96 0.343936 0.171968 0.985103i \(-0.444987\pi\)
0.171968 + 0.985103i \(0.444987\pi\)
\(294\) −443.727 −0.0880227
\(295\) 838.505 0.165490
\(296\) −1718.70 −0.337490
\(297\) 911.626 0.178107
\(298\) −8661.28 −1.68367
\(299\) 491.298 0.0950251
\(300\) −176.701 −0.0340062
\(301\) 3901.25 0.747057
\(302\) −8291.44 −1.57986
\(303\) −5158.15 −0.977979
\(304\) −6249.00 −1.17896
\(305\) 1211.64 0.227470
\(306\) −5921.20 −1.10618
\(307\) 6971.91 1.29612 0.648058 0.761591i \(-0.275581\pi\)
0.648058 + 0.761591i \(0.275581\pi\)
\(308\) 22.3443 0.00413371
\(309\) −3251.26 −0.598568
\(310\) 1927.96 0.353228
\(311\) 7105.27 1.29551 0.647754 0.761850i \(-0.275709\pi\)
0.647754 + 0.761850i \(0.275709\pi\)
\(312\) 1454.13 0.263858
\(313\) −4465.70 −0.806443 −0.403221 0.915102i \(-0.632110\pi\)
−0.403221 + 0.915102i \(0.632110\pi\)
\(314\) −4509.06 −0.810386
\(315\) 326.713 0.0584387
\(316\) −300.661 −0.0535237
\(317\) 7756.50 1.37428 0.687142 0.726523i \(-0.258865\pi\)
0.687142 + 0.726523i \(0.258865\pi\)
\(318\) −1041.21 −0.183611
\(319\) 911.762 0.160028
\(320\) 1285.80 0.224620
\(321\) −3340.02 −0.580753
\(322\) 468.912 0.0811536
\(323\) −10838.3 −1.86706
\(324\) 19.0168 0.00326078
\(325\) −2515.21 −0.429288
\(326\) −904.010 −0.153584
\(327\) −3362.73 −0.568683
\(328\) −4958.00 −0.834633
\(329\) −1948.48 −0.326514
\(330\) 161.273 0.0269025
\(331\) −3157.24 −0.524283 −0.262142 0.965029i \(-0.584429\pi\)
−0.262142 + 0.965029i \(0.584429\pi\)
\(332\) 680.592 0.112507
\(333\) 1360.61 0.223906
\(334\) 4398.17 0.720531
\(335\) −2373.30 −0.387066
\(336\) 1471.91 0.238985
\(337\) 11196.9 1.80990 0.904950 0.425518i \(-0.139908\pi\)
0.904950 + 0.425518i \(0.139908\pi\)
\(338\) 5069.83 0.815866
\(339\) 739.456 0.118471
\(340\) −152.445 −0.0243161
\(341\) 1625.80 0.258187
\(342\) 4664.58 0.737519
\(343\) −343.000 −0.0539949
\(344\) −12202.1 −1.91249
\(345\) 192.569 0.0300509
\(346\) −1404.85 −0.218281
\(347\) 1661.59 0.257058 0.128529 0.991706i \(-0.458975\pi\)
0.128529 + 0.991706i \(0.458975\pi\)
\(348\) −206.884 −0.0318682
\(349\) −5996.92 −0.919793 −0.459896 0.887973i \(-0.652113\pi\)
−0.459896 + 0.887973i \(0.652113\pi\)
\(350\) −2400.60 −0.366622
\(351\) −2944.39 −0.447749
\(352\) −144.262 −0.0218443
\(353\) 6627.56 0.999291 0.499645 0.866230i \(-0.333464\pi\)
0.499645 + 0.866230i \(0.333464\pi\)
\(354\) −2819.82 −0.423367
\(355\) 2802.65 0.419013
\(356\) 598.711 0.0891338
\(357\) 2552.89 0.378468
\(358\) 1489.24 0.219858
\(359\) −5522.59 −0.811897 −0.405949 0.913896i \(-0.633059\pi\)
−0.405949 + 0.913896i \(0.633059\pi\)
\(360\) −1021.88 −0.149605
\(361\) 1679.17 0.244813
\(362\) −3035.30 −0.440696
\(363\) −4002.40 −0.578709
\(364\) −72.1680 −0.0103918
\(365\) 225.731 0.0323707
\(366\) −4074.65 −0.581927
\(367\) −7253.13 −1.03164 −0.515818 0.856698i \(-0.672512\pi\)
−0.515818 + 0.856698i \(0.672512\pi\)
\(368\) −1555.45 −0.220335
\(369\) 3925.00 0.553733
\(370\) 615.656 0.0865038
\(371\) −804.856 −0.112631
\(372\) −368.902 −0.0514158
\(373\) 4090.05 0.567760 0.283880 0.958860i \(-0.408378\pi\)
0.283880 + 0.958860i \(0.408378\pi\)
\(374\) −2259.35 −0.312375
\(375\) −2032.43 −0.279878
\(376\) 6094.36 0.835884
\(377\) −2944.83 −0.402298
\(378\) −2810.23 −0.382387
\(379\) −6261.48 −0.848630 −0.424315 0.905515i \(-0.639485\pi\)
−0.424315 + 0.905515i \(0.639485\pi\)
\(380\) 120.092 0.0162121
\(381\) 8192.23 1.10158
\(382\) 6196.61 0.829964
\(383\) −8653.13 −1.15445 −0.577225 0.816585i \(-0.695864\pi\)
−0.577225 + 0.816585i \(0.695864\pi\)
\(384\) −4866.61 −0.646740
\(385\) 124.664 0.0165025
\(386\) −11876.5 −1.56605
\(387\) 9659.83 1.26883
\(388\) 351.206 0.0459531
\(389\) −9670.90 −1.26050 −0.630250 0.776393i \(-0.717047\pi\)
−0.630250 + 0.776393i \(0.717047\pi\)
\(390\) −520.884 −0.0676308
\(391\) −2697.78 −0.348933
\(392\) 1072.82 0.138229
\(393\) −1888.04 −0.242339
\(394\) −1075.81 −0.137559
\(395\) −1677.46 −0.213676
\(396\) 55.3264 0.00702086
\(397\) −1547.24 −0.195602 −0.0978009 0.995206i \(-0.531181\pi\)
−0.0978009 + 0.995206i \(0.531181\pi\)
\(398\) 7347.68 0.925392
\(399\) −2011.10 −0.252334
\(400\) 7963.14 0.995393
\(401\) −3779.82 −0.470712 −0.235356 0.971909i \(-0.575626\pi\)
−0.235356 + 0.971909i \(0.575626\pi\)
\(402\) 7981.20 0.990214
\(403\) −5251.04 −0.649064
\(404\) −800.698 −0.0986045
\(405\) 106.099 0.0130176
\(406\) −2810.65 −0.343572
\(407\) 519.167 0.0632289
\(408\) −7984.80 −0.968889
\(409\) 13562.5 1.63967 0.819833 0.572603i \(-0.194066\pi\)
0.819833 + 0.572603i \(0.194066\pi\)
\(410\) 1776.01 0.213929
\(411\) −1097.64 −0.131734
\(412\) −504.692 −0.0603505
\(413\) −2179.72 −0.259702
\(414\) 1161.07 0.137834
\(415\) 3797.18 0.449148
\(416\) 465.940 0.0549149
\(417\) −4777.10 −0.560997
\(418\) 1779.86 0.208268
\(419\) 230.091 0.0268274 0.0134137 0.999910i \(-0.495730\pi\)
0.0134137 + 0.999910i \(0.495730\pi\)
\(420\) −28.2869 −0.00328633
\(421\) −1459.37 −0.168943 −0.0844716 0.996426i \(-0.526920\pi\)
−0.0844716 + 0.996426i \(0.526920\pi\)
\(422\) 7547.08 0.870584
\(423\) −4824.60 −0.554563
\(424\) 2517.39 0.288338
\(425\) 13811.3 1.57635
\(426\) −9425.09 −1.07194
\(427\) −3149.69 −0.356966
\(428\) −518.470 −0.0585542
\(429\) −439.249 −0.0494339
\(430\) 4370.94 0.490199
\(431\) −12449.7 −1.39138 −0.695688 0.718344i \(-0.744900\pi\)
−0.695688 + 0.718344i \(0.744900\pi\)
\(432\) 9321.93 1.03820
\(433\) 10062.9 1.11684 0.558420 0.829559i \(-0.311408\pi\)
0.558420 + 0.829559i \(0.311408\pi\)
\(434\) −5011.77 −0.554315
\(435\) −1154.25 −0.127223
\(436\) −521.996 −0.0573373
\(437\) 2125.25 0.232642
\(438\) −759.114 −0.0828125
\(439\) 1422.15 0.154614 0.0773071 0.997007i \(-0.475368\pi\)
0.0773071 + 0.997007i \(0.475368\pi\)
\(440\) −389.918 −0.0422469
\(441\) −849.299 −0.0917070
\(442\) 7297.31 0.785288
\(443\) 472.036 0.0506255 0.0253128 0.999680i \(-0.491942\pi\)
0.0253128 + 0.999680i \(0.491942\pi\)
\(444\) −117.802 −0.0125915
\(445\) 3340.35 0.355838
\(446\) 13702.0 1.45473
\(447\) 9246.36 0.978384
\(448\) −3342.47 −0.352493
\(449\) 15094.7 1.58655 0.793277 0.608860i \(-0.208373\pi\)
0.793277 + 0.608860i \(0.208373\pi\)
\(450\) −5944.11 −0.622684
\(451\) 1497.66 0.156369
\(452\) 114.786 0.0119448
\(453\) 8851.54 0.918061
\(454\) −13752.7 −1.42168
\(455\) −402.642 −0.0414861
\(456\) 6290.24 0.645981
\(457\) 519.824 0.0532086 0.0266043 0.999646i \(-0.491531\pi\)
0.0266043 + 0.999646i \(0.491531\pi\)
\(458\) 5609.74 0.572327
\(459\) 16168.0 1.64414
\(460\) 29.8924 0.00302987
\(461\) 2.96323 0.000299374 0 0.000149687 1.00000i \(-0.499952\pi\)
0.000149687 1.00000i \(0.499952\pi\)
\(462\) −419.234 −0.0422176
\(463\) −4341.22 −0.435753 −0.217876 0.975976i \(-0.569913\pi\)
−0.217876 + 0.975976i \(0.569913\pi\)
\(464\) 9323.32 0.932811
\(465\) −2058.19 −0.205261
\(466\) −13925.5 −1.38431
\(467\) −8282.26 −0.820679 −0.410340 0.911933i \(-0.634590\pi\)
−0.410340 + 0.911933i \(0.634590\pi\)
\(468\) −178.695 −0.0176499
\(469\) 6169.45 0.607417
\(470\) −2183.07 −0.214250
\(471\) 4813.65 0.470916
\(472\) 6817.61 0.664843
\(473\) 3685.91 0.358305
\(474\) 5641.14 0.546638
\(475\) −10880.3 −1.05099
\(476\) 396.284 0.0381589
\(477\) −1992.90 −0.191297
\(478\) −5038.22 −0.482098
\(479\) 1242.40 0.118511 0.0592555 0.998243i \(-0.481127\pi\)
0.0592555 + 0.998243i \(0.481127\pi\)
\(480\) 182.629 0.0173664
\(481\) −1676.82 −0.158953
\(482\) 9375.48 0.885978
\(483\) −500.588 −0.0471584
\(484\) −621.292 −0.0583482
\(485\) 1959.46 0.183453
\(486\) −11196.2 −1.04500
\(487\) −7727.82 −0.719057 −0.359529 0.933134i \(-0.617063\pi\)
−0.359529 + 0.933134i \(0.617063\pi\)
\(488\) 9851.46 0.913842
\(489\) 965.076 0.0892479
\(490\) −384.296 −0.0354300
\(491\) −495.763 −0.0455671 −0.0227836 0.999740i \(-0.507253\pi\)
−0.0227836 + 0.999740i \(0.507253\pi\)
\(492\) −339.828 −0.0311395
\(493\) 16170.4 1.47724
\(494\) −5748.64 −0.523570
\(495\) 308.679 0.0280285
\(496\) 16624.8 1.50499
\(497\) −7285.57 −0.657550
\(498\) −12769.6 −1.14903
\(499\) −11405.3 −1.02319 −0.511596 0.859226i \(-0.670945\pi\)
−0.511596 + 0.859226i \(0.670945\pi\)
\(500\) −315.494 −0.0282186
\(501\) −4695.27 −0.418701
\(502\) 15076.6 1.34044
\(503\) −1742.19 −0.154434 −0.0772171 0.997014i \(-0.524603\pi\)
−0.0772171 + 0.997014i \(0.524603\pi\)
\(504\) 2656.40 0.234773
\(505\) −4467.28 −0.393647
\(506\) 443.029 0.0389230
\(507\) −5412.30 −0.474100
\(508\) 1271.68 0.111066
\(509\) −5183.27 −0.451364 −0.225682 0.974201i \(-0.572461\pi\)
−0.225682 + 0.974201i \(0.572461\pi\)
\(510\) 2860.25 0.248341
\(511\) −586.794 −0.0507989
\(512\) 10370.2 0.895122
\(513\) −12736.8 −1.09619
\(514\) 14404.2 1.23607
\(515\) −2815.80 −0.240930
\(516\) −836.351 −0.0713533
\(517\) −1840.93 −0.156603
\(518\) −1600.41 −0.135749
\(519\) 1499.75 0.126844
\(520\) 1259.37 0.106206
\(521\) 11495.7 0.966672 0.483336 0.875435i \(-0.339425\pi\)
0.483336 + 0.875435i \(0.339425\pi\)
\(522\) −6959.42 −0.583535
\(523\) 17005.7 1.42181 0.710907 0.703286i \(-0.248285\pi\)
0.710907 + 0.703286i \(0.248285\pi\)
\(524\) −293.080 −0.0244337
\(525\) 2562.76 0.213044
\(526\) 2595.73 0.215170
\(527\) 28834.1 2.38337
\(528\) 1390.66 0.114623
\(529\) 529.000 0.0434783
\(530\) −901.758 −0.0739054
\(531\) −5397.17 −0.441087
\(532\) −312.183 −0.0254415
\(533\) −4837.19 −0.393099
\(534\) −11233.3 −0.910324
\(535\) −2892.67 −0.233759
\(536\) −19296.5 −1.55500
\(537\) −1589.84 −0.127759
\(538\) 4205.86 0.337040
\(539\) −324.067 −0.0258971
\(540\) −179.148 −0.0142765
\(541\) 6975.36 0.554333 0.277167 0.960822i \(-0.410605\pi\)
0.277167 + 0.960822i \(0.410605\pi\)
\(542\) 17966.1 1.42382
\(543\) 3240.34 0.256089
\(544\) −2558.54 −0.201648
\(545\) −2912.34 −0.228901
\(546\) 1354.05 0.106132
\(547\) 7492.37 0.585650 0.292825 0.956166i \(-0.405405\pi\)
0.292825 + 0.956166i \(0.405405\pi\)
\(548\) −170.386 −0.0132820
\(549\) −7798.92 −0.606284
\(550\) −2268.10 −0.175840
\(551\) −12738.7 −0.984913
\(552\) 1565.71 0.120727
\(553\) 4360.59 0.335319
\(554\) 11313.9 0.867658
\(555\) −657.244 −0.0502675
\(556\) −741.549 −0.0565624
\(557\) 15894.4 1.20909 0.604547 0.796569i \(-0.293354\pi\)
0.604547 + 0.796569i \(0.293354\pi\)
\(558\) −12409.6 −0.941470
\(559\) −11904.8 −0.900751
\(560\) 1274.76 0.0961940
\(561\) 2411.97 0.181522
\(562\) −6320.69 −0.474417
\(563\) −9735.19 −0.728755 −0.364378 0.931251i \(-0.618718\pi\)
−0.364378 + 0.931251i \(0.618718\pi\)
\(564\) 417.716 0.0311862
\(565\) 640.416 0.0476858
\(566\) 15451.5 1.14748
\(567\) −275.808 −0.0204283
\(568\) 22787.5 1.68335
\(569\) −14929.5 −1.09996 −0.549981 0.835177i \(-0.685365\pi\)
−0.549981 + 0.835177i \(0.685365\pi\)
\(570\) −2253.23 −0.165575
\(571\) 2644.32 0.193802 0.0969012 0.995294i \(-0.469107\pi\)
0.0969012 + 0.995294i \(0.469107\pi\)
\(572\) −68.1845 −0.00498416
\(573\) −6615.20 −0.482293
\(574\) −4616.78 −0.335716
\(575\) −2708.22 −0.196419
\(576\) −8276.26 −0.598688
\(577\) 3788.86 0.273366 0.136683 0.990615i \(-0.456356\pi\)
0.136683 + 0.990615i \(0.456356\pi\)
\(578\) −25761.4 −1.85386
\(579\) 12678.7 0.910035
\(580\) −179.174 −0.0128273
\(581\) −9870.87 −0.704841
\(582\) −6589.50 −0.469319
\(583\) −760.430 −0.0540202
\(584\) 1835.35 0.130046
\(585\) −996.979 −0.0704615
\(586\) −5023.94 −0.354159
\(587\) −21854.2 −1.53666 −0.768332 0.640052i \(-0.778913\pi\)
−0.768332 + 0.640052i \(0.778913\pi\)
\(588\) 73.5325 0.00515719
\(589\) −22714.9 −1.58905
\(590\) −2442.15 −0.170409
\(591\) 1148.48 0.0799359
\(592\) 5308.80 0.368565
\(593\) −8515.06 −0.589665 −0.294833 0.955549i \(-0.595264\pi\)
−0.294833 + 0.955549i \(0.595264\pi\)
\(594\) −2655.11 −0.183401
\(595\) 2210.96 0.152337
\(596\) 1435.31 0.0986453
\(597\) −7844.02 −0.537746
\(598\) −1430.91 −0.0978496
\(599\) −1484.88 −0.101286 −0.0506431 0.998717i \(-0.516127\pi\)
−0.0506431 + 0.998717i \(0.516127\pi\)
\(600\) −8015.70 −0.545399
\(601\) −13766.2 −0.934332 −0.467166 0.884170i \(-0.654725\pi\)
−0.467166 + 0.884170i \(0.654725\pi\)
\(602\) −11362.4 −0.769262
\(603\) 15276.1 1.03166
\(604\) 1374.02 0.0925632
\(605\) −3466.33 −0.232936
\(606\) 15023.1 1.00705
\(607\) −1255.44 −0.0839484 −0.0419742 0.999119i \(-0.513365\pi\)
−0.0419742 + 0.999119i \(0.513365\pi\)
\(608\) 2015.56 0.134443
\(609\) 3000.51 0.199650
\(610\) −3528.90 −0.234231
\(611\) 5945.86 0.393688
\(612\) 981.236 0.0648106
\(613\) −21086.5 −1.38936 −0.694678 0.719321i \(-0.744453\pi\)
−0.694678 + 0.719321i \(0.744453\pi\)
\(614\) −20305.7 −1.33464
\(615\) −1895.98 −0.124314
\(616\) 1013.60 0.0662974
\(617\) −17617.6 −1.14953 −0.574765 0.818319i \(-0.694906\pi\)
−0.574765 + 0.818319i \(0.694906\pi\)
\(618\) 9469.29 0.616360
\(619\) −4192.59 −0.272236 −0.136118 0.990693i \(-0.543463\pi\)
−0.136118 + 0.990693i \(0.543463\pi\)
\(620\) −319.493 −0.0206954
\(621\) −3170.34 −0.204865
\(622\) −20694.1 −1.33402
\(623\) −8683.32 −0.558411
\(624\) −4491.58 −0.288153
\(625\) 12958.4 0.829337
\(626\) 13006.4 0.830413
\(627\) −1900.10 −0.121025
\(628\) 747.223 0.0474800
\(629\) 9207.63 0.583676
\(630\) −951.551 −0.0601757
\(631\) −2700.44 −0.170369 −0.0851844 0.996365i \(-0.527148\pi\)
−0.0851844 + 0.996365i \(0.527148\pi\)
\(632\) −13638.9 −0.858425
\(633\) −8056.89 −0.505897
\(634\) −22590.8 −1.41513
\(635\) 7095.00 0.443396
\(636\) 172.545 0.0107577
\(637\) 1046.68 0.0651035
\(638\) −2655.51 −0.164784
\(639\) −18039.7 −1.11681
\(640\) −4214.79 −0.260319
\(641\) −5002.08 −0.308222 −0.154111 0.988054i \(-0.549251\pi\)
−0.154111 + 0.988054i \(0.549251\pi\)
\(642\) 9727.79 0.598015
\(643\) −5426.44 −0.332811 −0.166406 0.986057i \(-0.553216\pi\)
−0.166406 + 0.986057i \(0.553216\pi\)
\(644\) −77.7061 −0.00475474
\(645\) −4666.20 −0.284855
\(646\) 31566.6 1.92255
\(647\) 23639.0 1.43639 0.718194 0.695843i \(-0.244969\pi\)
0.718194 + 0.695843i \(0.244969\pi\)
\(648\) 862.660 0.0522971
\(649\) −2059.40 −0.124559
\(650\) 7325.54 0.442048
\(651\) 5350.32 0.322113
\(652\) 149.809 0.00899840
\(653\) 18706.7 1.12105 0.560527 0.828136i \(-0.310599\pi\)
0.560527 + 0.828136i \(0.310599\pi\)
\(654\) 9793.94 0.585586
\(655\) −1635.16 −0.0975437
\(656\) 15314.5 0.911481
\(657\) −1452.95 −0.0862787
\(658\) 5674.93 0.336219
\(659\) −30984.1 −1.83152 −0.915759 0.401727i \(-0.868410\pi\)
−0.915759 + 0.401727i \(0.868410\pi\)
\(660\) −26.7255 −0.00157620
\(661\) −30744.2 −1.80910 −0.904548 0.426372i \(-0.859792\pi\)
−0.904548 + 0.426372i \(0.859792\pi\)
\(662\) 9195.46 0.539867
\(663\) −7790.24 −0.456332
\(664\) 30873.6 1.80441
\(665\) −1741.74 −0.101567
\(666\) −3962.77 −0.230562
\(667\) −3170.81 −0.184069
\(668\) −728.846 −0.0422154
\(669\) −14627.6 −0.845344
\(670\) 6912.23 0.398571
\(671\) −2975.84 −0.171209
\(672\) −474.750 −0.0272528
\(673\) 16123.7 0.923513 0.461756 0.887007i \(-0.347219\pi\)
0.461756 + 0.887007i \(0.347219\pi\)
\(674\) −32611.1 −1.86370
\(675\) 16230.6 0.925505
\(676\) −840.151 −0.0478010
\(677\) 5015.44 0.284725 0.142363 0.989815i \(-0.454530\pi\)
0.142363 + 0.989815i \(0.454530\pi\)
\(678\) −2153.66 −0.121993
\(679\) −5093.67 −0.287890
\(680\) −6915.35 −0.389988
\(681\) 14681.7 0.826141
\(682\) −4735.13 −0.265862
\(683\) 30484.3 1.70783 0.853915 0.520413i \(-0.174222\pi\)
0.853915 + 0.520413i \(0.174222\pi\)
\(684\) −772.994 −0.0432108
\(685\) −950.625 −0.0530241
\(686\) 998.987 0.0555999
\(687\) −5988.68 −0.332580
\(688\) 37690.6 2.08858
\(689\) 2456.05 0.135803
\(690\) −560.856 −0.0309441
\(691\) −24595.1 −1.35404 −0.677021 0.735964i \(-0.736729\pi\)
−0.677021 + 0.735964i \(0.736729\pi\)
\(692\) 232.806 0.0127890
\(693\) −802.420 −0.0439847
\(694\) −4839.39 −0.264698
\(695\) −4137.28 −0.225807
\(696\) −9384.85 −0.511109
\(697\) 26561.7 1.44346
\(698\) 17466.0 0.947133
\(699\) 14866.2 0.804421
\(700\) 397.818 0.0214801
\(701\) −11700.0 −0.630390 −0.315195 0.949027i \(-0.602070\pi\)
−0.315195 + 0.949027i \(0.602070\pi\)
\(702\) 8575.52 0.461057
\(703\) −7253.55 −0.389151
\(704\) −3157.97 −0.169063
\(705\) 2330.53 0.124501
\(706\) −19302.8 −1.02899
\(707\) 11612.8 0.617744
\(708\) 467.289 0.0248048
\(709\) 390.131 0.0206652 0.0103326 0.999947i \(-0.496711\pi\)
0.0103326 + 0.999947i \(0.496711\pi\)
\(710\) −8162.73 −0.431467
\(711\) 10797.2 0.569518
\(712\) 27159.3 1.42955
\(713\) −5654.00 −0.296976
\(714\) −7435.28 −0.389718
\(715\) −380.417 −0.0198976
\(716\) −246.791 −0.0128813
\(717\) 5378.56 0.280148
\(718\) 16084.5 0.836030
\(719\) −32849.9 −1.70389 −0.851944 0.523633i \(-0.824576\pi\)
−0.851944 + 0.523633i \(0.824576\pi\)
\(720\) 3156.43 0.163380
\(721\) 7319.74 0.378088
\(722\) −4890.58 −0.252089
\(723\) −10008.8 −0.514843
\(724\) 502.997 0.0258201
\(725\) 16233.0 0.831557
\(726\) 11657.0 0.595911
\(727\) −24574.4 −1.25367 −0.626833 0.779153i \(-0.715649\pi\)
−0.626833 + 0.779153i \(0.715649\pi\)
\(728\) −3273.75 −0.166667
\(729\) 10888.7 0.553205
\(730\) −657.441 −0.0333329
\(731\) 65370.9 3.30757
\(732\) 675.233 0.0340947
\(733\) −23806.8 −1.19963 −0.599813 0.800140i \(-0.704758\pi\)
−0.599813 + 0.800140i \(0.704758\pi\)
\(734\) 21124.7 1.06230
\(735\) 410.255 0.0205884
\(736\) 501.696 0.0251260
\(737\) 5828.91 0.291330
\(738\) −11431.6 −0.570192
\(739\) 14089.3 0.701333 0.350666 0.936500i \(-0.385955\pi\)
0.350666 + 0.936500i \(0.385955\pi\)
\(740\) −102.024 −0.00506820
\(741\) 6136.97 0.304247
\(742\) 2344.14 0.115979
\(743\) −12735.1 −0.628809 −0.314405 0.949289i \(-0.601805\pi\)
−0.314405 + 0.949289i \(0.601805\pi\)
\(744\) −16734.5 −0.824618
\(745\) 8007.94 0.393810
\(746\) −11912.3 −0.584636
\(747\) −24441.2 −1.19713
\(748\) 374.410 0.0183019
\(749\) 7519.56 0.366834
\(750\) 5919.45 0.288197
\(751\) 25958.0 1.26128 0.630640 0.776076i \(-0.282793\pi\)
0.630640 + 0.776076i \(0.282793\pi\)
\(752\) −18824.6 −0.912848
\(753\) −16095.0 −0.778930
\(754\) 8576.81 0.414256
\(755\) 7666.00 0.369529
\(756\) 465.699 0.0224038
\(757\) 33354.8 1.60146 0.800728 0.599028i \(-0.204446\pi\)
0.800728 + 0.599028i \(0.204446\pi\)
\(758\) 18236.6 0.873854
\(759\) −472.956 −0.0226182
\(760\) 5447.75 0.260014
\(761\) 16836.5 0.802002 0.401001 0.916078i \(-0.368662\pi\)
0.401001 + 0.916078i \(0.368662\pi\)
\(762\) −23859.9 −1.13432
\(763\) 7570.70 0.359211
\(764\) −1026.88 −0.0486270
\(765\) 5474.54 0.258735
\(766\) 25202.2 1.18876
\(767\) 6651.49 0.313131
\(768\) 2296.80 0.107915
\(769\) −6471.65 −0.303477 −0.151738 0.988421i \(-0.548487\pi\)
−0.151738 + 0.988421i \(0.548487\pi\)
\(770\) −363.084 −0.0169930
\(771\) −15377.2 −0.718283
\(772\) 1968.12 0.0917540
\(773\) 1188.93 0.0553207 0.0276603 0.999617i \(-0.491194\pi\)
0.0276603 + 0.999617i \(0.491194\pi\)
\(774\) −28134.3 −1.30654
\(775\) 28945.7 1.34163
\(776\) 15931.7 0.737006
\(777\) 1708.52 0.0788840
\(778\) 28166.5 1.29797
\(779\) −20924.6 −0.962392
\(780\) 86.3187 0.00396244
\(781\) −6883.42 −0.315376
\(782\) 7857.29 0.359305
\(783\) 19002.9 0.867317
\(784\) −3313.78 −0.150956
\(785\) 4168.93 0.189548
\(786\) 5498.92 0.249542
\(787\) −13521.2 −0.612424 −0.306212 0.951963i \(-0.599062\pi\)
−0.306212 + 0.951963i \(0.599062\pi\)
\(788\) 178.278 0.00805951
\(789\) −2771.08 −0.125035
\(790\) 4885.59 0.220027
\(791\) −1664.78 −0.0748327
\(792\) 2509.77 0.112602
\(793\) 9611.42 0.430405
\(794\) 4506.34 0.201416
\(795\) 962.672 0.0429465
\(796\) −1217.63 −0.0542181
\(797\) −12158.2 −0.540358 −0.270179 0.962810i \(-0.587083\pi\)
−0.270179 + 0.962810i \(0.587083\pi\)
\(798\) 5857.34 0.259834
\(799\) −32649.5 −1.44563
\(800\) −2568.44 −0.113510
\(801\) −21500.7 −0.948426
\(802\) 11008.7 0.484703
\(803\) −554.404 −0.0243642
\(804\) −1322.61 −0.0580160
\(805\) −433.541 −0.0189817
\(806\) 15293.6 0.668356
\(807\) −4489.97 −0.195854
\(808\) −36322.0 −1.58144
\(809\) 13478.2 0.585745 0.292873 0.956151i \(-0.405389\pi\)
0.292873 + 0.956151i \(0.405389\pi\)
\(810\) −309.015 −0.0134045
\(811\) 38395.2 1.66244 0.831219 0.555944i \(-0.187643\pi\)
0.831219 + 0.555944i \(0.187643\pi\)
\(812\) 465.768 0.0201296
\(813\) −19179.7 −0.827384
\(814\) −1512.07 −0.0651083
\(815\) 835.817 0.0359232
\(816\) 24663.9 1.05810
\(817\) −51497.7 −2.20523
\(818\) −39500.8 −1.68840
\(819\) 2591.67 0.110574
\(820\) −294.313 −0.0125340
\(821\) 31613.8 1.34388 0.671942 0.740604i \(-0.265461\pi\)
0.671942 + 0.740604i \(0.265461\pi\)
\(822\) 3196.87 0.135649
\(823\) 15618.7 0.661524 0.330762 0.943714i \(-0.392694\pi\)
0.330762 + 0.943714i \(0.392694\pi\)
\(824\) −22894.3 −0.967915
\(825\) 2421.31 0.102181
\(826\) 6348.42 0.267421
\(827\) −13646.1 −0.573785 −0.286892 0.957963i \(-0.592622\pi\)
−0.286892 + 0.957963i \(0.592622\pi\)
\(828\) −192.407 −0.00807563
\(829\) −14216.6 −0.595614 −0.297807 0.954626i \(-0.596255\pi\)
−0.297807 + 0.954626i \(0.596255\pi\)
\(830\) −11059.3 −0.462498
\(831\) −12078.2 −0.504197
\(832\) 10199.7 0.425013
\(833\) −5747.45 −0.239061
\(834\) 13913.3 0.577672
\(835\) −4066.41 −0.168531
\(836\) −294.952 −0.0122023
\(837\) 33884.8 1.39932
\(838\) −670.139 −0.0276248
\(839\) 6041.07 0.248583 0.124291 0.992246i \(-0.460334\pi\)
0.124291 + 0.992246i \(0.460334\pi\)
\(840\) −1283.18 −0.0527070
\(841\) −5383.24 −0.220724
\(842\) 4250.40 0.173965
\(843\) 6747.65 0.275684
\(844\) −1250.67 −0.0510069
\(845\) −4687.40 −0.190830
\(846\) 14051.7 0.571047
\(847\) 9010.82 0.365544
\(848\) −7775.85 −0.314887
\(849\) −16495.3 −0.666803
\(850\) −40225.5 −1.62320
\(851\) −1805.49 −0.0727280
\(852\) 1561.88 0.0628043
\(853\) 1124.39 0.0451331 0.0225665 0.999745i \(-0.492816\pi\)
0.0225665 + 0.999745i \(0.492816\pi\)
\(854\) 9173.48 0.367576
\(855\) −4312.72 −0.172505
\(856\) −23519.3 −0.939106
\(857\) −29228.0 −1.16501 −0.582503 0.812828i \(-0.697927\pi\)
−0.582503 + 0.812828i \(0.697927\pi\)
\(858\) 1279.31 0.0509032
\(859\) 19510.5 0.774960 0.387480 0.921878i \(-0.373346\pi\)
0.387480 + 0.921878i \(0.373346\pi\)
\(860\) −724.333 −0.0287204
\(861\) 4928.65 0.195085
\(862\) 36259.8 1.43273
\(863\) −40855.4 −1.61151 −0.805756 0.592247i \(-0.798241\pi\)
−0.805756 + 0.592247i \(0.798241\pi\)
\(864\) −3006.70 −0.118391
\(865\) 1298.88 0.0510558
\(866\) −29308.1 −1.15004
\(867\) 27501.6 1.07728
\(868\) 830.529 0.0324770
\(869\) 4119.90 0.160826
\(870\) 3361.76 0.131005
\(871\) −18826.3 −0.732383
\(872\) −23679.3 −0.919589
\(873\) −12612.4 −0.488963
\(874\) −6189.79 −0.239557
\(875\) 4575.72 0.176786
\(876\) 125.797 0.00485193
\(877\) 2696.93 0.103841 0.0519207 0.998651i \(-0.483466\pi\)
0.0519207 + 0.998651i \(0.483466\pi\)
\(878\) −4142.02 −0.159210
\(879\) 5363.31 0.205802
\(880\) 1204.40 0.0461367
\(881\) −20196.6 −0.772351 −0.386176 0.922425i \(-0.626204\pi\)
−0.386176 + 0.922425i \(0.626204\pi\)
\(882\) 2473.58 0.0944329
\(883\) 37775.3 1.43968 0.719841 0.694139i \(-0.244215\pi\)
0.719841 + 0.694139i \(0.244215\pi\)
\(884\) −1209.28 −0.0460095
\(885\) 2607.11 0.0990250
\(886\) −1374.80 −0.0521303
\(887\) 41023.6 1.55292 0.776459 0.630168i \(-0.217014\pi\)
0.776459 + 0.630168i \(0.217014\pi\)
\(888\) −5343.83 −0.201945
\(889\) −18443.6 −0.695815
\(890\) −9728.76 −0.366414
\(891\) −260.584 −0.00979787
\(892\) −2270.64 −0.0852316
\(893\) 25720.5 0.963834
\(894\) −26930.0 −1.00747
\(895\) −1376.91 −0.0514245
\(896\) 10956.5 0.408515
\(897\) 1527.56 0.0568605
\(898\) −43963.3 −1.63371
\(899\) 33889.9 1.25728
\(900\) 985.032 0.0364827
\(901\) −13486.5 −0.498669
\(902\) −4361.95 −0.161017
\(903\) 12129.9 0.447019
\(904\) 5207.01 0.191574
\(905\) 2806.34 0.103078
\(906\) −25780.1 −0.945349
\(907\) 18445.5 0.675275 0.337637 0.941276i \(-0.390372\pi\)
0.337637 + 0.941276i \(0.390372\pi\)
\(908\) 2279.03 0.0832955
\(909\) 28754.4 1.04920
\(910\) 1172.70 0.0427192
\(911\) −19734.9 −0.717725 −0.358862 0.933390i \(-0.616835\pi\)
−0.358862 + 0.933390i \(0.616835\pi\)
\(912\) −19429.6 −0.705460
\(913\) −9326.02 −0.338057
\(914\) −1513.99 −0.0547901
\(915\) 3767.28 0.136112
\(916\) −929.621 −0.0335323
\(917\) 4250.65 0.153074
\(918\) −47089.4 −1.69301
\(919\) 7846.45 0.281644 0.140822 0.990035i \(-0.455026\pi\)
0.140822 + 0.990035i \(0.455026\pi\)
\(920\) 1356.01 0.0485938
\(921\) 21677.3 0.775562
\(922\) −8.63042 −0.000308273 0
\(923\) 22232.2 0.792831
\(924\) 69.4737 0.00247350
\(925\) 9243.25 0.328558
\(926\) 12643.8 0.448705
\(927\) 18124.3 0.642159
\(928\) −3007.15 −0.106373
\(929\) −27574.5 −0.973831 −0.486916 0.873449i \(-0.661878\pi\)
−0.486916 + 0.873449i \(0.661878\pi\)
\(930\) 5994.48 0.211362
\(931\) 4527.71 0.159387
\(932\) 2307.67 0.0811055
\(933\) 22092.0 0.775197
\(934\) 24122.1 0.845073
\(935\) 2088.92 0.0730643
\(936\) −8106.11 −0.283073
\(937\) 9195.66 0.320607 0.160304 0.987068i \(-0.448753\pi\)
0.160304 + 0.987068i \(0.448753\pi\)
\(938\) −17968.5 −0.625472
\(939\) −13884.9 −0.482554
\(940\) 361.768 0.0125527
\(941\) 5669.90 0.196422 0.0982112 0.995166i \(-0.468688\pi\)
0.0982112 + 0.995166i \(0.468688\pi\)
\(942\) −14019.8 −0.484913
\(943\) −5208.39 −0.179861
\(944\) −21058.6 −0.726059
\(945\) 2598.24 0.0894400
\(946\) −10735.2 −0.368955
\(947\) 25608.2 0.878726 0.439363 0.898310i \(-0.355204\pi\)
0.439363 + 0.898310i \(0.355204\pi\)
\(948\) −934.826 −0.0320272
\(949\) 1790.62 0.0612499
\(950\) 31688.7 1.08223
\(951\) 24116.8 0.822335
\(952\) 17976.6 0.612002
\(953\) −9059.61 −0.307943 −0.153971 0.988075i \(-0.549206\pi\)
−0.153971 + 0.988075i \(0.549206\pi\)
\(954\) 5804.31 0.196983
\(955\) −5729.18 −0.194128
\(956\) 834.912 0.0282458
\(957\) 2834.89 0.0957564
\(958\) −3618.49 −0.122034
\(959\) 2471.17 0.0832099
\(960\) 3997.86 0.134407
\(961\) 30639.4 1.02848
\(962\) 4883.73 0.163677
\(963\) 18619.1 0.623045
\(964\) −1553.66 −0.0519089
\(965\) 10980.6 0.366298
\(966\) 1457.96 0.0485601
\(967\) −11377.9 −0.378376 −0.189188 0.981941i \(-0.560586\pi\)
−0.189188 + 0.981941i \(0.560586\pi\)
\(968\) −28183.6 −0.935802
\(969\) −33698.9 −1.11720
\(970\) −5706.93 −0.188906
\(971\) −41723.8 −1.37897 −0.689485 0.724300i \(-0.742163\pi\)
−0.689485 + 0.724300i \(0.742163\pi\)
\(972\) 1855.39 0.0612261
\(973\) 10755.0 0.354355
\(974\) 22507.3 0.740430
\(975\) −7820.38 −0.256875
\(976\) −30429.7 −0.997984
\(977\) −33302.6 −1.09053 −0.545264 0.838265i \(-0.683570\pi\)
−0.545264 + 0.838265i \(0.683570\pi\)
\(978\) −2810.78 −0.0919007
\(979\) −8204.02 −0.267826
\(980\) 63.6839 0.00207582
\(981\) 18745.7 0.610097
\(982\) 1443.91 0.0469216
\(983\) −821.880 −0.0266672 −0.0133336 0.999911i \(-0.504244\pi\)
−0.0133336 + 0.999911i \(0.504244\pi\)
\(984\) −15415.6 −0.499422
\(985\) 994.656 0.0321750
\(986\) −47096.4 −1.52115
\(987\) −6058.28 −0.195377
\(988\) 952.641 0.0306756
\(989\) −12818.4 −0.412134
\(990\) −899.028 −0.0288616
\(991\) 1358.94 0.0435603 0.0217801 0.999763i \(-0.493067\pi\)
0.0217801 + 0.999763i \(0.493067\pi\)
\(992\) −5362.17 −0.171622
\(993\) −9816.62 −0.313717
\(994\) 21219.2 0.677095
\(995\) −6793.42 −0.216448
\(996\) 2116.12 0.0673212
\(997\) −20623.2 −0.655108 −0.327554 0.944833i \(-0.606224\pi\)
−0.327554 + 0.944833i \(0.606224\pi\)
\(998\) 33218.0 1.05360
\(999\) 10820.5 0.342687
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.b.1.3 8
3.2 odd 2 1449.4.a.i.1.6 8
7.6 odd 2 1127.4.a.e.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.b.1.3 8 1.1 even 1 trivial
1127.4.a.e.1.3 8 7.6 odd 2
1449.4.a.i.1.6 8 3.2 odd 2