Properties

Label 16.8.e
Level $16$
Weight $8$
Character orbit 16.e
Rep. character $\chi_{16}(5,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $26$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 16.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(16, [\chi])\).

Total New Old
Modular forms 30 30 0
Cusp forms 26 26 0
Eisenstein series 4 4 0

Trace form

\( 26 q - 2 q^{2} - 2 q^{3} - 184 q^{4} - 2 q^{5} - 176 q^{6} - 1004 q^{8} + 12972 q^{10} + 1202 q^{11} - 27356 q^{12} - 2 q^{13} + 22268 q^{14} - 27004 q^{15} + 13336 q^{16} - 4 q^{17} - 29346 q^{18} + 60582 q^{19}+ \cdots + 18815006 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(16, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
16.8.e.a 16.e 16.e $26$ $4.998$ None 16.8.e.a \(-2\) \(-2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{4}]$