Properties

Label 161.4
Level 161
Weight 4
Dimension 2920
Nonzero newspaces 8
Newform subspaces 16
Sturm bound 8448
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 161 = 7 \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 16 \)
Sturm bound: \(8448\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(161))\).

Total New Old
Modular forms 3300 3132 168
Cusp forms 3036 2920 116
Eisenstein series 264 212 52

Trace form

\( 2920 q - 38 q^{2} - 26 q^{3} - 38 q^{4} - 62 q^{5} - 104 q^{6} - 97 q^{7} - 44 q^{8} + 46 q^{9} + 16 q^{10} - 38 q^{11} - 128 q^{12} - 44 q^{13} - 97 q^{14} + 506 q^{15} + 722 q^{16} - 18 q^{17} - 178 q^{18}+ \cdots + 4582 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(161))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
161.4.a \(\chi_{161}(1, \cdot)\) 161.4.a.a 5 1
161.4.a.b 8
161.4.a.c 9
161.4.a.d 12
161.4.c \(\chi_{161}(160, \cdot)\) 161.4.c.a 2 1
161.4.c.b 8
161.4.c.c 36
161.4.e \(\chi_{161}(93, \cdot)\) 161.4.e.a 44 2
161.4.e.b 44
161.4.g \(\chi_{161}(45, \cdot)\) 161.4.g.a 92 2
161.4.i \(\chi_{161}(8, \cdot)\) 161.4.i.a 170 10
161.4.i.b 190
161.4.k \(\chi_{161}(20, \cdot)\) 161.4.k.a 20 10
161.4.k.b 440
161.4.m \(\chi_{161}(2, \cdot)\) 161.4.m.a 920 20
161.4.o \(\chi_{161}(5, \cdot)\) 161.4.o.a 920 20

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(161))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(161)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 2}\)