Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [16,8,Mod(5,16)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(16, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("16.5");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 16 = 2^{4} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 16.e (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.99816040775\) |
Analytic rank: | \(0\) |
Dimension: | \(26\) |
Relative dimension: | \(13\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −11.0128 | − | 2.59189i | −56.5688 | + | 56.5688i | 114.564 | + | 57.0880i | −90.1684 | − | 90.1684i | 769.602 | − | 476.362i | − | 373.897i | −1113.71 | − | 925.637i | − | 4213.06i | 759.302 | + | 1226.72i | ||
5.2 | −10.5089 | − | 4.19081i | 42.2145 | − | 42.2145i | 92.8743 | + | 88.0816i | 46.9348 | + | 46.9348i | −620.541 | + | 266.716i | − | 1384.27i | −606.875 | − | 1314.86i | − | 1377.13i | −296.539 | − | 689.929i | ||
5.3 | −10.1415 | + | 5.01488i | 8.25573 | − | 8.25573i | 77.7019 | − | 101.717i | 63.0500 | + | 63.0500i | −42.3243 | + | 125.127i | 847.676i | −277.917 | + | 1421.24i | 2050.69i | −955.613 | − | 323.236i | ||||
5.4 | −5.91662 | − | 9.64332i | 2.27414 | − | 2.27414i | −57.9872 | + | 114.112i | −242.456 | − | 242.456i | −35.3854 | − | 8.47502i | 1642.72i | 1443.50 | − | 115.967i | 2176.66i | −903.559 | + | 3772.59i | ||||
5.5 | −3.93160 | + | 10.6086i | −35.6625 | + | 35.6625i | −97.0851 | − | 83.4176i | 50.2015 | + | 50.2015i | −238.119 | − | 518.540i | − | 699.226i | 1266.64 | − | 701.973i | − | 356.628i | −729.940 | + | 335.196i | ||
5.6 | −2.66996 | − | 10.9941i | −21.1050 | + | 21.1050i | −113.743 | + | 58.7079i | 328.807 | + | 328.807i | 288.382 | + | 175.682i | − | 874.718i | 949.131 | + | 1093.76i | 1296.15i | 2737.06 | − | 4492.86i | |||
5.7 | −2.35505 | + | 11.0659i | 50.5872 | − | 50.5872i | −116.907 | − | 52.1215i | −364.370 | − | 364.370i | 440.657 | + | 678.928i | − | 182.346i | 852.094 | − | 1170.93i | − | 2931.14i | 4890.18 | − | 3173.96i | ||
5.8 | 4.26019 | − | 10.4810i | 61.7547 | − | 61.7547i | −91.7015 | − | 89.3019i | 160.824 | + | 160.824i | −384.163 | − | 910.337i | 1202.46i | −1326.64 | + | 580.677i | − | 5440.30i | 2370.74 | − | 1000.45i | |||
5.9 | 5.18419 | + | 10.0561i | 20.1662 | − | 20.1662i | −74.2483 | + | 104.265i | 269.345 | + | 269.345i | 307.337 | + | 98.2467i | 147.771i | −1433.41 | − | 206.115i | 1373.65i | −1312.21 | + | 4104.88i | ||||
5.10 | 5.94849 | − | 9.62369i | −12.2643 | + | 12.2643i | −57.2310 | − | 114.493i | −210.432 | − | 210.432i | 45.0740 | + | 190.982i | − | 920.183i | −1442.28 | − | 130.286i | 1886.17i | −3276.88 | + | 773.380i | |||
5.11 | 8.27487 | + | 7.71535i | −37.3394 | + | 37.3394i | 8.94683 | + | 127.687i | −233.214 | − | 233.214i | −597.065 | + | 20.8921i | 241.506i | −911.115 | + | 1125.62i | − | 601.466i | −130.487 | − | 3729.13i | |||
5.12 | 10.5559 | − | 4.07109i | −49.4488 | + | 49.4488i | 94.8525 | − | 85.9477i | 252.094 | + | 252.094i | −320.664 | + | 723.285i | 1482.88i | 651.349 | − | 1293.41i | − | 2703.37i | 3687.36 | + | 1634.77i | |||
5.13 | 11.3129 | + | 0.135147i | 26.1364 | − | 26.1364i | 127.963 | + | 3.05781i | −31.6175 | − | 31.6175i | 299.211 | − | 292.146i | − | 444.381i | 1447.22 | + | 51.8865i | 820.775i | −353.412 | − | 361.958i | |||
13.1 | −11.0128 | + | 2.59189i | −56.5688 | − | 56.5688i | 114.564 | − | 57.0880i | −90.1684 | + | 90.1684i | 769.602 | + | 476.362i | 373.897i | −1113.71 | + | 925.637i | 4213.06i | 759.302 | − | 1226.72i | ||||
13.2 | −10.5089 | + | 4.19081i | 42.2145 | + | 42.2145i | 92.8743 | − | 88.0816i | 46.9348 | − | 46.9348i | −620.541 | − | 266.716i | 1384.27i | −606.875 | + | 1314.86i | 1377.13i | −296.539 | + | 689.929i | ||||
13.3 | −10.1415 | − | 5.01488i | 8.25573 | + | 8.25573i | 77.7019 | + | 101.717i | 63.0500 | − | 63.0500i | −42.3243 | − | 125.127i | − | 847.676i | −277.917 | − | 1421.24i | − | 2050.69i | −955.613 | + | 323.236i | ||
13.4 | −5.91662 | + | 9.64332i | 2.27414 | + | 2.27414i | −57.9872 | − | 114.112i | −242.456 | + | 242.456i | −35.3854 | + | 8.47502i | − | 1642.72i | 1443.50 | + | 115.967i | − | 2176.66i | −903.559 | − | 3772.59i | ||
13.5 | −3.93160 | − | 10.6086i | −35.6625 | − | 35.6625i | −97.0851 | + | 83.4176i | 50.2015 | − | 50.2015i | −238.119 | + | 518.540i | 699.226i | 1266.64 | + | 701.973i | 356.628i | −729.940 | − | 335.196i | ||||
13.6 | −2.66996 | + | 10.9941i | −21.1050 | − | 21.1050i | −113.743 | − | 58.7079i | 328.807 | − | 328.807i | 288.382 | − | 175.682i | 874.718i | 949.131 | − | 1093.76i | − | 1296.15i | 2737.06 | + | 4492.86i | |||
13.7 | −2.35505 | − | 11.0659i | 50.5872 | + | 50.5872i | −116.907 | + | 52.1215i | −364.370 | + | 364.370i | 440.657 | − | 678.928i | 182.346i | 852.094 | + | 1170.93i | 2931.14i | 4890.18 | + | 3173.96i | ||||
See all 26 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 16.8.e.a | ✓ | 26 |
4.b | odd | 2 | 1 | 64.8.e.a | 26 | ||
8.b | even | 2 | 1 | 128.8.e.b | 26 | ||
8.d | odd | 2 | 1 | 128.8.e.a | 26 | ||
16.e | even | 4 | 1 | inner | 16.8.e.a | ✓ | 26 |
16.e | even | 4 | 1 | 128.8.e.b | 26 | ||
16.f | odd | 4 | 1 | 64.8.e.a | 26 | ||
16.f | odd | 4 | 1 | 128.8.e.a | 26 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
16.8.e.a | ✓ | 26 | 1.a | even | 1 | 1 | trivial |
16.8.e.a | ✓ | 26 | 16.e | even | 4 | 1 | inner |
64.8.e.a | 26 | 4.b | odd | 2 | 1 | ||
64.8.e.a | 26 | 16.f | odd | 4 | 1 | ||
128.8.e.a | 26 | 8.d | odd | 2 | 1 | ||
128.8.e.a | 26 | 16.f | odd | 4 | 1 | ||
128.8.e.b | 26 | 8.b | even | 2 | 1 | ||
128.8.e.b | 26 | 16.e | even | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(16, [\chi])\).