Properties

Label 161.4.a
Level $161$
Weight $4$
Character orbit 161.a
Rep. character $\chi_{161}(1,\cdot)$
Character field $\Q$
Dimension $34$
Newform subspaces $4$
Sturm bound $64$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(64\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(161))\).

Total New Old
Modular forms 50 34 16
Cusp forms 46 34 12
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(9\)
\(+\)\(-\)\(-\)\(8\)
\(-\)\(+\)\(-\)\(5\)
\(-\)\(-\)\(+\)\(12\)
Plus space\(+\)\(21\)
Minus space\(-\)\(13\)

Trace form

\( 34 q - 4 q^{3} + 144 q^{4} - 16 q^{5} - 10 q^{6} - 6 q^{8} + 434 q^{9} + 152 q^{10} - 92 q^{11} - 78 q^{12} - 168 q^{13} - 40 q^{15} + 496 q^{16} - 140 q^{17} + 34 q^{18} + 180 q^{19} + 100 q^{20} - 112 q^{21}+ \cdots - 884 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(161))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 23
161.4.a.a 161.a 1.a $5$ $9.499$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 161.4.a.a \(-4\) \(-11\) \(-4\) \(35\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-2-\beta _{4})q^{3}+\beta _{2}q^{4}+\cdots\)
161.4.a.b 161.a 1.a $8$ $9.499$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 161.4.a.b \(0\) \(-3\) \(-24\) \(-56\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{4}q^{3}+(3+\beta _{1}+\beta _{3}-\beta _{4}+\cdots)q^{4}+\cdots\)
161.4.a.c 161.a 1.a $9$ $9.499$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 161.4.a.c \(0\) \(9\) \(-4\) \(-63\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1-\beta _{4})q^{3}+(5+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
161.4.a.d 161.a 1.a $12$ $9.499$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 161.4.a.d \(4\) \(1\) \(16\) \(84\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{4}q^{3}+(6+\beta _{2})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(161))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(161)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)