Properties

Label 1600.4.a.bw
Level $1600$
Weight $4$
Character orbit 1600.a
Self dual yes
Analytic conductor $94.403$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1600,4,Mod(1,1600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1600.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1600.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,8,0,0,0,-16,0,37,0,40,0,-50] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.4030560092\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 32)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{3} - 16 q^{7} + 37 q^{9} + 40 q^{11} - 50 q^{13} + 30 q^{17} - 40 q^{19} - 128 q^{21} - 48 q^{23} + 80 q^{27} + 34 q^{29} + 320 q^{31} + 320 q^{33} + 310 q^{37} - 400 q^{39} + 410 q^{41} + 152 q^{43}+ \cdots + 1480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 8.00000 0 0 0 −16.0000 0 37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.4.a.bw 1
4.b odd 2 1 1600.4.a.e 1
5.b even 2 1 64.4.a.a 1
8.b even 2 1 800.4.a.a 1
8.d odd 2 1 800.4.a.k 1
15.d odd 2 1 576.4.a.h 1
20.d odd 2 1 64.4.a.e 1
40.e odd 2 1 32.4.a.a 1
40.f even 2 1 32.4.a.c yes 1
40.i odd 4 2 800.4.c.a 2
40.k even 4 2 800.4.c.b 2
60.h even 2 1 576.4.a.g 1
80.k odd 4 2 256.4.b.e 2
80.q even 4 2 256.4.b.c 2
120.i odd 2 1 288.4.a.i 1
120.m even 2 1 288.4.a.h 1
280.c odd 2 1 1568.4.a.c 1
280.n even 2 1 1568.4.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.4.a.a 1 40.e odd 2 1
32.4.a.c yes 1 40.f even 2 1
64.4.a.a 1 5.b even 2 1
64.4.a.e 1 20.d odd 2 1
256.4.b.c 2 80.q even 4 2
256.4.b.e 2 80.k odd 4 2
288.4.a.h 1 120.m even 2 1
288.4.a.i 1 120.i odd 2 1
576.4.a.g 1 60.h even 2 1
576.4.a.h 1 15.d odd 2 1
800.4.a.a 1 8.b even 2 1
800.4.a.k 1 8.d odd 2 1
800.4.c.a 2 40.i odd 4 2
800.4.c.b 2 40.k even 4 2
1568.4.a.c 1 280.c odd 2 1
1568.4.a.o 1 280.n even 2 1
1600.4.a.e 1 4.b odd 2 1
1600.4.a.bw 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1600))\):

\( T_{3} - 8 \) Copy content Toggle raw display
\( T_{7} + 16 \) Copy content Toggle raw display
\( T_{11} - 40 \) Copy content Toggle raw display
\( T_{13} + 50 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 8 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 16 \) Copy content Toggle raw display
$11$ \( T - 40 \) Copy content Toggle raw display
$13$ \( T + 50 \) Copy content Toggle raw display
$17$ \( T - 30 \) Copy content Toggle raw display
$19$ \( T + 40 \) Copy content Toggle raw display
$23$ \( T + 48 \) Copy content Toggle raw display
$29$ \( T - 34 \) Copy content Toggle raw display
$31$ \( T - 320 \) Copy content Toggle raw display
$37$ \( T - 310 \) Copy content Toggle raw display
$41$ \( T - 410 \) Copy content Toggle raw display
$43$ \( T - 152 \) Copy content Toggle raw display
$47$ \( T - 416 \) Copy content Toggle raw display
$53$ \( T + 410 \) Copy content Toggle raw display
$59$ \( T - 200 \) Copy content Toggle raw display
$61$ \( T + 30 \) Copy content Toggle raw display
$67$ \( T - 776 \) Copy content Toggle raw display
$71$ \( T - 400 \) Copy content Toggle raw display
$73$ \( T - 630 \) Copy content Toggle raw display
$79$ \( T + 1120 \) Copy content Toggle raw display
$83$ \( T - 552 \) Copy content Toggle raw display
$89$ \( T + 326 \) Copy content Toggle raw display
$97$ \( T - 110 \) Copy content Toggle raw display
show more
show less