Defining parameters
Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 161.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(161))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 50 | 34 | 16 |
Cusp forms | 46 | 34 | 12 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(23\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(9\) |
\(+\) | \(-\) | \(-\) | \(8\) |
\(-\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(12\) |
Plus space | \(+\) | \(21\) | |
Minus space | \(-\) | \(13\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(161))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 7 | 23 | |||||||
161.4.a.a | $5$ | $9.499$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(-4\) | \(-11\) | \(-4\) | \(35\) | $-$ | $+$ | \(q+(-1+\beta _{1})q^{2}+(-2-\beta _{4})q^{3}+\beta _{2}q^{4}+\cdots\) | |
161.4.a.b | $8$ | $9.499$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-3\) | \(-24\) | \(-56\) | $+$ | $-$ | \(q-\beta _{1}q^{2}+\beta _{4}q^{3}+(3+\beta _{1}+\beta _{3}-\beta _{4}+\cdots)q^{4}+\cdots\) | |
161.4.a.c | $9$ | $9.499$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(9\) | \(-4\) | \(-63\) | $+$ | $+$ | \(q+\beta _{1}q^{2}+(1-\beta _{4})q^{3}+(5+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) | |
161.4.a.d | $12$ | $9.499$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(4\) | \(1\) | \(16\) | \(84\) | $-$ | $-$ | \(q+\beta _{1}q^{2}-\beta _{4}q^{3}+(6+\beta _{2})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(161))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(161)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)