Defining parameters
Level: | \( N \) | = | \( 16 = 2^{4} \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(16))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 63 | 34 | 29 |
Cusp forms | 49 | 29 | 20 |
Eisenstein series | 14 | 5 | 9 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(16))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(16)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)