Properties

Label 16.8
Level 16
Weight 8
Dimension 29
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 128
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 16 = 2^{4} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(128\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(16))\).

Total New Old
Modular forms 63 34 29
Cusp forms 49 29 20
Eisenstein series 14 5 9

Trace form

\( 29 q - 2 q^{2} + 26 q^{3} - 184 q^{4} + 136 q^{5} - 176 q^{6} + 664 q^{7} - 1004 q^{8} + 2575 q^{9} + 12972 q^{10} + 5798 q^{11} - 27356 q^{12} - 3280 q^{13} + 22268 q^{14} - 50292 q^{15} + 13336 q^{16}+ \cdots + 32541154 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
16.8.a \(\chi_{16}(1, \cdot)\) 16.8.a.a 1 1
16.8.a.b 1
16.8.a.c 1
16.8.b \(\chi_{16}(9, \cdot)\) None 0 1
16.8.e \(\chi_{16}(5, \cdot)\) 16.8.e.a 26 2

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(16))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(16)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)